1
|
Chen HF, Wu KJ. LncRNAs and asymmetric cell division: the epigenetic mechanisms. Biomed J 2024:100774. [PMID: 39059582 DOI: 10.1016/j.bj.2024.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024] Open
Abstract
Asymmetric cell division (ACD) plays a pivotal role in development, tissue homeostasis, and stem cell maintenance. Emerging evidence suggests that long non-coding RNAs (lncRNAs) are key regulators of ACD, orchestrating the intricate molecular machinery that governs cell fate determination. This review summarizes current literature to elucidate the diverse roles of lncRNAs in modulating ACD across various biological contexts. The regulatory mechanisms of asymmetric cell division mediated by lncRNAs, including their interactions with protein effectors, epigenetic regulation, and subcellular localization are explored. Additionally, we discuss the implications of dysregulated lncRNAs in mediating ACD that lead to tumorigenesis. By integrating findings from diverse experimental models and cell types, this review provides insights into the multifaceted roles of lncRNAs in governing asymmetric cell division, shedding light on fundamental biological processes. Further research in this area may lead to the development of novel therapies targeting dysregulated lncRNAs to restore proper cell division and function. The knowledge of lncRNAs regulating ACD could potentially revolutionize the field of regenerative medicine and cancer therapy by targeting specific lncRNAs involved in ACD. By unraveling the complex interactions between lncRNAs and cellular processes, the potential novel opportunities for precision medicine approaches may be uncovered.
Collapse
Affiliation(s)
- Hsiao-Fan Chen
- Graduate Institutes of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; Graduate Institutes of Cell Biology, China Medical University, Taichung 404, Taiwan.
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Gueishan Dist., Taoyuan 333, Taiwan.
| |
Collapse
|
2
|
Hu X, Duan H, Zou D, Dong C, Wang Y, Wang Y, Li Z, Li Z. Acoustic vibration promotes in vitro expansion of human embryonic stem cells. AMERICAN JOURNAL OF STEM CELLS 2024; 13:143-151. [PMID: 39021373 PMCID: PMC11249672 DOI: 10.62347/pjfc2708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/06/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVES This study aimed to investigate the effect of acoustic vibration on the pluripotency of human embryonic stem cells (hESCs) and evaluate cell proliferation and self-renewal ability post-treatment. METHODS The human ES cell line H1 was used for the experiments. hESCs were treated with an acoustic vibration device. Their proliferative ability was subsequently detected using a colony formation assay, while the expression of pluripotency-related markers was detected via immunofluorescence staining. Finally, changes in gene expression levels were examined using quantitative polymerase chain reaction (qPCR) in the presence of appropriate primers. RESULTS Compared with normal cells in the control group, the morphology of experimental cells subjected to acoustic vibration did not significantly change. Contrastingly, the colony-forming efficiency of the experimental cells significantly increased. Immunofluorescence staining results showed the cells in experimental group were positive for the pluripotency markers NANOG, octamer-binding transcription factor 4 gene (OCT4), and SRY (sex determining region Y)-box 2 (SOX2). In addition, the expression levels of pluripotency genes NANOG, OCT4, SOX2, and Yes-associated protein (YAP)-related genes were up-regulated following acoustic vibration. CONCLUSIONS Our results revealed that acoustic vibration enhanced the proliferative ability of hESCs and increased the expression levels of NANOG, OCT4, SOX2, and YAP-related genes, indicating that acoustic vibration can optimize the self-renewal ability of hESCs and that the YAP signaling pathway may play a critical role in the functional process of acoustic vibration.
Collapse
Affiliation(s)
- Xiangyue Hu
- Shandong First Medical University (Shandong Academy of Medical Sciences)Jinan 250000, Shandong, China
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyQingdao 266071, Shandong, China
| | - Haoyun Duan
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyQingdao 266071, Shandong, China
| | - Dulei Zou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyQingdao 266071, Shandong, China
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital)Jinan 250021, Shandong, China
| | - Chunxiao Dong
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyQingdao 266071, Shandong, China
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital)Jinan 250021, Shandong, China
| | - Yani Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyQingdao 266071, Shandong, China
| | - Yao Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyQingdao 266071, Shandong, China
| | - Zongren Li
- 970 Hospital of Chinese PLA Joint Logistic Support ForceWeihai 264200, Shandong, China
| | - Zongyi Li
- Shandong First Medical University (Shandong Academy of Medical Sciences)Jinan 250000, Shandong, China
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyQingdao 266071, Shandong, China
| |
Collapse
|
3
|
Chen L, Tang B, Xie G, Yang R, Zhang B, Wang Y, Zhang Y, Jiang D, Zhang X. Bovine Pluripotent Stem Cells: Current Status and Prospects. Int J Mol Sci 2024; 25:2120. [PMID: 38396797 PMCID: PMC10889747 DOI: 10.3390/ijms25042120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Pluripotent stem cells (PSCs) can differentiate into three germ layers and diverse autologous cell lines. Since cattle are the most commonly used large domesticated animals, an important food source, and bioreactors, great efforts have been made to establish bovine PSCs (bPSCs). bPSCs have great potential in bovine breeding and reproduction, modeling in vitro differentiation, imitating cancer development, and modeling diseases. Currently, bPSCs mainly include bovine embryonic stem cells (bESCs), bovine induced pluripotent stem cells (biPSCs), and bovine expanded potential stem cells (bEPSCs). Establishing stable bPSCs in vitro is a critical scientific challenge, and researchers have made numerous efforts to this end. In this review, the category of PSC pluripotency; the establishment of bESCs, biPSCs, and bEPSCs and its challenges; and the application outlook of bPSCs are discussed, aiming to provide references for future research.
Collapse
Affiliation(s)
- Lanxin Chen
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bo Tang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guanghong Xie
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Rui Yang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Boyang Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yueqi Wang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yan Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Daozhen Jiang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xueming Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
4
|
Cao D, Wang Y. Study on the Regulation of Trophoblast Activity by Abnormally Expressed lncRNA CCDC144NL-AS1 in Patients with Gestational Diabetes Mellitus. Horm Metab Res 2023; 55:432-438. [PMID: 37295416 DOI: 10.1055/a-2085-6171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gestational diabetes mellitus (GDM) is a common complication in pregnant women. The growth and differentiation of trophoblast cells determine the function of the placenta, and therefore further affect the transport of nutrients to the fetus. lncRNA Coiled-Coil Domain Containing 144 N-Terminal-Like antisense1 (CCDC144NL-AS1) was reported to be abnormally expressed in GDM, but its function and mechanism remain undefined. This study aimed to reveal the expression of CCDC144NL-AS1 in GDM and evaluate its significance in disease development. The expression of CCDC144NL-AS1 in serum and placenta tissues of GDM patients and healthy pregnant women was evaluated using PCR. The effect of CCDC144NL-AS1 on the proliferation, migration, and invasion of trophoblast cells was evaluated with CCK8 and Transwell assay. The mechanism of the interaction between CCDC144NL-AS1 and miR-143-3p was assessed by luciferase reporter assay and cell transfection. CCDC144NL-AS1 was upregulated in GDM patients, which discriminated GDM patients from healthy pregnant women with high sensitivity and specificity and was positively correlated with the insulin resistance indexes. In trophoblast cells, high glucose exposure induced increased CCDC144NL-AS1 and suppressed cell proliferation, migration, and invasion. Silencing CCDC144NL-AS1 could alleviate the inhibitory effect of high glucose, while the knockdown of miR-143-3p reversed the effect of CCDC144NL-AS1. In conclusion, upregulated CCDC144NL-AS1 served as a diagnostic biomarker of GDM and regulated the development of trophoblast cells via negatively modulating miR-143-3p.
Collapse
Affiliation(s)
- Dan Cao
- Obstetrics and Gynecology, Changzhou No. 2 People's Hospital, Changzhou, China
| | - Yu Wang
- Obstetrics and Gynecology, Changzhou No. 2 People's Hospital, Changzhou, China
| |
Collapse
|
5
|
Jiang Y, Cai NN, An XL, Zhu WQ, Yang R, Tang B, Li ZY, Zhang XM. Naïve-like conversion of bovine induced pluripotent stem cells from Sertoli cells. Theriogenology 2023; 196:68-78. [PMID: 36401934 DOI: 10.1016/j.theriogenology.2022.10.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
Feeder cells are essential to derive pluripotent stem cells (PSCs). Mouse embryonic fibroblasts (MEF) are widely used as feeder to generate and culture embryonic stem cells (ESCs) and induced PSCs (iPSCs) in many species. However it may not be suitable for livestock ESCs/iPSCs due to interspecies difference. Previously we derived bovine iPSCs from bovine Sertoli cells using MEF feeder. Here we compared the effects of MEF feeder and bovine embryonic fibroblasts (BEF) feeder on the maintenance of bovine iPSC pluripotency and morphology as well their contributions to the naïve-like conversion, based on a naïve medium (NM). The results showed successful conversion of the primed bovine iPSCs to naïve-like state within 3-4 days both on MEF feeder and BEF feeder in NM (termed as MNM and BNM respectively). These naïve-like iPSCs showed normal karyotype. There were more iPSC colonies under BNM condition than MNM condition. Epigenetically, histone modification H3K4 was upregulated, while H3K27 was downregulated in the naïve-like iPSCs. We further analyzed the naïve markers and differentiation potential both in vitro and in vivo of these cells, which were all reserved throughout the maintenance. Together, bovine naïve-like iPSCs can be generated both on MEF and BEF feeder in NM condition. The BNM condition is able to sustain the pluripotency and differentiation potential of the naïve-like bovine iPSCs, and improve the conversion efficiency.
Collapse
Affiliation(s)
- Yu Jiang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ning-Ning Cai
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xing-Lan An
- First Hospital, Jilin University, Changchun, China
| | - Wen-Qian Zhu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rui Yang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bo Tang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zi-Yi Li
- First Hospital, Jilin University, Changchun, China
| | - Xue-Ming Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
6
|
Cai X, Liang X, Wang K, Liu Y, Hao M, Li H, Dai X, Ding L. Pyroptosis-related lncRNAs: A novel prognosis signature of colorectal cancer. Front Oncol 2022; 12:983895. [PMID: 36531020 PMCID: PMC9748486 DOI: 10.3389/fonc.2022.983895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/19/2022] [Indexed: 08/25/2023] Open
Abstract
Pyroptosis is a newly discovered programmed cell death mechanism involved in tumorigenesis. Long non-coding RNAs (lncRNAs) have been implicated in colorectal cancer (CRC). However, the potential role of pyroptosis-related lncRNAs (PRLs) in CRC remains unelucidated. Therefore, we retrieved transcriptomic data of CRC patients from The Cancer Genome Atlas (TCGA). With the use of univariate and multivariate Cox proportional hazards regression models and the random forest algorithm, a new risk model was constructed based on eight PRLs: Z99289.2, FENDRR, CCDC144NL-ASL, TEX41, MNX1-AS1, NKILA, LINC02798, and LINC02381. Then, according to the Kaplan-Meier plots, the relationship of PRLs with the survival of CRC patients was explored and validated with our risk model in external datasets (Gene Expression Omnibus (GEO) databases; GEO17536, n = 177, and GSE161158, n = 250). To improve its clinical utility, a nomogram combining PRLs that could predict the clinical outcome of CRC patients was established. A full-spectrum immune landscape of CRC patients mediated by PRLs could be described. The PRLs were stratified into two molecular subtypes involved in immune modulators, immune infiltration of tumor immune microenvironment, and inflammatory pathways. Afterward, Tumor Immune Dysfunction and Exclusion (TIDE) and microsatellite instability (MSI) scores were analyzed. Three independent methods were applied to predict PRL-related sensitivity to chemotherapeutic drugs. Our comprehensive analysis of PRLs in CRC patients demonstrates a potential role of PRLs in predicting response to treatment and prognosis of CRC patients, which may provide a better understanding of molecular mechanisms underlying CRC pathogenesis and facilitate the development of effective immunotherapy.
Collapse
Affiliation(s)
- Xing Cai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqing Liang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Kun Wang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yin Liu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mengdi Hao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Huimin Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiaofang Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Epigenetics as "conductor" in "orchestra" of pluripotent states. Cell Tissue Res 2022; 390:141-172. [PMID: 35838826 DOI: 10.1007/s00441-022-03667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/01/2022] [Indexed: 11/02/2022]
Abstract
Pluripotent character is described as the potency of cells to differentiate into all three germ layers. The best example to reinstate the term lies in the context of embryonic stem cells (ESCs). Pluripotent ESC describes the in vitro status of those cells that originate during the complex process of embryogenesis. Pre-implantation to post-implantation development of embryo embrace cells with different levels of stemness. Currently, four states of pluripotency have been recognized, in the progressing order of "naïve," "poised," "formative," and "primed." Epigenetics act as the "conductor" in this "orchestra" of transition in pluripotent states. With a distinguishable gene expression profile, these four states associate with different epigenetic signatures, sometimes distinct while otherwise overlapping. The present review focuses on how epigenetic factors, including DNA methylation, bivalent chromatin, chromatin remodelers, chromatin/nuclear architecture, and microRNA, could dictate pluripotent states and their transition among themselves.
Collapse
|
8
|
Huang S, Wu H, Qi Y, Wei L, Lv X, He Y. Case Report: Balanced Reciprocal Translocation t (17; 22) (p11.2; q11.2) and 10q23.31 Microduplication in an Infertile Male Patient Suffering From Teratozoospermia. Front Genet 2022; 13:797813. [PMID: 35719406 PMCID: PMC9204271 DOI: 10.3389/fgene.2022.797813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/05/2022] [Indexed: 02/03/2023] Open
Abstract
Two chromosomal abnormalities are described in an infertile man suffering from teratozoospermia: balanced reciprocal translocation t (17; 22) (p11.2; q11.2) and a microduplication in the region 10q23.31. Twenty genes located on the breakpoints of translocation (e.g., ALKBH5, TOP3A, SPECC1L, and CDC45) are selected due to their high expression in testicular tissues and might be influenced by chromosome translocation. Four genes located on the breakpoints of microduplication including FLJ37201, KIF20B, LINC00865, and PANK1 result in an increased dosage of genes, representing an imbalance in the genome. These genes have been reported to be associated with developmental disorders/retardation and might be risk factors affecting spermatogenesis. Bioinformatics analysis is carried out on these key genes, intending to find the pathogenic process of reproduction in the context of the translocation and microduplication encountered in the male patient. The combination of the two chromosomal abnormalities carries additional risks for gametogenesis and genomic instability and is apparently harmful to male fertility. Overall, our findings could contribute to the knowledge of male infertility caused by genetic factors.
Collapse
Affiliation(s)
- Shan Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huiling Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yunwei Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liqiang Wei
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaodan Lv
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu He
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
9
|
Lu P, Li M, Zhang D, Jiang W. Lnc-ing pluripotency maintenance and early differentiation in human pluripotent stem cells. FASEB J 2021; 35:e21438. [PMID: 33749897 DOI: 10.1096/fj.202002278r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 01/17/2023]
Abstract
Pluripotency maintenance and lineage differentiation are two major characteristics of human embryonic and induced pluripotent stem cells. The determination of self-renewal or differentiation is under the exquisite control of the gene regulatory network, which is composed of transcription factors, signaling pathways, metabolic factors, chromatin or histone modifiers, miRNAs, and lncRNAs. Growing evidence has shown that long noncoding RNAs (lncRNAs) play important roles in epigenetic, transcriptional, and posttranscriptional gene regulation during the cell fate determination of pluripotent stem cells. Here, we summarize recent reports of lncRNA functions in pluripotency maintenance/exit and the early germ layer specification of human pluripotent stem cells. We also illustrate four major lncRNA functional mechanisms according to different types of cofactors: chromatin or histone modifiers, transcription factors, canonical and noncanonical RNA-binding proteins, and miRNAs. Further understanding of lncRNA-based regulation will provide more insights into the drivers manipulating cell fate and promote the therapeutic and research potential of human embryonic and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Pei Lu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Mao Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Wei Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
10
|
Mirzadeh Azad F, Polignano IL, Proserpio V, Oliviero S. Long Noncoding RNAs in Human Stemness and Differentiation. Trends Cell Biol 2021; 31:542-555. [PMID: 33663944 DOI: 10.1016/j.tcb.2021.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
There is increasing evidence that long noncoding RNAs (lncRNAs) are among the main regulatory factors of stem cell maintenance and differentiation. They act through various mechanisms and interactions with proteins, DNA, and RNA. This heterogeneity in function increases the capabilities of the lncRNome toolkit but also makes it difficult to predict the function of novel lncRNAs or even rely on biological information produced in animal models. As lncRNAs are species- and tissue-specific, the recent technical advances in self-renewal and differentiation of human embryonic stem cells (ESCs) make these cells the ideal system to identify key regulatory lncRNAs and study their molecular functions. Here we provide an overview of the functional versatility of lncRNA mechanistic heterogeneity in regulating pluripotency maintenance and human differentiation.
Collapse
Affiliation(s)
- Fatemeh Mirzadeh Azad
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy; IIGM Foundation, Italian Institute for Genomic Medicine, Candiolo, Torino, Italy
| | - Isabelle Laurence Polignano
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy; IIGM Foundation, Italian Institute for Genomic Medicine, Candiolo, Torino, Italy
| | - Valentina Proserpio
- IIGM Foundation, Italian Institute for Genomic Medicine, Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy; IIGM Foundation, Italian Institute for Genomic Medicine, Candiolo, Torino, Italy.
| |
Collapse
|