1
|
Nouri S, Shokraneh S, Fatehi Shalamzari P, Ahmed MH, Radi UK, Idan AH, Ebrahimi MJ, Moafi M, Gholizadeh N. Application of Mesenchymal Stem Cells and Exosome alone or Combination Therapy as a Treatment Strategy for Wound Healing. Cell Biochem Biophys 2024; 82:3209-3222. [PMID: 39068609 DOI: 10.1007/s12013-024-01448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
The process of wound healing consists of multiple phases, and any disruptions in these phases can lead to the wound becoming chronic and impose heavy financial and psychological costs on the patient and a huge economic burden on the country's healthcare system. Various treatments such as drugs, matrix and scaffolds, blood products, cell therapy, and a combination of these treatments are used for wound healing. The use of mesenchymal stem cells (MSCs) is one of these methods that have produced appropriate responses in the healing of patients' wounds. MSCs by secreting growth factors, cytokines, chemokines, and RNAs elicit changes in cell proliferation, migration, growth, signaling, immunomodulation, and wound re-epithelialization process, and as a result, accelerate wound closure and wound healing. These cells can be isolated from different body sources with different cell characteristics and used directly on the wound site or by injection. In addition, MSCs-derived exosomes have attracted growing attention due to circumventing concerns relating to the direct use of MSCs. To increase the performance of MSCs, they can be used together with other compounds such as platelets, matrices, or scaffolds. This study examined the functions of MSCs in wound healing, as well as the vesicles they secrete, cellular and molecular mechanisms, and combined treatments with MSCs for wound healing.
Collapse
Affiliation(s)
- Soheil Nouri
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Mohammad Javad Ebrahimi
- Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maral Moafi
- Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Gholizadeh
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Kim HJ, Kim YH. Comprehensive Insights into Keloid Pathogenesis and Advanced Therapeutic Strategies. Int J Mol Sci 2024; 25:8776. [PMID: 39201463 PMCID: PMC11354446 DOI: 10.3390/ijms25168776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Keloid scars, characterized by abnormal fibroproliferation and excessive extracellular matrix (ECM) production that extends beyond the original wound, often cause pruritus, pain, and hyperpigmentation, significantly impacting the quality of life. Keloid pathogenesis is multifactorial, involving genetic predisposition, immune response dysregulation, and aberrant wound-healing processes. Central molecular pathways such as TGF-β/Smad and JAK/STAT are important in keloid formation by sustaining fibroblast activation and ECM deposition. Conventional treatments, including surgical excision, radiation, laser therapies, and intralesional injections, yield variable success but are limited by high recurrence rates and potential adverse effects. Emerging therapies targeting specific immune pathways, small molecule inhibitors, RNA interference, and mesenchymal stem cells show promise in disrupting the underlying mechanisms of keloid pathogenesis, potentially offering more effective and lasting treatment outcomes. Despite advancements, further research is essential to fully elucidate the precise mechanisms of keloid formation and to develop targeted therapies. Ongoing clinical trials and research efforts are vital for translating these scientific insights into practical treatments that can markedly enhance the quality of life for individuals affected by keloid scars.
Collapse
Affiliation(s)
- Hyun Jee Kim
- Department of Dermatology, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea;
| | - Yeong Ho Kim
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
3
|
Hu M, Li Z, Liu Y, Feng Y, Wang Z, Huang R, Li L, Huang X, Shao Q, Lin W, Cheng X, Yang Y. Multifunctional Hydrogel of Recombinant Humanized Collagen Loaded with MSCs and MnO 2 Accelerates Chronic Diabetic Wound Healing. ACS Biomater Sci Eng 2024; 10:3188-3202. [PMID: 38592024 DOI: 10.1021/acsbiomaterials.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Chronic wound repair is a clinical treatment challenge. The development of multifunctional hydrogels is of great significance in the key aspects of treating chronic wounds, including reducing oxidative stress, promoting angiogenesis, and improving the natural remodeling of extracellular matrix and immune regulation. In this study, we prepared a composite hydrogel, sodium alginate (SA)@MnO2/recombinant humanized collagen III (RHC)/mesenchymal stem cells (MSCs), composed of SA, MnO2 nanoparticles, RHC, and MSCs. The hydrogel has high mechanical properties and good biocompatibility. In vitro, SA@MnO2/RHC/MSCs hydrogel effectively enhanced the formation of intricate tubular structures and angiogenesis and showed synergistic effects on cell proliferation and migration. In vivo, the SA@MnO2/RHC/MSCs hydrogel enhanced diabetes wound healing, rapid re-epithelization, favorable collagen deposition, and abundant wound angiogenesis. These findings demonstrated that the combined effects of SA, MnO2, RHC, and MSCs synergistically accelerate healing, resulting in a reduced healing time. These observed healing effects demonstrated the potential of this multifunctional hydrogel to transform chronic wound care and improve patient outcomes.
Collapse
Affiliation(s)
- Meirong Hu
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Ziyi Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yuan Liu
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yuqing Feng
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Lu Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Xiaopeng Huang
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California 90024, United States
| | - Qi Shao
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Wanqing Lin
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Xianxing Cheng
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| |
Collapse
|
4
|
Li Y, Zhao L, Li S, Ruan D, Xiong L, Tang J, Hu M, Wang Y, Huang W, Li L, Zhao Z. Skin-derived precursor conditioned medium alleviated photoaging via early activation of TGF-β/Smad signaling pathway by thrombospondin1: In vitro and in vivo studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 253:112873. [PMID: 38412778 DOI: 10.1016/j.jphotobiol.2024.112873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Photoaging is one major exogenous factor of skin aging. Efficacy and safety of current anti-photoaging therapies remained to be improved. Our previous studies indicated that skin-derived precursors (SKPs) alleviated photodamage by early activation of TGF-β/Smad signaling pathway via thrombospondin1 (TSP1). However, the research concerning SKP conditioned medium (SKP-CM) has never been reported. In the current study, we aimed to explore the anti-photoaging effects of SKP-CM both in vitro and in vivo, and to elucidate the possible mechanisms. Mouse SKP-CM (mSKP-CM) collection was optimized by a comparative method. The concentration of protein and growth factors in mSKP-CM was detected using BCA protein assay kit and growth factor protein chip. The anti-photoaging effects of mSKP-CM and its regulation of key factors in the TGF-β/Smad signaling pathway were explored using UVA + UVB photoaged mouse fibroblasts (mFBs) and nude mice dorsal skin. The research revealed that mSKP-CM contained significantly higher-concentration of protein and growth factors than mouse mesenchymal stem cell conditioned medium (mDMSC-CM). mSKP-CM alleviated mFBs photoaging by restoring cell viability and relieving senescence and death. ELISA, qRT-PCR, and western blot results implied the potential mechanisms were associated with the early activation of TGF-β/Smad signaling pathway by TSP1. In vivo experiments demonstrated that compared with the topical intradermal mDMSC-CM injection and retinoic acid cream application, the photodamaged mice dorsal skin intradermally injected with mSKP-CM showed significantly better improvement. Consistent with the in vitro results, both western blot and immunohistochemistry results confirmed that protein expression of TSP1, smad2/3, p-smad2/3, TGF-β1, and collagen I increased, and matrix metalloproteinases decreased. In summary, both in vitro and in vivo experiments demonstrated that mSKP-CM alleviated photoaging through an early activation of TGF-β/Smad signaling pathway via TSP1. SKP-CM may serve as a novel and promising cell-free therapeutical approach for anti-photoaging treatment and regenerative medicine.
Collapse
Affiliation(s)
- Yiming Li
- Department of Dermatology, Sichuan Second Hospital of TCM, Chengdu, Sichuan 610041, China; Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Lingyun Zhao
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shiyi Li
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Danhua Ruan
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lidan Xiong
- Center of Cosmetics Evaluation, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Tang
- Center of Cosmetics Evaluation, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Meng Hu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yixin Wang
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wen Huang
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Li
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Center of Cosmetics Evaluation, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiwei Zhao
- Department of Anatomy, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. The Mechanism of Pyroptosis and Its Application Prospect in Diabetic Wound Healing. J Inflamm Res 2024; 17:1481-1501. [PMID: 38463193 PMCID: PMC10924950 DOI: 10.2147/jir.s448693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Pyroptosis defines a form of pro-inflammatory-dependent programmed cell death triggered by gasdermin proteins, which creates cytoplasmic pores and promotes the activation and accumulation of immune cells by releasing several pro-inflammatory mediators and immunogenic substances upon cell rupture. Pyroptosis comprises canonical (mediated by Caspase-1) and non-canonical (mediated by Caspase-4/5/11) molecular signaling pathways. Numerous studies have explored the contributory roles of inflammasome and pyroptosis in the progression of multiple pathological conditions such as tumors, nerve injury, inflammatory diseases and metabolic disorders. Accumulating evidence indicates that the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome results in the activation of pyroptosis and inflammation. Current evidence suggests that pyroptosis-dependent cell death plays a progressive role in the development of diabetic complications including diabetic wound healing (DWH) and diabetic foot ulcers (DFUs). This review presents a brief overview of the molecular mechanisms underlying pyroptosis and addresses the current research on pyroptosis-dependent signaling pathways in the context of DWH. In this review, we also present some prospective therapeutic compounds/agents that can target pyroptotic signaling pathways, which may serve as new strategies for the effective treatment and management of diabetic wounds.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Chuxiao Shao
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Peiwu Geng
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Shuanghu Wang
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Department of Wound Healing, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| |
Collapse
|
6
|
Zhu M, Cao L, Melino S, Candi E, Wang Y, Shao C, Melino G, Shi Y, Chen X. Orchestration of Mesenchymal Stem/Stromal Cells and Inflammation During Wound Healing. Stem Cells Transl Med 2023; 12:576-587. [PMID: 37487541 PMCID: PMC10502569 DOI: 10.1093/stcltm/szad043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/13/2023] [Indexed: 07/26/2023] Open
Abstract
Wound healing is a complex process and encompasses a number of overlapping phases, during which coordinated inflammatory responses following tissue injury play dominant roles in triggering evolutionarily highly conserved principals governing tissue repair and regeneration. Among all nonimmune cells involved in the process, mesenchymal stem/stromal cells (MSCs) are most intensely investigated and have been shown to play fundamental roles in orchestrating wound healing and regeneration through interaction with the ordered inflammatory processes. Despite recent progress and encouraging results, an informed view of the scope of this evolutionarily conserved biological process requires a clear understanding of the dynamic interplay between MSCs and the immune systems in the process of wound healing. In this review, we outline current insights into the ways in which MSCs sense and modulate inflammation undergoing the process of wound healing, highlighting the central role of neutrophils, macrophages, and T cells during the interaction. We also draw attention to the specific effects of MSC-based therapy on different pathological wound healing. Finally, we discuss how ongoing scientific advances in MSCs could be efficiently translated into clinical strategies, focusing on the current limitations and gaps that remain to be overcome for achieving preferred functional tissue regeneration.
Collapse
Affiliation(s)
- Mengting Zhu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Lijuan Cao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Sonia Melino
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Shanghai, People’s Republic of China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
| | - Gerry Melino
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
| | - Xiaodong Chen
- Wuxi Sinotide New Drug Discovery Institutes, Huishan Economic and Technological Development Zone, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
7
|
Zhong Y, Zhang Y, Yu A, Zhang Z, Deng Z, Xiong K, Wang Q, Zhang J. Therapeutic role of exosomes and conditioned medium in keloid and hypertrophic scar and possible mechanisms. Front Physiol 2023; 14:1247734. [PMID: 37781228 PMCID: PMC10536244 DOI: 10.3389/fphys.2023.1247734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Exosomes, ranging from 40 to 160 nm in diameter, are extracellular lipid bilayer microvesicles that regulate the body's physiological and pathological processes and are secreted by cells that contain proteins, nucleic acids, amino acids and other metabolites. Previous studies suggested that mesenchymal stem cell (MSC)-derived exosomes could either suppress or support keloid and hypertrophic scar progression. Although previous research has identified the potential value of MSC-exosomes in keloid and hypertrophic scar, a comprehensive analysis of different sources of MSC-exosome in keloid and hypertrophic scar is still lacking. This review mainly discusses different insights regarding the roles of MSC-exosomes in keloid and hypertrophic scar treatment and summarizes possible underlying mechanisms.
Collapse
Affiliation(s)
- Yixiu Zhong
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Youfan Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Aijiao Yu
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiwen Zhang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenjun Deng
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Kaifen Xiong
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Rizano A, Margiana R, Supardi S, Narulita P. Exploring the future potential of mesenchymal stem/stromal cells and their derivatives to support assisted reproductive technology for female infertility applications. Hum Cell 2023; 36:1604-1619. [PMID: 37407748 DOI: 10.1007/s13577-023-00941-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Women's infertility impacts the quality of life of both patients and couples and has multifaceted dimensions that increase the number of challenges associated with female infertility and how to face them. Female reproductive disorders, such as premature ovarian failure (POF), endometriosis, Asherman syndrome (AS), polycystic ovary syndrome (PCOS), and preeclampsia, can stimulate infertility. In the last decade, translational medicine has advanced, and scientists are focusing on infertility therapy with innovative attitudes. Recent investigations have suggested that stem cell treatments could be safe and effective. Stem cell therapy has established a novel method for treating women's infertility as part of a regeneration approach. The chief properties and potential of mesenchymal stem/stromal cells (MSCs) in the future of women's infertility should be considered by researchers. Due to their high abundance, great ability to self-renew, and high differentiation capacity, as well as less ethical concerns, MSC-based therapy has been found to be an effective alternative strategy to the previous methods for treating female infertility, such as intrauterine insemination, in vitro fertilization, medicines, and surgical procedures. These types of stem cells exert their beneficial role by releasing active mediators, promoting cell homing, and contributing to immune modulation. Here we first provide an overview of MSCs and their crucial roles in both biological and immunological processes. The next large chapter covers current preclinical and clinical studies on the application of MSCs to treat various female reproductive disorders. Finally, we deliberate on the extant challenges that hinder the application of MSCs in female infertility and suggest plausible measures to alleviate these impediments.
Collapse
Affiliation(s)
- Andrew Rizano
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Ria Margiana
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Indonesia General Academic Hospital, Depok, Indonesia.
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia.
| | - Supardi Supardi
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Pety Narulita
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
9
|
Qian Q, Zhu N, Li W, Wan S, Wu D, Wu Y, Liu W. Human Umbilical Mesenchymal Stem Cells-Derived Microvesicles Attenuate Formation of Hypertrophic Scar through Multiple Mechanisms. Stem Cells Int 2023; 2023:1-15. [DOI: 10.1155/2023/9125265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Mesenchymal stem cells and the derived extracellular microvesicles are potential promising therapy for many disease conditions, including wound healing. Since current therapeutic approaches do not satisfactorily attenuate or ameliorate formation of hypertrophic scars, it is necessary to develop novel drugs to achieve better outcomes. In this study, we investigated the effects and the underlying mechanisms of human umbilical mesenchymal stem cells (HUMSCs)-derived microvesicles (HUMSCs-MVs) on hypertrophic scar formation using a rabbit ear model and a human foreskin fibroblasts (HFF) culture model. The results showed that HUMSCs-MVs reduced formation of hypertrophic scar tissues in the rabbit model based on appearance observation, and hematoxylin and eosin (H&E), Masson, and immunohistochemical stainings. HUMSCs-MVs inhibited invasion of HFF cells and decreased the levels of the α-SMA, N-WASP, and cortacin proteins. HUMSCs-MVs also inhibited cell proliferation of HFF cells. The MMP-1, MMP-3, and TIMP-3 mRNA levels were significantly increased, and the TIMP-4 mRNA level and the NF-kB p65/β-catenin protein levels were significantly decreased in HFF cells after HUMSCs-MVs treatment. The p-SMAD2/3 levels and the ratios of p-SMAD2/3/SMAD2/3 were significantly decreased in both the wound healing tissues and HFF cells after HUMSCs-MVs treatment. CD34 levels were significantly decreased in both wound healing scar tissues and HFF cells after HUMSCs-MVs treatment. The VEGF-A level was also significantly decreased in HFF cells after HUMSCs-MVs treatment. The magnitudes of changes in these markers by HUMSCs-MVs were mostly higher than those by dexamethasone. These results suggested that HUMSCs-MVs attenuated formation of hypertrophic scar during wound healing through inhibiting proliferation and invasion of fibrotic cells, inflammation and oxidative stress, Smad2/3 activation, and angiogenesis. HUMSCs-MVs is a potential promising drug to attenuate formation of hypertrophic scar during wound healing.
Collapse
Affiliation(s)
- Qun Qian
- Zhongnan Hospital of Wuhan University, Clinical Center for Pelvic Floor Surgery, Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan University, Wuhan, Hubei, China
| | - Ni Zhu
- Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Wenzhe Li
- Zhongnan Hospital of Wuhan University, Clinical Center for Pelvic Floor Surgery, Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan University, Wuhan, Hubei, China
| | - Songlin Wan
- Zhongnan Hospital of Wuhan University, Clinical Center for Pelvic Floor Surgery, Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan University, Wuhan, Hubei, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yunhua Wu
- Zhongnan Hospital of Wuhan University, Clinical Center for Pelvic Floor Surgery, Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan University, Wuhan, Hubei, China
| | - Weicheng Liu
- Zhongnan Hospital of Wuhan University, Clinical Center for Pelvic Floor Surgery, Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
10
|
Zhang X, Wang Z, Wang B, Li J, Yuan H. lncRNA OIP5-AS1 attenuates the osteoarthritis progression in IL-1β-stimulated chondrocytes. Open Med (Wars) 2023; 18:20230721. [PMID: 37333451 PMCID: PMC10276615 DOI: 10.1515/med-2023-0721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/18/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
In view of the association between long noncoding RNA OIP5-AS1 and osteoarthritis (OA) pathology, the corresponding potential mechanism is worthy of exploration. Primary chondrocytes were identified by morphological observation and immunohistochemical staining of collagen II. The association between OIP5-AS1 and miR-338-3p was analyzed by StarBase and dual-luciferase reporter assay. After the expression of OIP5-AS1 or miR-338-3p in interleukin (IL)-1β-stimulated primary chondrocytes and CHON-001 cells was manipulated, cell viability, proliferation, apoptosis rate, apoptosis-related protein (cleaved caspase-9, Bax) expressions, extracellular matrix (ECM) (matrix metalloproteinase (MMP)-3, MMP-13, aggrecan, and collagen II), PI3K/AKT pathway, and mRNA expressions of inflammatory factors (IL-6 and IL-8), OIP5-AS1, and miR-338-3p were determined by cell counting kit-8, EdU, flow cytometry, Western blot, and quantitative reverse transcription-polymerase chain reaction. As a result, the expression of OIP5-AS1 was downregulated in IL-1β-activated chondrocytes, while miR-338-3p was overexpressed. OIP5-AS1 overexpression reversed the effects of IL-1β on viability, proliferation, apoptosis, ECM degradation, and inflammation in chondrocytes. However, OIP5-AS1 knockdown exhibited opposite effects. Interestingly, the effects of OIP5-AS1 overexpression were partially offset by miR-338-3p overexpression. Furthermore, OIP5-AS1 overexpression blocked the PI3K/AKT pathway by modulating miR-338-3p expression. In sum, OIP5-AS1 promotes viability and proliferation, and inhibits apoptosis and ECM degradation in IL-1β-activated chondrocytes by targeting miR-338-3p through blocking the PI3K/AKT pathway, indicating an attractive strategy for OA treatment.
Collapse
Affiliation(s)
- Xuefeng Zhang
- The First Clinical Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
- Department of Pain, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong 523326, P.R. China
| | - Zhikun Wang
- Department of Orthopedics, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong 523326, P.R. China
| | - Binbin Wang
- Department of Pain, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong 523326, P.R. China
| | - Jingyi Li
- Department of Pain, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong 523326, P.R. China
| | - Hui Yuan
- Department of Pain, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong 523326, P.R. China
| |
Collapse
|
11
|
Bormann D, Gugerell A, Ankersmit HJ, Mildner M. Therapeutic Application of Cell Secretomes in Cutaneous Wound Healing. J Invest Dermatol 2023; 143:893-912. [PMID: 37211377 DOI: 10.1016/j.jid.2023.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 05/23/2023]
Abstract
Although the application of stem cells to chronic wounds emerged as a candidate therapy in the previous century, the mechanism of action remains unclear. Recent evidence has implicated secreted paracrine factors in the regenerative properties of cell-based therapies. In the last two decades, considerable research advances involving the therapeutic potential of stem cell secretomes have expanded the scope of secretome-based therapies beyond stem cell populations. In this study, we review the modes of action of cell secretomes in wound healing, important preconditioning strategies for enhancing their therapeutic efficacy, and clinical trials on secretome-based wound healing.
Collapse
Affiliation(s)
- Daniel Bormann
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Alfred Gugerell
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Zhang QY, Tan J, Nie R, Song YT, Zhou XL, Feng ZY, Huang K, Zou CY, Yuan QJ, Zhao LM, Zhang XZ, Jiang YL, Liu LM, Li-Ling J, Xie HQ. Acceleration of wound healing by composite small intestinal submucosa hydrogels through immunomodulation. COMPOSITES PART B: ENGINEERING 2023; 254:110550. [DOI: 10.1016/j.compositesb.2023.110550] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
13
|
Vorstandlechner V, Copic D, Klas K, Direder M, Golabi B, Radtke C, Ankersmit HJ, Mildner M. The Secretome of Irradiated Peripheral Mononuclear Cells Attenuates Hypertrophic Skin Scarring. Pharmaceutics 2023; 15:pharmaceutics15041065. [PMID: 37111549 PMCID: PMC10143262 DOI: 10.3390/pharmaceutics15041065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Hypertrophic scars can cause pain, movement restrictions, and reduction in the quality of life. Despite numerous options to treat hypertrophic scarring, efficient therapies are still scarce, and cellular mechanisms are not well understood. Factors secreted by peripheral blood mononuclear cells (PBMCsec) have been previously described for their beneficial effects on tissue regeneration. In this study, we investigated the effects of PBMCsec on skin scarring in mouse models and human scar explant cultures at single-cell resolution (scRNAseq). Mouse wounds and scars, and human mature scars were treated with PBMCsec intradermally and topically. The topical and intradermal application of PBMCsec regulated the expression of various genes involved in pro-fibrotic processes and tissue remodeling. We identified elastin as a common linchpin of anti-fibrotic action in both mouse and human scars. In vitro, we found that PBMCsec prevents TGFβ-mediated myofibroblast differentiation and attenuates abundant elastin expression with non-canonical signaling inhibition. Furthermore, the TGFβ-induced breakdown of elastic fibers was strongly inhibited by the addition of PBMCsec. In conclusion, we conducted an extensive study with multiple experimental approaches and ample scRNAseq data demonstrating the anti-fibrotic effect of PBMCsec on cutaneous scars in mouse and human experimental settings. These findings point at PBMCsec as a novel therapeutic option to treat skin scarring.
Collapse
Affiliation(s)
- Vera Vorstandlechner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Dragan Copic
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina Klas
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Martin Direder
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Department of Orthopedics and Trauma-Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christine Radtke
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Hendrik J. Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
14
|
Luo Y, Xu X, Ye Z, Xu Q, Li J, Liu N, Du Y. 3D bioprinted mesenchymal stromal cells in skin wound repair. Front Surg 2022; 9:988843. [PMID: 36311952 PMCID: PMC9614372 DOI: 10.3389/fsurg.2022.988843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Skin tissue regeneration and repair is a complex process involving multiple cell types, and current therapies are limited to promoting skin wound healing. Mesenchymal stromal cells (MSCs) have been proven to enhance skin tissue repair through their multidifferentiation and paracrine effects. However, there are still difficulties, such as the limited proliferative potential and the biological processes that need to be strengthened for MSCs in wound healing. Recently, three-dimensional (3D) bioprinting has been applied as a promising technology for tissue regeneration. 3D-bioprinted MSCs could maintain a better cell ability for proliferation and expression of biological factors to promote skin wound healing. It has been reported that 3D-bioprinted MSCs could enhance skin tissue repair through anti-inflammatory, cell proliferation and migration, angiogenesis, and extracellular matrix remodeling. In this review, we will discuss the progress on the effect of MSCs and 3D bioprinting on the treatment of skin tissue regeneration, as well as the perspective and limitations of current research.
Collapse
|
15
|
D'Arpa P, Leung KP. Pharmaceutical Prophylaxis of Scarring with Emphasis on Burns: A Review of Preclinical and Clinical Studies. Adv Wound Care (New Rochelle) 2022; 11:428-442. [PMID: 33625898 PMCID: PMC9142134 DOI: 10.1089/wound.2020.1236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: The worldwide estimate of burns requiring medical attention each year is 11 million. Each year in the United States, ∼486,000 burn injuries receive medical attention, including 40,000 hospitalizations. Scars resulting from burns can be disfiguring and impair functions. The development of prophylactic drugs for cutaneous scarring could improve the outcomes for burns, traumatic lacerations (>6 million/year treated in U.S. emergency rooms), and surgical incisions (∼250 million/year worldwide). Antiscar pharmaceuticals have been estimated to have a market of $12 billion. Recent Advances: Many small molecules, cells, proteins/polypeptides, and nucleic acids have mitigated scarring in animal studies and clinical trials, but none have received Food and Drug Administration (FDA) approval yet. Critical Issues: The development of antiscar pharmaceuticals involves the identification of the proper dose, frequency of application, and window of administration postwounding for the indicated wound. Risks of infection and impaired healing must be considered. Scar outcome needs to be evaluated after scars have matured. Future Directions: Once treatments have demonstrated safety and efficacy in rodent and/or rabbit and porcine wound models, human testing can begin, such as on artificially created wounds on healthy subjects and on bilateral-surgical wounds, comparing treatments versus vehicle controls on intrapatient-matched wounds, before testing on separate cohorts of patients. Given the progress made in the past 20 years, FDA-approved drugs for improving scar outcomes may be expected.
Collapse
Affiliation(s)
- Peter D'Arpa
- The Geneva Foundation, Tacoma, Washington, USA.,Correspondence: 15104 DuFief Dr, North Potomac, MD 20878, USA.
| | - Kai P. Leung
- Division of Combat Wound Repair, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA.,Correspondence: Division of Combat Wound Repair, U.S. Army Institute of Surgical Research, 3650 Chambers Pass, Building 3611, Fort Sam Houston, TX 78234-6315, USA.
| |
Collapse
|
16
|
Mukherjee P, Roy S, Ghosh D, Nandi SK. Role of animal models in biomedical research: a review. Lab Anim Res 2022; 38:18. [PMID: 35778730 PMCID: PMC9247923 DOI: 10.1186/s42826-022-00128-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The animal model deals with the species other than the human, as it can imitate the disease progression, its’ diagnosis as well as a treatment similar to human. Discovery of a drug and/or component, equipment, their toxicological studies, dose, side effects are in vivo studied for future use in humans considering its’ ethical issues. Here lies the importance of the animal model for its enormous use in biomedical research. Animal models have many facets that mimic various disease conditions in humans like systemic autoimmune diseases, rheumatoid arthritis, epilepsy, Alzheimer’s disease, cardiovascular diseases, Atherosclerosis, diabetes, etc., and many more. Besides, the model has tremendous importance in drug development, development of medical devices, tissue engineering, wound healing, and bone and cartilage regeneration studies, as a model in vascular surgeries as well as the model for vertebral disc regeneration surgery. Though, all the models have some advantages as well as challenges, but, present review has emphasized the importance of various small and large animal models in pharmaceutical drug development, transgenic animal models, models for medical device developments, studies for various human diseases, bone and cartilage regeneration model, diabetic and burn wound model as well as surgical models like vascular surgeries and surgeries for intervertebral disc degeneration considering all the ethical issues of that specific animal model. Despite, the process of using the animal model has facilitated researchers to carry out the researches that would have been impossible to accomplish in human considering the ethical prohibitions.
Collapse
Affiliation(s)
- P Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, India
| | - S Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, India
| | - D Ghosh
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - S K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India.
| |
Collapse
|
17
|
Song M, Zong J, Zou L, Fu Z, Liu J, Wang S. Biological debridement combined with stem cell therapy will be a convenient and efficient method for treating chronic wounds in the future. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Li C, Wang B. Mesenchymal Stem/Stromal Cells in Progressive Fibrogenic Involvement and Anti-Fibrosis Therapeutic Properties. Front Cell Dev Biol 2022; 10:902677. [PMID: 35721482 PMCID: PMC9198494 DOI: 10.3389/fcell.2022.902677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Fibrosis refers to the connective tissue deposition and stiffness usually as a result of injury. Fibrosis tissue-resident mesenchymal cells, including fibroblasts, myofibroblast, smooth muscle cells, and mesenchymal stem/stromal cells (MSCs), are major players in fibrogenic processes under certain contexts. Acknowledging differentiation potential of MSCs to the aforementioned other types of mesenchymal cell lineages is essential for better understanding of MSCs’ substantial contributions to progressive fibrogenesis. MSCs may represent a potential therapeutic option for fibrosis resolution owing to their unique pleiotropic functions and therapeutic properties. Currently, clinical trial efforts using MSCs and MSC-based products are underway but clinical data collected by the early phase trials are insufficient to offer better support for the MSC-based anti-fibrotic therapies. Given that MSCs are involved in the coagulation through releasing tissue factor, MSCs can retain procoagulant activity to be associated with fibrogenic disease development. Therefore, MSCs’ functional benefits in translational applications need to be carefully balanced with their potential risks.
Collapse
Affiliation(s)
- Chenghai Li
- Stem Cell Program of Clinical Research Center, People’s Hospital of Zhengzhou University and Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan University, Zhengzhou, China
- *Correspondence: Chenghai Li, ; Bin Wang,
| | - Bin Wang
- Department of Neurosurgery, People’s Hospital of Zhengzhou University and Henan Provincial People’s Hospital, Zhengzhou, China
- *Correspondence: Chenghai Li, ; Bin Wang,
| |
Collapse
|
19
|
Wang D, Wen JY, Wu D, Ying ZY, Wen ZM, Peng HQ, Geng C, Feng YB, Sui ZG, Lv HY, Wu J, Xu B. LPS-pretreated MSC-conditioned medium optimized with 10-kDa filter attenuates the injury of H9c2 cardiomyocytes in a model of hypoxia/reoxygenation. Can J Physiol Pharmacol 2022; 100:651-664. [PMID: 35533248 DOI: 10.1139/cjpp-2021-0745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mesenchymal stem cell-derived conditioned medium (MSC-CM) improves cardiac function, which is partly attributed to released paracrine factors. Since such cardioprotection is moderate and transient, it's essential to optimize MSC-CM effective components to alleviate myocardial injury. To optimize MSC-CM, MSCs were treated with or without lipopolysaccharides (LPSs) for 48 h (serum-free), and the supernatant was collected. Then, LPS-CM (MSC stimulated by LPS) was further treated with LPS remover (LPS Re-CM) or was concentrated with a 10-kDa cutoff filter (10 kDa-CM). ELISA showed that all pretreatments increased levels of VEGF, HGF, and IGF except LPS remover; 10 kDa-CM was superior to other-CM. CCK-8 displayed that viability of injured H9c2 cells enhanced with the increase of MSC-CM concentration. We also found 10 kDa-CM significantly alleviated H9c2 hypoxia/reoxygenation (H/R) injury, as evidenced by increased Bcl-2/Bax ratio, decreased the levels of LDH and cTn. TEM, TUNEL, and H&E staining confirmed 10 kDa-CM inhibited H/R-induced H9c2 morphological changes. Proteomic analysis identified 41 differentially expressed proteins in 10 kDa-CM, among which anti-inflammation, pro-angiogenesis, and anti-apoptosis were related to cardiac protection. This study indicates that 10 kDa-CM protects H9c2 cardiomyocytes from H/R injury by preserving most of the protective factors, such as VEGF, HGF, and IGF, in MSC-CM.
Collapse
Affiliation(s)
- Dan Wang
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China.,Ordos Central Hospital, 586048, Department of Pharmacy, Ordos, Inner Mongolia, China;
| | - Jing-Yi Wen
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China;
| | - Di Wu
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China;
| | - Zi-Yue Ying
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China;
| | - Zhi-Min Wen
- The Second Affiliated Hospital of Dalian Medical University, Department of Clinical Laboratory, Dalian, Liaoning, China;
| | - Hui-Qian Peng
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China;
| | - Cong Geng
- The Second Affiliated Hospital of Dalian Medical University, Department of Clinical Laboratory, Dalian, Liaoning, China;
| | - Yuan-Bo Feng
- KU Leuven University Hospitals Leuven, 60182, Leuven, Flanders, Belgium;
| | - Zhi-Gang Sui
- Chinese Academy of Science, Dalian, Liaoning, China;
| | - Hui-Yi Lv
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China;
| | - Jun Wu
- The Second Affiliated Hospital of Dalian Medical University, Department of Echocardiography, Dalian, Liaoning, China;
| | - Bing Xu
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China, 116023;
| |
Collapse
|
20
|
Fadoul R, Haj Khalil T, Redenski I, Oren D, Zigron A, Sharon A, Dror AA, Falah M, Srouji S. The Modulatory Effect of Adipose-Derived Stem Cells on Endometrial Polyp Fibroblasts. Stem Cells Dev 2022; 31:311-321. [PMID: 35438525 DOI: 10.1089/scd.2021.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Endometrial polyps (EPs) are benign overgrowths of the endometrium, with the potential to cause severe complications, ranging from discomfort to inflammation and infertility. Dysfunction of endometrial fibroblasts may be a critical component leading to the development of polyps. While surgical intervention is the common remedy for severe cases, it comes with drawbacks, including infection, bleeding, and risk of damage to the cervix and adjacent tissues. Adipose-derived mesenchymal stromal cells (ASCs) are at the focus of modern medicine, as key modulators of tissue homeostasis, inflammation and tissue repair, rendering them prime candidate agents for tissue regeneration and cell-based therapies. In the current work, endometrial polyps were isolated from patients admitted to the OB/GYN department at the Galilee Medical Center and extracted fibroblasts (EPFs) were isolated and characterized. ASCs were isolated from healthy patients. The effect of EPF- and ASC-conditioned media (CM) on polyp-derived fibroblasts was evaluated, in both 2D and 3D assays, as well as on the expression of matrix-related gene expression. Herein, EPFs exposed to ASC-CM exhibited reduced migration, invasion, contraction of hydrogels, and extracellular matrix deposition, compared to those exposed to EPF-CM. Altogether, the current work suggests that ASCs may have a modulating effect on fibroblasts involved in forming endometrial polyps and may serve as the basis for conservative treatment strategies aimed at treating severe cases of EPs.
Collapse
Affiliation(s)
- Reema Fadoul
- Galilee Medical Center, 61255, Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Nahariya, Israel.,Bar-Ilan University, 26731, The Azrieli Faculty of Medicine, Safed, Israel;
| | - Tharwat Haj Khalil
- Galilee Medical Center, 61255, Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Nahariya, Israel.,Bar-Ilan University, 26731, The Azrieli Faculty of Medicine, Safed, Israel;
| | - Idan Redenski
- Galilee Medical Center, 61255, Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Nahariya, Israel.,Bar-Ilan University, 26731, The Azrieli Faculty of Medicine, Safed, Israel;
| | - Daniel Oren
- Galilee Medical Center, 61255, Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Nahariya, Israel.,Bar-Ilan University, 26731, The Azrieli Faculty of Medicine, Safed, Israel;
| | - Asaf Zigron
- Galilee Medical Center, 61255, Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Nahariya, Israel.,Bar-Ilan University, 26731, The Azrieli Faculty of Medicine, Safed, Israel;
| | - Avishalom Sharon
- Galilee Medical Center, 61255, Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya, Israel , Nahariya, North, Israel;
| | - Amiel A Dror
- Bar-Ilan University, 26731, The Azrieli Faculty of Medicine, Safed, Israel.,Galilee Medical Center, 61255, Department of Otolaryngology - Head and Neck Surgery, Nahariya, Israel;
| | - Mizied Falah
- Holy family hospital, Institute for Medical Research, Nazareth, Israel;
| | - Samer Srouji
- Galilee Medical Center, 61255, Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Nahariya, Israel.,Bar-Ilan University, 26731, The Azrieli Faculty of Medicine, Safed, Israel;
| |
Collapse
|
21
|
Jiang T, Xia G, Yang B, Zhang HW, Yin YS, Tang CW, Yang JH. Application of Bone Marrow Mesenchymal Stem Cells Effectively Eliminates Endotoxemia to Protect Rat from Acute Liver Failure Induced by Thioacetamide. Tissue Eng Regen Med 2022; 19:403-415. [PMID: 35122584 PMCID: PMC8971247 DOI: 10.1007/s13770-021-00421-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Endotoxemia is related to worse clinical outcomes in acute liver failure (ALF), but its management remains unsatisfactory. In this study, we aimed to assess whether the application of bone marrow mesenchymal stem cells (BMSCs) could eliminate endotoxemia and protect rats against ALF induced by thioacetamide (TAA). METHODS BMSCs were isolated from rats and identified by the specific morphology, differentiation potential, and surface markers. The optimal dose of TAA for this study was explored and TAA-induced ALF rats were randomized to three groups: the normal control group (Saline), ALF group (TAA + Saline), and BMSCs-treated group (TAA + BMSCs). The intestinal migration and differentiation of BMSCs was tracked in vivo, and intestinal permeability, endotoxin and inflammatory cytokines, histology, and mortality were analyzed. Moreover, we added the inhibitor of the PI3K/AKT/mTOR signaling pathway into the co-culture system of BMSCs with enterocytes and then performed CK and Villin expression experiments to assess the role of PI3K/AKT/mTOR signal pathway in the intestinal differentiation of BMSCs. RESULTS BMSCs migrated to the intestinal injury sites and differentiated into enterocytes, intestinal permeability was decreased compared with the ALF group. The higher expression of endotoxin and inflammatory cytokines were reversed after BMSCs transplantation in rats with ALF. Mortality and intestinal lesion were significantly decreased. Blocking the PI3K/AKT/mTOR signal pathway inhibited BMSCs' intestinal differentiation in vitro. CONCLUSION BMSCs can eliminate endotoxemia and reduce mortality in rats with ALF, and the PI3K/AKT/mTOR signal pathway is involved in intestinal differentiation. BMSCs transplantation could be a potential candidate for the treatment of endotoxemia in ALF.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Kunming, 650106, Yunnan, China
| | - Geng Xia
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Kunming, 650106, Yunnan, China
| | - Bo Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Kunming, 650106, Yunnan, China
| | - Hong-Wei Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, 935 Jiaoling Road, Kunming, 650031, Yunnan, China
| | - Yue-Shan Yin
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Kunming, 650106, Yunnan, China
| | - Cheng-Wei Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, 37 Guoxue lane, Chengdu, 610044, Sichuan, China
| | - Jin-Hui Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Kunming, 650106, Yunnan, China.
| |
Collapse
|
22
|
Damayanti RH, Rusdiana T, Wathoni N. Mesenchymal Stem Cell Secretome for Dermatology Application: A Review. Clin Cosmet Investig Dermatol 2021; 14:1401-1412. [PMID: 34675575 PMCID: PMC8502696 DOI: 10.2147/ccid.s331044] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022]
Abstract
Secretome, also known as conditioned medium, is a secreted molecule from mesenchymal stem cells (MSCs) that has a variety of biological activities that can be used in various therapies, especially on the skin applications. A lack of conventional therapies makes secretome as a promising alternative therapy. The presence of growth factors, cytokines, and extracellular vesicles including microvesicles and exosomes in secretome has been widely reported, which serves in improving the proliferation and migration of cells to help in skin regeneration. Therefore, we were able to optimize the use of this secretome in a well-needed special review related to its work in addressing various skin problems. So, in this article, we discussed the benefits and biological activity of secretome on the skin application. This review was compiled based on the approval of several sites, such as Scopus, PubMed, Science Direct, and Google Scholar with the terms "MSC secretome for skin," "secretome for skin," "secretome dermatology," "secretome conditioned medium for skin," "secretome conditioned medium for skin wound," "secretome conditioned medium for aging," "secretome conditioned medium for hair growth," and "secretome conditioned medium for psoriasis." A total of 215 articles were collected for selection, of which 90 articles were used. Based on the results, it was concluded that secretome has a variety of useful activities to regenerate and repair tissue damage that have not been used on the skin, such as for wound healing, photoprotection, promotion of hair growth, psoriasis treatment, and other application as antimicrobial.
Collapse
Affiliation(s)
- Restu Harisma Damayanti
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45353, Indonesia
| | - Taofik Rusdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45353, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45353, Indonesia
| |
Collapse
|
23
|
Chen L, Qu J, Mei Q, Chen X, Fang Y, Chen L, Li Y, Xiang C. Small extracellular vesicles from menstrual blood-derived mesenchymal stem cells (MenSCs) as a novel therapeutic impetus in regenerative medicine. Stem Cell Res Ther 2021; 12:433. [PMID: 34344458 PMCID: PMC8330084 DOI: 10.1186/s13287-021-02511-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023] Open
Abstract
Menstrual blood-derived mesenchymal stem cells (MenSCs) have great potential in regenerative medicine. MenSC has received increasing attention owing to its impressive therapeutic effects in both preclinical and clinical trials. However, the study of MenSC-derived small extracellular vesicles (EVs) is still in its initial stages, in contrast to some common MSC sources (e.g., bone marrow, umbilical cord, and adipose tissue). We describe the basic characteristics and biological functions of MenSC-derived small EVs. We also demonstrate the therapeutic potential of small EVs in fulminant hepatic failure, myocardial infarction, pulmonary fibrosis, prostate cancer, cutaneous wound, type-1 diabetes mellitus, aged fertility, and potential diseases. Subsequently, novel hotspots with respect to MenSC EV-based therapy are proposed to overcome current challenges. While complexities regarding the therapeutic potential of MenSC EVs continue to be unraveled, advances are rapidly emerging in both basic science and clinical medicine. MenSC EV-based treatment has great potential for treating a series of diseases as a novel therapeutic strategy in regenerative medicine.
Collapse
Affiliation(s)
- Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Jingjing Qu
- Department of Respiratory Disease, Thoracic Disease Centre, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Quanhui Mei
- Department of Intensive Care Unit, The First People's Hospital of Changde City, Changde, Hunan, 415000, People's Republic of China
| | - Xin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Lu Chen
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
24
|
Human Mesenchymal Stromal Cell-Derived Exosomes Promote In Vitro Wound Healing by Modulating the Biological Properties of Skin Keratinocytes and Fibroblasts and Stimulating Angiogenesis. Int J Mol Sci 2021; 22:ijms22126239. [PMID: 34207905 PMCID: PMC8228793 DOI: 10.3390/ijms22126239] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (MSCs) are major players in regenerative therapies for wound healing via their paracrine activity, mediated partially by exosomes. Our purpose was to test if MSC-derived exosomes could accelerate wound healing by enhancing the biological properties of the main cell types involved in the key phases of this process. Thus, the effects of exosomes on (i) macrophage activation, (ii) angiogenesis, (iii) keratinocytes and dermal fibroblasts proliferation and migration, and (iv) the capacity of myofibroblasts to regulate the turnover of the extracellular matrix were evaluated. The results showed that, although exosomes did not exhibit anti-inflammatory properties, they stimulated angiogenesis. Exposure of keratinocytes and dermal (myo)fibroblasts to exosomes enhanced their proliferation and migratory capacity. Additionally, exosomes prevented the upregulation of gene expression for type I and III collagen, α-smooth muscle actin, and MMP2 and 14, and they increased MMP13 expression during the fibroblast–myofibroblast transition. The regenerative properties of exosomes were validated using a wound healing skin organotypic model, which exhibited full re-epithelialization upon exosomes exposure. In summary, these data indicate that exosomes enhance the biological properties of keratinocytes, fibroblasts, and endothelial cells, thus providing a reliable therapeutic tool for skin regeneration.
Collapse
|
25
|
Bergman JE, Davies C, Denton AJ, Ashman PE, Mittal R, Eshraghi AA. Advancements in Stem Cell Technology and Organoids for the Restoration of Sensorineural Hearing Loss. J Am Acad Audiol 2021; 32:636-645. [PMID: 34034344 DOI: 10.1055/s-0041-1728677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Sensorineural hearing loss (SNHL) is a significant cause of morbidity worldwide and currently has no curative treatment. Technological advancements in stem cell therapy have led to numerous studies that examine the generation of otic sensory cells from progenitors to restore inner ear function. Recently, organoids have emerged as a promising technique to further advance the process of creating functional replacement cells after irreversible hearing loss. Organoids are the three-dimensional generation of stem cells in culture to model the tissue organization and cellular components of the inner ear. Organoids have emerged as a promising technique to create functioning cochlear structures in vitro and may provide crucial information for the utilization of stem cells to restore SNHL. PURPOSE The purpose of this review is to discuss the recent advancements in stem cell-based regenerative therapy for SNHL. RESULTS Recent studies have improved our understanding about the developmental pathways involved in the generation of hair cells and spiral ganglion neurons. However, significant challenges remain in elucidating the molecular interactions and interplay required for stem cells to differentiate and function as otic sensory cells. A few of the challenges encountered with traditional stem cell therapy may be addressed with organoids. CONCLUSION Stem cell-based regenerative therapy holds a great potential for developing novel treatment modalities for SNHL. Further advancements are needed in addressing the challenges associated with stem cell-based regenerative therapy and promote their translation from bench to bedside.
Collapse
Affiliation(s)
- Jenna E Bergman
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Camron Davies
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Alexa J Denton
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Peter E Ashman
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Rahul Mittal
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Adrien A Eshraghi
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Department of Biomedical Engineering, University of Miami, Coral Gables, Miami, Florida.,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
26
|
Liang X, Lin F, Ding Y, Zhang Y, Li M, Zhou X, Meng Q, Ma X, Wei L, Fan H, Liu Z. Conditioned medium from induced pluripotent stem cell-derived mesenchymal stem cells accelerates cutaneous wound healing through enhanced angiogenesis. Stem Cell Res Ther 2021; 12:295. [PMID: 34016178 PMCID: PMC8139053 DOI: 10.1186/s13287-021-02366-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) can improve cutaneous wound healing via the secretion of growth factors. However, the therapeutic efficacy of MSCs varies depending upon their source. Induced pluripotent stem cells are emerging as a promising source of MSCs with the potential to overcome several limitations of adult MSCs. This study compared the effectiveness of conditioned medium of MSCs derived from induced pluripotent stem cells (iMSC-CdM) with that derived from umbilical cord MSCs (uMSC-CdM) in a mouse cutaneous wound healing model. We also investigated the mechanisms of protection. Methods The iMSC-CdM or uMSC-CdM were topically applied to mice cutaneous wound model. The recovery rate, scar formation, inflammation and angiogenesis were measured. We compared angiogenesis cytokine expression between iMSC-CdM and uMSC-CdM and their protective effects on human umbilical vein endothelial cells (HUVECs) under H2O2-induced injury. The effects of iMSC-CdM on energy metabolism, mitochondria fragmentation and apoptosis were measured. Results Topical application of iMSC-CdM was superior to the uMSC-CdM in accelerating wound closure and enhancing angiogenesis. Expression levels of angiogenetic cytokines were higher in iMSC-CdM than they were in uMSC-CdM. The iMSC-CdM protected HUVECs from H2O2 induced injury more effectively than uMSC-CdM did. Administration of iMSC-CdM stimulated HUVEC proliferation, tube formation and energy metabolism via the ERK pathway. Mechanistically, iMSC-CdM inhibited H2O2-induced mitochondrial fragmentation and apoptosis of HUVECs. Conclusion Collectively, these findings indicate that iMSC-CdM is more effective than uMSC-CdM in treating cutaneous wounds, and in this way, iMSC-CdM may serve as a more constant and sustainable source for cell-free therapeutic approach. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02366-x.
Collapse
Affiliation(s)
- Xiaoting Liang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China.,Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Fang Lin
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.,Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Yue Ding
- Department of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yuelin Zhang
- Department of Emergency, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, People's Republic of China
| | - Mimi Li
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Qingshu Meng
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiaoxue Ma
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Lu Wei
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Huimin Fan
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
| | - Zhongmin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China. .,Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China. .,Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
27
|
Mathen C, Ghag Sawant M, Gupta R, Dsouza W, Krishna SG. Evaluation of Potential Application of Wharton's Jelly-Derived Human Mesenchymal Stromal Cells and its Conditioned Media for Dermal Regeneration using Rat Wound Healing Model. Cells Tissues Organs 2021; 210:31-44. [PMID: 33873188 DOI: 10.1159/000513895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/18/2020] [Indexed: 11/19/2022] Open
Abstract
Mesenchymal stromal cells and the derived conditioned media represent an area of tremendous medical interest and, among other clinical applications, are currently being extensively explored for wound healing. The aim of this study was to comparatively evaluate the wound healing potential of xeno-free human umbilical cord-derived mesenchymal stromal cells (MSCs) and the conditioned media (CM) in a full-thickness excision wound model in rats. The evaluation parameters included rate of wound healing, serum cytokine analyses, collagen content, histopathology, and hyperspectral imaging as an independent qualitative and quantitative tool. Both the cell-based and cell-free approaches scored better in lower inflammation, as evidenced in lower IL-10 and stable IL-6 levels, and improved rate of wound healing (p < 0.0001). More importantly, no adverse reaction or rejection was observed although human MSCs and CM were used in a xenogeneic model. The presence of hFGF, hHGF, hGCSF, hIL-1Ra, hVEGF, and hIL-6 in the secretome may elucidate the regenerative potential of the xeno-free cell-based and cell-free approaches which have translational value for advanced wound care. The results revealed the therapeutic potential of both the cell-based and cell-free approaches for wound healing.
Collapse
Affiliation(s)
- Caroline Mathen
- Clinical R & D, OCT Therapies and Research Pvt Ltd, Mumbai, India
| | - Mrunal Ghag Sawant
- Department of Zoonosis, Haffkine Institute for Training, Research and Testing, Mumbai, India
| | | | - Wilfrid Dsouza
- Clinical R & D, OCT Therapies and Research Pvt Ltd, Mumbai, India
| | | |
Collapse
|
28
|
Zhuang WZ, Lin YH, Su LJ, Wu MS, Jeng HY, Chang HC, Huang YH, Ling TY. Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications. J Biomed Sci 2021; 28:28. [PMID: 33849537 PMCID: PMC8043779 DOI: 10.1186/s12929-021-00725-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a promising resource for cell-based therapy because of their high immunomodulation ability, tropism towards inflamed and injured tissues, and their easy access and isolation. Currently, there are more than 1200 registered MSC clinical trials globally. However, a lack of standardized methods to characterize cell safety, efficacy, and biodistribution dramatically hinders the progress of MSC utility in clinical practice. In this review, we summarize the current state of MSC-based cell therapy, focusing on the systemic safety and biodistribution of MSCs. MSC-associated risks of tumor initiation and promotion and the underlying mechanisms of these risks are discussed. In addition, MSC biodistribution methodology and the pharmacokinetics and pharmacodynamics of cell therapies are addressed. Better understanding of the systemic safety and biodistribution of MSCs will facilitate future clinical applications of precision medicine using stem cells.
Collapse
Affiliation(s)
- Wei-Zhan Zhuang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Yi-Heng Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, 10041, Taiwan.,Department of Obstetrics and Gynecology, National Taiwan University Hospital Yunlin Branch, Yunlin, 64041, Taiwan
| | - Long-Jyun Su
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Meng-Shiue Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Han-Yin Jeng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,Comprehensive Cancer Center of Taipei Medical University, Taipei, 11031, Taiwan. .,The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
29
|
Bojanic C, To K, Hatoum A, Shea J, Seah KTM, Khan W, Malata CM. Mesenchymal stem cell therapy in hypertrophic and keloid scars. Cell Tissue Res 2021; 383:915-930. [PMID: 33386995 PMCID: PMC7960584 DOI: 10.1007/s00441-020-03361-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
Scars are the normal outcome of wound repair and involve a co-ordinated inflammatory and fibrotic process. When a scar does not resolve, uncontrolled chronic inflammation can persist and elicits excessive scarring that leads to a range of abnormal phenotypes such as hypertrophic and keloid scars. These pathologies result in significant impairment of quality of life over a long period of time. Existing treatment options are generally unsatisfactory, and there is mounting interest in innovative cell-based therapies. Despite the interest in mesenchymal stem cells (MSCs), there is yet to be a human clinical trial that investigates the potential of MSCs in treating abnormal scarring. A synthesis of existing evidence of animal studies may therefore provide insight into the barriers to human application. The aim of this PRISMA systematic review was to evaluate the effectiveness of MSC transplantation in the treatment of hypertrophic and keloid scars in in vivo models. A total of 11 case-control studies were identified that treated a total of 156 subjects with MSCs or MSC-conditioned media. Ten studies assessed hypertrophic scars, and one looked at keloid scars. All studies evaluated scars in terms of macroscopic and histological appearances and most incorporated immunohistochemistry. The included studies all found improvements in the above outcomes with MSC or MSC-conditioned media without complications. The studies reviewed support a role for MSC therapy in treating scars that needs further exploration. The transferability of these findings to humans is limited by factors such as the reliability and validity of the disease model, the need to identify the optimal MSC cell source, and the outcome measures employed.
Collapse
Affiliation(s)
- Christine Bojanic
- Plastic & Reconstructive Surgery Department, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kendrick To
- Division of Trauma and Orthopaedics, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Adam Hatoum
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Jessie Shea
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - K T Matthew Seah
- Division of Trauma and Orthopaedics, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Wasim Khan
- Division of Trauma and Orthopaedics, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Charles M Malata
- Plastic & Reconstructive Surgery Department, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Cambridge Breast Unit, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- School of Medicine, Anglia Ruskin University, Cambridge & Chelmsford, UK
| |
Collapse
|
30
|
Yang B, Dong Y, Shen Y, Hou A, Quan G, Pan X, Wu C. Bilayer dissolving microneedle array containing 5-fluorouracil and triamcinolone with biphasic release profile for hypertrophic scar therapy. Bioact Mater 2021; 6:2400-2411. [PMID: 33553824 PMCID: PMC7846935 DOI: 10.1016/j.bioactmat.2021.01.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/26/2020] [Accepted: 01/17/2021] [Indexed: 11/16/2022] Open
Abstract
Hypertrophic scar (HS) is an undesirable skin abnormality following deep burns or operations. Although intralesional multi-injection with the suspension of triamcinolone acetonide (TA) and 5-fluorouracil (5-Fu) has exhibited great promise to HS treatment in clinical, the difference of metabolic behavior between TA and 5-Fu remarkably compromised the treatment efficacy. Besides, the traditional injection with great pain is highly dependent on the skill of the experts, which results in poor compliance. Herein, a bilayer dissolving microneedle (BMN) containing TA and 5-Fu (TA-5-Fu-BMN) with biphasic release profile was designed for HS therapy. Equipped with several micro-scale needle tips, the BMN could be self-pressed into the HS with uniform drug distribution and less pain. Both in vitro permeation and in vivo HS retention tests revealed that TA and 5-Fu could coexist in the scar tissue for a sufficient time period due to the well-designed biphasic release property. Subsequently, the rabbit ear HS model was established to assess therapeutic efficacy. The histological analysis showed that TA-5-Fu-BMN could significantly reduce abnormal fibroblast proliferation and collagen fiber deposition. It was also found that the value of scar elevation index was ameliorated to a basal level, together with the downregulation of mRNA and protein expression of Collagen I (Col I) and transforming growth factor-β1 (TGF-β1) after application of TA-5-Fu-BMN. In conclusion, the BMN with biphasic release profiles could serve as a potential strategy for HS treatment providing both convenient administrations as well as controlled drug release behavior. A bilayer microneedle co-delivery system was designed for hypertrophic scar therapy. The system contained rapid release triamcinolone and sustained-release 5- Fluorouracil. The system was constructed to control the intralesional retention of different drugs. The co-delivery system showed a superior therapeutic effect in hypertrophic scar.
Collapse
Affiliation(s)
- Beibei Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yating Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yifeng Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ailin Hou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Corresponding author.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Corresponding author.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
31
|
Zhang C, Wang T, Zhang L, Chen P, Tang S, Chen A, Li M, Peng G, Gao H, Weng H, Zhang H, Li S, Chen J, Chen L, Chen X. Combination of lyophilized adipose-derived stem cell concentrated conditioned medium and polysaccharide hydrogel in the inhibition of hypertrophic scarring. Stem Cell Res Ther 2021; 12:23. [PMID: 33413617 PMCID: PMC7792059 DOI: 10.1186/s13287-020-02061-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell-based acellular therapies have been widely exploited in managing hypertrophic scars. However, low maintenance dose and transitory therapeutic effects during topical medication remain a thorny issue. Herein, this study aimed to optimize the curative effect of adipose-derived stem cell conditioned medium (ADSC-CM) in the prevention of hypertrophic scarring. METHODS In the present study, ADSC-CM was concentrated via the freeze-drying procedure. The efficacy of different dose groups (CM, CM5, CM10) was conducted on the proliferation, apoptosis, and α-smooth muscle actin (α-SMA) expression of human keloid fibroblasts (HKFs) in vitro. Incorporation of adipose-derived stem cell concentrated conditioned medium (ADSCC-CM) into polysaccharide hydrogel was investigated in rabbit ear, in vivo. Haematoxylin-eosin (H&E) and Masson's trichrome staining were performed for the evaluation of scar hyperplasia. RESULTS We noted that ADSCC-CM could downregulate the α-SMA expression of HKFs in a dose-dependent manner. In the rabbit ear model, the scar hyperplasia in the medium-dose group (CM5) and high-dose group (CM10) was inhibited with reduced scar elevation index (SEI) under 4 months of observation. It is noteworthy that the union of CM5 and polysaccharide hydrogel (CM5+H) yielded the best preventive effect on scar hyperplasia. Briefly, melanin, height, vascularity, and pliability in the CM5+H group were better than those of the control group. Collagen was evenly distributed, and skin appendages could be regenerated. CONCLUSIONS Altogether, ADSCC-CM can downregulate the expression of α-SMA due to its anti-fibrosis effect and promote the rearrangement of collagen fibres, which is integral to scar precaution. The in situ cross bonding of ADSCC-CM and polysaccharide hydrogel could remarkably enhance the therapeutic outcomes in inhibiting scar proliferation. Hence, the alliance of ADSCC-CM and hydrogel may become a potential alternative in hypertrophic scar prophylaxis.
Collapse
Affiliation(s)
- Chaoyu Zhang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, China
| | - Ting Wang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
| | - Li Zhang
- Department of Central Sterile Supply, Fujian Medical University Union Hospital, Fuzhou, China
| | - Penghong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, China
| | - Shijie Tang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, China
| | - Aizhen Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, China
| | - Ming Li
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
| | - Guohao Peng
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, China
| | - Hangqi Gao
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
| | - Haiyan Weng
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
| | - Haoruo Zhang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
| | - Shirong Li
- Department of Plastic and Reconstructive Surgery, Southwestern Hospital, Army Military Medical University, Chongqing, China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liangwan Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Xiaosong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China. .,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
32
|
Ma Z, Song W, He Y, Li H. Multilayer Injectable Hydrogel System Sequentially Delivers Bioactive Substances for Each Wound Healing Stage. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29787-29806. [PMID: 32515577 DOI: 10.1021/acsami.0c06360] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wound healing is a dynamic and complex process that contains several sequential phases. However, most of the current drug delivery systems were designed to treat only one certain phase of wound repair, ignoring the fact that every stage plays critical roles in the wound healing process and those critical stages coordinately work to ensure optimal tissue regeneration. Therefore, a delivery system that can precisely meet the requirements of each wound healing stage is desired to enhance tissue regeneration. In this study, an injectable sodium alginate/bioglass (SA/BG) composite hydrogel was used to carry SA microparticles containing a conditioned medium (CM) of cells (SACM). Inside the SACM microparticles, poly(lactic-co-glycolic acid) (PLGA) microspheres containing pirfenidone (PFD) were encapsulated (PLGAPFD). This multilayer injectable hydrogel system (SA/BG-SACM-PLGAPFD) was designed to sequentially deliver bioactive molecules for meeting the bioactivity requirement and timeline of each wound healing stage. First, SA/BG hydrogels could rapidly release BG ionic products in the first 1-3 days to regulate the inflammatory response of the host and initiate the subsequent tissue regeneration. Then, SACM hydrogel microparticles could release CM of RAW 264.7 cells stimulated with BG ionic products in 2-7 days to facilitate the formation of the vascularized granulation tissue. Finally, PLGAPFD microspheres released PFD in 8-20 days to prevent the fibrosis and scar formation in the regenerated skin. Thus, this SA/BG-SACM-PLGAPFD delivery system could restrain host inflammation, accelerate wound healing, and inhibit the fibrosis formation in a diabetic mouse skin damage model, enhancing skin regeneration. As the bioactive components in each layer of the system can be adjusted according to the requirements of different tissue regeneration, this three-layered injectable biomaterial system has a wide application potential in the regenerative medicine field.
Collapse
Affiliation(s)
- Zhijie Ma
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Wei Song
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Department of Orthopedics, Shanghai Sixth People's Hospital, Jinshan Branch, 147 Jiankang Road, Shanghai 201599, China
| | - Yaohua He
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Department of Orthopedics, Shanghai Sixth People's Hospital, Jinshan Branch, 147 Jiankang Road, Shanghai 201599, China
| | - Haiyan Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| |
Collapse
|
33
|
The Potential of a Hair Follicle Mesenchymal Stem Cell-Conditioned Medium for Wound Healing and Hair Follicle Regeneration. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The study elucidated the wound healing and hair regeneration properties of a conditioned medium prepared from the culture of human hair follicle mesenchymal stem cells (HFMSCs). The wound-healing effects of mesenchymal stem cell-conditioned medium (MSC-CM) were tested in vitro using scratch assays co-cultured with HaCaT keratinocyte and monitored through optical microscopy. The cell proliferation of HFMSCs and the HaCaT keratinocyte were observed in the presence of different kinds of drugs including UK5099, sodium L-lactate, lactate dehydrogenase-A, MSC-CM, caffeine, and caffeic acid. The hair regeneration properties were investigated in vivo by administrating the MSC-CM solutions to adult B6 mouse models. For quantification, hematoxylin and eosin staining were performed following euthanasia. In vitro results revealed that MSC-CM promotes dermal cell migrations and enhances proliferation of HFMSCs and HaCaT keratinocytes, demonstrating wound-healing properties. Moreover, when the MSC-CM solutions were applied to the shaved mouse skin, a dark area that expanded overtime was seen. Although no hair growth was found, histological analysis proved that a fat layer thickness increment was found under the mouse’s skin, ultimately projecting the formation of new hair growth. MSC-CM promotes the migration and proliferation of dermal keratinocytes that are beneficial for wound healing and hair growth. It is believed that MSC-CM can potentially serve as the basis of alternative therapeutic applications for wound closure and skin regeneration as well as hair growth stimulation and hair loss prevention in alopecia.
Collapse
|