1
|
Narasimha RB, Shreya S, Jayabal VA, Yadav V, Rath PK, Mishra BP, Kancharla S, Kolli P, Mandadapu G, Kumar S, Mohanty AK, Jena MK. Stem Cell Therapy for Diseases of Livestock Animals: An In-Depth Review. Vet Sci 2025; 12:67. [PMID: 39852942 PMCID: PMC11768649 DOI: 10.3390/vetsci12010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Stem cells are unique, undifferentiated cells that have the ability to both replicate themselves and develop into specialized cell types. This dual capability makes them valuable in the development of regenerative medicine. Current development in stem cell research has widened their application in cell therapy, drug discovery, reproductive cloning in animals, and cell models for various diseases. Although there are substantial studies revealing the treatment of human degenerative diseases using stem cells, this is yet to be explored in livestock animals. Many diseases in livestock species such as mastitis, laminitis, neuromuscular disorders, autoimmune diseases, and some debilitating diseases are not covered completely by the existing drugs and treatment can be improved by using different types of stem cells like embryonic stem cells, adult stem cells, and induced pluripotent stem cells. This review mainly focuses on the use of stem cells for disease treatment in livestock animals. In addition to the diseases mentioned, the potential of stem cells can be helpful in wound healing, skin disease therapy, and treatment of some genetic disorders. This article explores the potential of stem cells from various sources in the therapy of livestock diseases and also their role in the conservation of endangered species as well as disease model preparation. Moreover, the future perspectives and challenges associated with the application of stem cells in livestock are discussed. Overall, the transformative impact of stem cell research on the livestock sector is comprehensively studied which will help researchers to design future research work on stem cells related to livestock diseases.
Collapse
Affiliation(s)
- Raghavendra B. Narasimha
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (R.B.N.); (S.S.)
| | - Singireddy Shreya
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (R.B.N.); (S.S.)
| | - Vijay Anand Jayabal
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600051, Tamil Nadu, India;
| | - Vikas Yadav
- Department of Clinical Sciences, Clinical Research Centre, Skåne University Hospital, Lund University, SE 20213 Malmö, Sweden
| | - Prasana Kumar Rath
- College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India; (P.K.R.); (B.P.M.)
| | - Bidyut Prava Mishra
- College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India; (P.K.R.); (B.P.M.)
| | - Sudhakar Kancharla
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Prachetha Kolli
- Microgen Health Inc., 14225 Sullyfield Cir Suite E, Chantilly, VA 20151, USA;
| | - Gowtham Mandadapu
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Sudarshan Kumar
- Cell, Molecular and Proteomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, Haryana, India;
| | - Ashok Kumar Mohanty
- ICAR-Central Institute for Research on Cattle (ICAR-CIRC), Meerut 250001, Uttar Pradesh, India;
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (R.B.N.); (S.S.)
| |
Collapse
|
2
|
Fu L, Wang S, Zhang N, Lin Y, Zhang S, Mao Y, Zhou P. Breaking the vicious cycle of cellular senescence and ROS via a mitochondrial-targeted hydrogel for aged bone regeneration. CHEMICAL ENGINEERING JOURNAL 2025; 503:158540. [DOI: 10.1016/j.cej.2024.158540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Prišlin Šimac M, Naletilić Š, Kostanić V, Kunić V, Zorec TM, Poljak M, Vlaj D, Kogoj R, Turk N, Brnić D. Canid alphaherpesvirus 1 infection alters the gene expression and secretome profile of canine adipose-derived mesenchymal stem cells in vitro. Virol J 2024; 21:336. [PMID: 39731173 DOI: 10.1186/s12985-024-02603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/09/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Canine adipose-derived mesenchymal stem cells (cAD-MSCs) demonstrate promising tissue repair and regeneration capabilities. However, the procurement and preservation of these cells or their secreted factors for therapeutic applications pose a risk of viral contamination, and the consequences for cAD-MSCs remain unexplored. Consequently, this research sought to assess the impact of canid alphaherpesvirus 1 (CHV) on the functional attributes of cAD-MSCs, including gene expression profiles and secretome composition. METHODS To this end, abdominal adipose tissue from 12 healthy dogs was harvested to isolate cAD-MSCs. These samples were tested for CHV contamination before introducing a wild-type CHV strain via serial passages. Following CHV infection, real-time reverse transcription-polymerase chain reaction array and liquid chromatography with tandem mass spectrometry assessments enabled analyses of gene expression and secretome's proteomic profile, respectively. RESULTS This study showed that the initial cAD-MSC populations were devoid of CHV. cAD-MSCs showed susceptibility to infection with wild-type CHV, leading to notable modifications in gene expression and secretome profile. The observed genomic variations in gene expression indicate potential impacts on the stemness, migration, and other functional properties of cAD-MSCs, highlighting the need for further studies to evaluate their functional capacity post-infection. Moreover, gene expression and secretome analyses suggest a shift in stem cell differentiation toward an adipogenic phenotype. CONCLUSION To the best of our knowledge, this is the first study of the effects of virus infection on gene expression and secretome composition in cAD-MSCs. The outcomes of our study underscore the imperative of routine viral screening prior to the therapeutic use of cAD-MSCs. Moreover, these findings provide novel insights into the pathogenic mechanisms of CHV and pave the way for future canine stem cell and virus research.
Collapse
Affiliation(s)
| | - Šimun Naletilić
- Department for Pathological Morphology, Croatian Veterinary Institute, Zagreb, Croatia
| | | | - Valentina Kunić
- Virology Department, Croatian Veterinary Institute, Zagreb, Croatia
| | - Tomaž Mark Zorec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Doroteja Vlaj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Kogoj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nenad Turk
- Department of Microbiology and Infectious Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dragan Brnić
- Virology Department, Croatian Veterinary Institute, Zagreb, Croatia.
| |
Collapse
|
4
|
Jiang N, Hu Z, Wang Q, Hao J, Yang R, Jiang J, Wang H. Fibroblast growth factor 2 enhances BMSC stemness through ITGA2-dependent PI3K/AKT pathway activation. J Cell Physiol 2024; 239:e31423. [PMID: 39188080 DOI: 10.1002/jcp.31423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSC) are promising cellular reservoirs for treating degenerative diseases, tissue injuries, and immune system disorders. However, the stemness of BMSCs tends to decrease during in vitro cultivation, thereby restricting their efficacy in clinical applications. Consequently, investigating strategies that bolster the preservation of BMSC stemness and maximize therapeutic potential is necessary. Transcriptomic and single-cell sequencing methodologies were used to perform a comprehensive examination of BMSCs with the objective of substantiating the pivotal involvement of fibroblast growth factor 2 (FGF2) and integrin alpha 2 (ITGA2) in stemness regulation. To investigate the impact of these genes on the BMSC stemness in vitro, experimental approaches involving loss and gain of function were implemented. These approaches encompassed the modulation of FGF2 and ITGA2 expression levels via small interfering RNA and overexpression plasmids. Furthermore, we examined their influence on the proliferation and differentiation capacities of BMSCs, along with the expression of stemness markers, including octamer-binding transcription factor 4, Nanog homeobox, and sex determining region Y-box 2. Transcriptomic analyzes successfully identified FGF2 and ITGA2 as pivotal genes responsible for regulating the stemness of BMSCs. Subsequent single-cell sequencing revealed that elevated FGF2 and ITGA2 expression levels within specific stem cell subpopulations are closely associated with stemness maintenance. Moreover, additional in vitro experiments have convincingly demonstrated that FGF2 effectively enhances the BMSC stemness by upregulating ITGA2 expression, a process mediated by the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. This conclusion was supported by the observed upregulation of stemness markers following the induction of FGF2 and ITGA2. Moreover, administration of the BEZ235 pathway inhibitor resulted in the repression of stemness transcription factors, suggesting the substantial involvement of the PI3K/AKT pathway in stemness preservation facilitated by FGF2 and ITGA2. This study elucidates the involvement of FGF2 in augmenting BMSC stemness by modulating ITGA2 and activating the PI3K/AKT pathway. These findings offer valuable contributions to stem cell biology and emphasize the potential of manipulating FGF2 and ITGA2 to optimize BMSCs for therapeutic purposes.
Collapse
Affiliation(s)
- Nizhou Jiang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Spine Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhenxin Hu
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Quanxiang Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jiayu Hao
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Rui Yang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Jian Jiang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Hong Wang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| |
Collapse
|
5
|
Xing D, Xia G, Tang X, Zhuang Z, Shan J, Fang X, Qiu L, Zha X, Chen XL. A Multifunctional Nanocomposite Hydrogel Delivery System Based on Dual-Loaded Liposomes for Scarless Wound Healing. Adv Healthc Mater 2024; 13:e2401619. [PMID: 39011810 DOI: 10.1002/adhm.202401619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Increased inflammatory responses and oxidative stress at the wound site following skin trauma impair healing. Furthermore, skin scarring places fibroblasts under severe mechanical stress and aggravates pathological fibrosis. A novel liposomal composite hydrogel is engineered for wound microenvironment remodeling, incorporating dual-loaded liposomes into gelatin methacrylate to create a nanocomposite hydrogel. Notably, tetrahydrocurcumin (THC) and hepatocyte growth factor (HGF) are encapsulated in the hydrophobic and hydrophilic layers of liposomes, respectively. The composite hydrogel maintains porous nanoarchitecture, demonstrating sustainable THC and HGF release and enhanced mechanical properties and biocompatibility. This system effectively promotes cell proliferation and angiogenesis and attenuates apoptosis. It decreases the expression of the inflammatory factors by inhibiting the high-mobility group box /receptor for advanced glycation end product/NF-κB (HMGB1/RAGE/NF-κB)pathway and increases macrophage polarization from M1 to M2 in vitro, effectively controlling inflammatory responses. It exhibits remarkable antioxidant properties by scavenging excess reactive oxygen species and free radicals. Most importantly, it effectively prevents scar formation by restraining the transforming growth factor beta (TGF-β)/Smads pathway that downregulates associated fibrotic factors. It demonstrates strong therapeutic effects against inflammation and fibrosis in a rat skin wound model with biosafety, advancing the development of innovative hydrogel-based therapeutic delivery strategies for clinical scarless wound therapy.
Collapse
Affiliation(s)
- Danlei Xing
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Guoqing Xia
- Institute for Liver Diseases of Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230022, P. R. China
| | - Xudong Tang
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Zhiwei Zhuang
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Jie Shan
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Xiao Fang
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Le Qiu
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230022, P. R. China
| | - Xu-Lin Chen
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| |
Collapse
|
6
|
Bzinkowska A, Sarnowska A. Assessment of the Dose-Dependent Effect of Human Platelet Lysate on Wharton's Jelly-Derived Mesenchymal Stem/Stromal Cells Culture for Manufacturing Protocols. Stem Cells Cloning 2024; 17:21-32. [PMID: 39386994 PMCID: PMC11463174 DOI: 10.2147/sccaa.s471118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Mesenchymal stem/stromal cells (MSCs)-based products have unique characteristics compared to other drugs because of their inherently variable effects depending on culture conditions and microenvironment. In some cases, cells can be produced individually, one batch at a time, for personalized therapy. Therefore, it is very important to optimize both culture conditions and medium composition under Good Manufacturing Practice (GMP) standards. MSCs properties have been exploited as potential cell therapies in regenerative medicine. The main mechanism of their protective and regenerative effect is based on their secretory activity. Simultaneously, their secretome is highly variable and sensitive to any change in environmental conditions. Depending on the type of damage and the target application, it is desirable to enhance the secretion of therapeutic factors. Changes in the modulation of environmental conditions can affect survival, migration ability, and both proliferative and clonogenic potentials. Materials and Methods This study cultured Wharton's jelly-derived MSCs (WJ-MSCs) in media with varying concentrations of human platelet lysate (hPL). Two groups were created: one with low hPL concentration and another with a high hPL concentration. The effects of these different hPL concentrations were analyzed by assessing mesenchymal phenotype retention, secretory activity, clonogenic potential, proliferation, and migration capabilities. Additionally, the secretion levels of key therapeutic factors, such as Hepatocyte Growth Factor (HGF), Brain-Derived Neurotrophic Factor (BDNF), and Chemokine Ligand 2 (CCL-2), were measured. Results WJ-MSCs maintained their mesenchymal phenotype regardless of hPL concentration. However, a higher concentration of hPL promoted cell clonogenic potential, proliferation, migration, and increased secretion of therapeutic factors. Conclusion Adjusting the hPL concentration in the culture medium modulates the response of WJ MSCs and enhances their therapeutic potential. Higher hPL concentration promotes increased secretory activity and improves the regenerative capacity of WJ-MSCs, suggesting a promising strategy to optimize MSC-based therapies.
Collapse
Affiliation(s)
- Aleksandra Bzinkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Zhang Y, Wen Z, Wang X, Wu Y, Zhang K, Li Y, Nuerlan G, Ozathaley A, Li Q, Mao J, Gong S. Association Between Circulating Inflammatory Cytokines and Dentofacial Anomalies. Int Dent J 2024:S0020-6539(24)01495-3. [PMID: 39368924 DOI: 10.1016/j.identj.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 10/07/2024] Open
Abstract
INTRODUCTION AND AIMS Previous studies have shown that some inflammatory cytokines are associated with dentofacial anomalies (DA), but the causal relationship is unclear. Therefore, the present study aimed to elucidate the relationship between circulating inflammatory cytokines, and DA risk by Mendelian randomization analysis. METHODS A two-way two-sample Mendelian randomization analysis was used in our study. Data on 91 inflammatory cytokines were sourced from genome-wide association studies encompassing 14,824 participants across 11 distinct cohorts and protein quantitative trait loci from deCODE (35,559 participants). Summary statistics for DA were acquired from the FinnGen consortium (9254 cases and 245,664 controls). The inverse variance weighting method was used as the primary analysis, supplemented by a series of sensitivity analyses to determine the robustness and reliability of our findings. RESULTS The analysis identified five cytokines - chemokine ligand 25, interleukin (IL)-10 receptor beta, IL-20, and stem cell factor - as inversely related to DA prevalence. Additionally, DA was associated with decreased levels of fibroblast growth factor (FGF)-19 and IL-24, and increased levels of FGF-23 and urokinase-type plasminogen activator. These findings were validated using protein quantitative trait loci data. CONCLUSION Our study substantiates an association between inflammatory cytokines and DA, emphasizing inflammation's pivotal role in the aetiology of DA. CLINICAL SIGNIFICANCE The findings provide a plausible genetic underpinning for the role of inflammation in DA, offering novel avenues for the development of targeted diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yuxiao Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhihao Wen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiangyao Wang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yaxin Wu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Kehan Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yuanyuan Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Gaoshaer Nuerlan
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ahsawle Ozathaley
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qilin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China.
| | - Shiqiang Gong
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China.
| |
Collapse
|
8
|
Onoki T, Kanczler J, Rawlings A, Smith M, Kim YH, Hashimoto K, Aizawa T, Oreffo ROC. Modulation of osteoblastogenesis by NRF2: NRF2 activation suppresses osteogenic differentiation and enhances mineralization in human bone marrow-derived mesenchymal stromal cells. FASEB J 2024; 38:e23892. [PMID: 39230563 DOI: 10.1096/fj.202400602r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024]
Abstract
Mesenchymal stromal stem cells (MSCs) or skeletal stem cells (SSCs) play a major role in tissue repair due to their robust ability to differentiate into osteoblasts, chondrocytes, and adipocytes. Complex cell signaling cascades tightly regulate this differentiation. In osteogenic differentiation, Runt-related transcription factor 2 (RUNX2) and ALP activity are essential. Furthermore, during the latter stages of osteogenic differentiation, mineral formation mediated by the osteoblast occurs with the secretion of a collagenous extracellular matrix and calcium deposition. Activation of nuclear factor erythroid 2-related factor 2 (NRF2), an important transcription factor against oxidative stress, inhibits osteogenic differentiation and mineralization via modulation of RUNX2 function; however, the exact role of NRF2 in osteoblastogenesis remains unclear. Here, we demonstrate that NRF2 activation in human bone marrow-derived stromal cells (HBMSCs) suppressed osteogenic differentiation. NRF2 activation increased the expression of STRO-1 and KITLG (stem cell markers), indicating NRF2 protects HBMSCs stemness against osteogenic differentiation. In contrast, NRF2 activation enhanced mineralization, which is typically linked to osteogenic differentiation. We determined that these divergent results were due in part to the modulation of cellular calcium flux genes by NRF2 activation. The current findings demonstrate a dual role for NRF2 as a HBMSC maintenance factor as well as a central factor in mineralization, with implications therein for elucidation of bone formation and cellular Ca2+ kinetics, dystrophic calcification and, potentially, application in the modulation of bone formation.
Collapse
Affiliation(s)
- Takahiro Onoki
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Janos Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Andrew Rawlings
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Melanie Smith
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Yang-Hee Kim
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Ko Hashimoto
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
9
|
Peng Y, Zhao T, Rong S, Yang S, Teng W, Xie Y, Wang Y. Young small extracellular vesicles rejuvenate replicative senescence by remodeling Drp1 translocation-mediated mitochondrial dynamics. J Nanobiotechnology 2024; 22:543. [PMID: 39238005 PMCID: PMC11378612 DOI: 10.1186/s12951-024-02818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Human mesenchymal stem cells have attracted interest in regenerative medicine and are being tested in many clinical trials. In vitro expansion is necessary to provide clinical-grade quantities of mesenchymal stem cells; however, it has been reported to cause replicative senescence and undefined dysfunction in mesenchymal stem cells. Quality control assessments of in vitro expansion have rarely been addressed in ongoing trials. Young small extracellular vesicles from the remnant pulp of human exfoliated deciduous teeth stem cells have demonstrated therapeutic potential for diverse diseases. However, it is still unclear whether young small extracellular vesicles can reverse senescence-related declines. RESULTS We demonstrated that mitochondrial structural disruption precedes cellular dysfunction during bone marrow-derived mesenchymal stem cell replication, indicating mitochondrial parameters as quality assessment indicators of mesenchymal stem cells. Dynamin-related protein 1-mediated mitochondrial dynamism is an upstream regulator of replicative senescence-induced dysfunction in bone marrow-derived mesenchymal stem cells. We observed that the application of young small extracellular vesicles could rescue the pluripotency dissolution, immunoregulatory capacities, and therapeutic effects of replicative senescent bone marrow-derived mesenchymal stem cells. Mechanistically, young small extracellular vesicles could promote Dynamin-related protein 1 translocation from the cytoplasm to the mitochondria and remodel mitochondrial disruption during replication history. CONCLUSIONS Our findings show that Dynamin-related protein 1-mediated mitochondrial disruption is associated with the replication history of bone marrow-derived mesenchymal stem cells. Young small extracellular vesicles from human exfoliated deciduous teeth stem cells alleviate replicative senescence by promoting Dynamin-related protein 1 translocation onto the mitochondria, providing evidence for a potential rejuvenation strategy.
Collapse
Affiliation(s)
- Yingying Peng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Tingting Zhao
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Shuxuan Rong
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Shuqing Yang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Wei Teng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China.
| | - Yunyi Xie
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China.
| | - Yan Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China.
| |
Collapse
|
10
|
Urrata V, Toia F, Cammarata E, Franza M, Montesano L, Cordova A, Di Stefano AB. Characterization of the Secretome from Spheroids of Adipose-Derived Stem Cells (SASCs) and Its Potential for Tissue Regeneration. Biomedicines 2024; 12:1842. [PMID: 39200306 PMCID: PMC11351933 DOI: 10.3390/biomedicines12081842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
INTRODUCTION Spheroids are spherical aggregates of cells that mimic the three-dimensional (3D) architecture of tissues more closely than traditional two dimensional (2D) cultures. Spheroids of adipose stem cells (SASCs) show special features such as high multilineage differentiation potential and immunomodulatory activity. These properties have been attributed to their secreted factors, such as cytokines and growth factors. Moreover, a key role is played by the extracellular vesicles (EVs), which lead a heterogeneous cargo of proteins, mRNAs, and small RNAs that interfere with the pathways of the recipient cells. PURPOSE The aim of this work was to characterize the composition of the secretome and exosome from SASCs and evaluate their regenerative potential. MATERIALS AND METHODS SASCs were extracted from adipose samples of healthy individuals after signing informed consent. The exosomes were isolated and characterized by Dinamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Western blotting analyses. The expression of mRNAs and miRNAs were evaluated through real-time PCR. Lastly, a wound-healing assay was performed to investigate their regenerative potential on different cell cultures. RESULTS The SASCs' exosomes showed an up-regulation of NANOG and SOX2 mRNAs, typical of stemness maintenance, as well as miR126 and miR146a, related to angiogenic and osteogenic processes. Moreover, the exosomes showed a regenerative effect. CONCLUSIONS The SASCs' secretome carried paracrine signals involved in stemness maintenance, pro-angiogenic and pro-osteogenic differentiation, immune system regulation, and regeneration.
Collapse
Affiliation(s)
- Valentina Urrata
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
| | - Francesca Toia
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Emanuele Cammarata
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Mara Franza
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Luigi Montesano
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Adriana Cordova
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Anna Barbara Di Stefano
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
| |
Collapse
|
11
|
Wein S, Jung SA, Al Enezy-Ulbrich MA, Reicher L, Rütten S, Kühnel M, Jonigk D, Jahnen-Dechent W, Pich A, Neuss S. Impact of Fibrin Gel Architecture on Hepatocyte Growth Factor Release and Its Role in Modulating Cell Behavior for Tissue Regeneration. Gels 2024; 10:402. [PMID: 38920948 PMCID: PMC11203013 DOI: 10.3390/gels10060402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
A novel scaffold design has been created to enhance tissue engineering and regenerative medicine by optimizing the controlled, prolonged release of Hepatocyte Growth Factor (HGF), a powerful chemoattractant for endogenous mesenchymal stem cells. We present a new stacked scaffold that is made up of three different fibrin gel layers, each of which has HGF integrated into the matrix. The design attempts to preserve HGF's regenerative properties for long periods of time, which is necessary for complex tissue regeneration. These multi-layered fibrin gels have been mechanically evaluated using rheometry, and their degradation behavior has been studied using D-Dimer ELISA. Understanding the kinetics of HGF release from this novel scaffold configuration is essential for understanding HGF's long-term sustained bioactivity. A range of cell-based tests were carried out to verify the functionality of HGF following extended incorporation. These tests included 2-photon microscopy using phalloidin staining to examine cellular morphology, SEM analysis for scaffold-cell interactions, and scratch and scatter assays to assess migration and motility. The analyses show that the novel stacking scaffold promotes vital cellular processes for tissue regeneration in addition to supporting HGF's bioactivity. This scaffold design was developed for in situ tissue engineering. Using the body as a bioreactor, the scaffold should recruit mesenchymal stem cells from their niche, thus combining the regenerative abilities of HGF and MSCs to promote tissue remodeling and wound repair.
Collapse
Affiliation(s)
- Svenja Wein
- BioInterface Group, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany; (L.R.); (W.J.-D.); (S.N.)
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany; (M.K.); (D.J.)
| | - Shannon Anna Jung
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (S.A.J.); (M.A.A.E.-U.); (A.P.)
- DWI–Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Miriam Aischa Al Enezy-Ulbrich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (S.A.J.); (M.A.A.E.-U.); (A.P.)
- DWI–Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Luca Reicher
- BioInterface Group, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany; (L.R.); (W.J.-D.); (S.N.)
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany; (M.K.); (D.J.)
| | - Stephan Rütten
- Electron Microscopic Facility, University Clinics, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany;
| | - Mark Kühnel
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany; (M.K.); (D.J.)
| | - Danny Jonigk
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany; (M.K.); (D.J.)
| | - Wilhelm Jahnen-Dechent
- BioInterface Group, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany; (L.R.); (W.J.-D.); (S.N.)
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (S.A.J.); (M.A.A.E.-U.); (A.P.)
- DWI–Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Sabine Neuss
- BioInterface Group, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany; (L.R.); (W.J.-D.); (S.N.)
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany; (M.K.); (D.J.)
| |
Collapse
|
12
|
Cao W, Zhang Q, Huang Y, Zhang Q, Lai D. Pretreatment with Inflammatory Factors Altered the Secretome of Human Amniotic Epithelial Cells. Tissue Eng Part C Methods 2024; 30:255-267. [PMID: 38756098 DOI: 10.1089/ten.tec.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Human amniotic epithelial cells (hAECs) are novel and promising therapeutic agents for patients suffering from degenerative diseases. Studies have demonstrated that the therapeutic effects of hAECs mainly depend on their paracrine components. Currently, appropriate pretreatment is a widely confirmed strategy for enhancing the repair potential of stem cells; however, the effect of proinflammatory factor pretreatment on hAECs and their secretome is still unclear. In this study, we used the well-characterized proinflammatory factors tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) to stimulate hAECs and analyzed the effect of TNF-α and IFN-γ on hAECs, including gene expression profile, paracrine proteins, and microRNAs (miRNAs) in exosomes. Results showed that TNF-α and IFN-γ pretreatment improved the viability of hAECs but inhibited the proliferation of hAECs. TNF-α and IFN-γ pretreatment altered the gene expression profile of hAECs, and upregulated differentially expressed genes were predominantly enriched in biological adhesion, antioxidant activity, and response to IFN-beta. In addition, TNF-α and IFN-γ pretreatment enhanced the paracrine secretion of cytokines by hAECs. The upregulated differentially expressed proteins were mainly enriched in tissue remodeling proteins and cytokine-cytokine receptor. Notably, the expression of miRNAs in exosomes from hAECs was also changed by TNF-α and IFN-γ pretreatment. The target genes of upregulated exosomal miRNAs substantially contributed to the response to stimulus, metabolic pathways, and PI3K-Akt signaling pathway. Our findings improve our understanding of the biological characteristics of hAECs after proinflammatory factor pretreatment and provide novel insights to strengthen and optimize the therapeutic potential of hAECs and their secretome in regenerative medicine.
Collapse
Affiliation(s)
- Wenjiao Cao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qinyu Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yating Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiuwan Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
13
|
Zhao X, Liu W, Wu Z, He X, Tang Y, He Q, Lin C, Chen Y, Luo G, Yu T, Wang X. Hepatocyte growth factor is protective in early stage but bone-destructive in late stage of experimental periodontitis. J Periodontal Res 2024; 59:565-575. [PMID: 38240289 DOI: 10.1111/jre.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/01/2023] [Accepted: 12/25/2023] [Indexed: 05/24/2024]
Abstract
BACKGROUND AND OBJECTIVE Clinical studies found high levels of hepatocyte growth factor (HGF) expression in patients with periodontitis. Studies suggest that HGF plays an important role in periodontitis, is involved in inflammation, and modulates alveolar bone integrity in periodontitis. This study aims to investigate the effects and mechanisms of HGF in the progression of experimental periodontitis. METHODS We used silk thread ligation to induce periodontitis in HGF-overexpressing transgenic (HGF-Tg) and wild-type C57BL/6J mice. The effects of HGF overexpression on alveolar bone destruction were assessed by microcomputed tomography imaging at baseline and on days 7, 14, 21, and 28. We analyzed the cytokines (IL-6 and TNF-α) and lymphocytes in periodontitis tissues by enzyme-linked immunosorbent assay and flow cytometry. The effects of HGF on alveolar bone destruction were further tested by quantifying the systemic bone metabolism markers CTXI and PINP and by RNA sequencing for the signaling pathways involved in bone destruction. Western blotting and immunohistochemistry were performed to further elucidate the involved signaling pathways. RESULTS We found that experimental periodontitis increased HGF production in periodontitis tissues; however, the effects of HGF overexpression were inconsistent with disease progression. In the early stage of periodontitis, periodontal inflammation and alveolar bone destruction were significantly lower in HGF-Tg mice than in wild-type mice. In the late stage, HGF-Tg mice showed higher inflammatory responses and progressively aggravated bone destruction with continued stimulation of inflammation. We identified the IL-17/RANKL/TRAF6 pathway as a signaling pathway involved in the HGF effects on the progression of periodontitis. CONCLUSION HGF plays divergent effects in the progression of experimental periodontitis and accelerates osteoclastic activity and bone destruction in the late stage of inflammation.
Collapse
Affiliation(s)
- Xiaomin Zhao
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weijia Liu
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhicong Wu
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoxi He
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yinghua Tang
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qian He
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chuyin Lin
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yannan Chen
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gang Luo
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ting Yu
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinhong Wang
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Wang C, Xie T, Li X, Lu X, Xiao C, Liu P, Xu F, Zhang B. Effect of in vivo culture conditions on the proliferation and differentiation of rat adipose-derived stromal cells. Mech Ageing Dev 2024; 219:111935. [PMID: 38614143 DOI: 10.1016/j.mad.2024.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/15/2024]
Abstract
Adipose-derived stromal cells (ADSCs) are promising stem cell sources for tissue engineering and cell-based therapy. However, long-term in vitro expansion of ADSCs impedes stemness maintenance, which is partly attributed to deprivation of their original microenvironment. Incompetent cells limit the therapeutic effects of ADSC-based clinical strategies. Therefore, reconstructing a more physiologically and physically relevant niche is an ideal strategy to address this issue and therefore facilitates the extensive application of ADSCs. Here, we transplanted separated ADSCs into local subcutaneous adipose tissues of nude mice as an in vivo cell culture model. We found that transplanted ADSCs maintained their primitive morphology and showed improved proliferation and delayed senescence compared to those of cells cultured in an incubator. Significantly increased expression of stemness-related markers and multilineage differentiation abilities were further observed in in vivo cultured ADSCs. Finally, sequencing revealed that genes whose expression differed between ADSCs obtained under in vivo and in vitro conditions were mainly located in the extracellular matrix and extracellular space and that these genes participate in regulating transcription and protein synthesis. Moreover, we found that an Egr1 signaling pathway might exert a crucial impact on controlling stemness properties. Our findings might collectively pave the way for ADSC-based applications.
Collapse
Affiliation(s)
- Chao Wang
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Pediatric Metabolism and Inflammation Diseases, Chongqing 400016, China
| | - Tian Xie
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiaoming Li
- Department of Military Traffic Injury Prevention, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xue Lu
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Pediatric Metabolism and Inflammation Diseases, Chongqing 400016, China
| | - Changxue Xiao
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Pediatric Metabolism and Inflammation Diseases, Chongqing 400016, China
| | - Ping Liu
- State Key Lab of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Feng Xu
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Pediatric Metabolism and Inflammation Diseases, Chongqing 400016, China.
| | - Bo Zhang
- State Key Lab of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
15
|
Branco A, Rayabaram J, Miranda CC, Fernandes-Platzgummer A, Fernandes TG, Sajja S, da Silva CL, Vemuri MC. Advances in ex vivo expansion of hematopoietic stem and progenitor cells for clinical applications. Front Bioeng Biotechnol 2024; 12:1380950. [PMID: 38846805 PMCID: PMC11153805 DOI: 10.3389/fbioe.2024.1380950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
As caretakers of the hematopoietic system, hematopoietic stem cells assure a lifelong supply of differentiated populations that are responsible for critical bodily functions, including oxygen transport, immunological protection and coagulation. Due to the far-reaching influence of the hematopoietic system, hematological disorders typically have a significant impact on the lives of individuals, even becoming fatal. Hematopoietic cell transplantation was the first effective therapeutic avenue to treat such hematological diseases. Since then, key use and manipulation of hematopoietic stem cells for treatments has been aspired to fully take advantage of such an important cell population. Limited knowledge on hematopoietic stem cell behavior has motivated in-depth research into their biology. Efforts were able to uncover their native environment and characteristics during development and adult stages. Several signaling pathways at a cellular level have been mapped, providing insight into their machinery. Important dynamics of hematopoietic stem cell maintenance were begun to be understood with improved comprehension of their metabolism and progressive aging. These advances have provided a solid platform for the development of innovative strategies for the manipulation of hematopoietic stem cells. Specifically, expansion of the hematopoietic stem cell pool has triggered immense interest, gaining momentum. A wide range of approaches have sprouted, leading to a variety of expansion systems, from simpler small molecule-based strategies to complex biomimetic scaffolds. The recent approval of Omisirge, the first expanded hematopoietic stem and progenitor cell product, whose expansion platform is one of the earliest, is predictive of further successes that might arise soon. In order to guarantee the quality of these ex vivo manipulated cells, robust assays that measure cell function or potency need to be developed. Whether targeting hematopoietic engraftment, immunological differentiation potential or malignancy clearance, hematopoietic stem cells and their derivatives need efficient scaling of their therapeutic potency. In this review, we comprehensively view hematopoietic stem cells as therapeutic assets, going from fundamental to translational.
Collapse
Affiliation(s)
- André Branco
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Janakiram Rayabaram
- Protein and Cell Analysis, Biosciences Division, Invitrogen Bioservices, Thermo Fisher Scientific, Bangalore, India
| | - Cláudia C. Miranda
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- AccelBio, Collaborative Laboratory to Foster Translation and Drug Discovery, Cantanhede, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Suchitra Sajja
- Protein and Cell Analysis, Biosciences Division, Invitrogen Bioservices, Thermo Fisher Scientific, Bangalore, India
| | - Cláudia L. da Silva
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
16
|
Zhou SR, Zhu YS, Yuan WT, Pan XY, Wang T, Chen XD. Hepatocyte growth factor promotes retinal pigment epithelium cell activity through MET/AKT signaling pathway. Int J Ophthalmol 2024; 17:806-814. [PMID: 38766346 PMCID: PMC11074208 DOI: 10.18240/ijo.2024.05.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/30/2024] [Indexed: 05/22/2024] Open
Abstract
AIM To explore the effects of hepatocyte growth factor (HGF) on retinal pigment epithelium (RPE) cell behaviors. METHODS The human adult retinal pigment epithelial cell line-19 (ARPE-19) were treated by HGF or mesenchymal-epithelial transition factor (MET) inhibitor SU11274 in vitro. Cell viability was detected by a Cell Counting Kit-8 assay. Cell proliferation and motility was detected by a bromodeoxyuridine incorporation assay and a wound healing assay, respectively. The expression levels of MET, phosphorylated MET, protein kinase B (AKT), and phosphorylated AKT proteins were determined by Western blot assay. The MET and phosphorylated MET proteins were also determined by immunofluorescence assay. RESULTS HGF increased ARPE-19 cells' viability, proliferation and migration, and induced an increase of phosphorylated MET and phosphorylated AKT proteins. SU11274 significantly reduced cell viability, proliferation, and migration and decreased the expression of MET and AKT proteins. SU11274 suppressed HGF-induced increase of viability, proliferation, and migration in ARPE-19 cells. Additionally, SU11274 also blocked HGF-induced phosphorylation of MET and AKT proteins. CONCLUSION HGF enhances cellular viability, proliferation, and migration in RPE cells through the MET/AKT signaling pathway, whereas this enhancement is suppressed by the MET inhibitor SU11274. HGF-induced MET/AKT signaling might be a vital contributor of RPE cells survival.
Collapse
Affiliation(s)
- Si-Rui Zhou
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an 710002, Shaanxi Province, China
| | - Yu-Sheng Zhu
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an 710002, Shaanxi Province, China
| | - Wen-Ting Yuan
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an 710002, Shaanxi Province, China
| | - Xiao-Yan Pan
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an 710002, Shaanxi Province, China
| | - Tong Wang
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an 710002, Shaanxi Province, China
| | - Xiao-Dong Chen
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an 710002, Shaanxi Province, China
| |
Collapse
|
17
|
Zhang Z, Bao Y, Wei P, Yan X, Qiu Q, Qiu L. Melatonin attenuates dental pulp stem cells senescence due to vitro expansion via inhibiting MMP3. Oral Dis 2024; 30:2410-2424. [PMID: 37448325 DOI: 10.1111/odi.14649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/07/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVE We aimed to identify the crucial genes involved in dental pulp stem cell (DPSC) senescence and evaluate the impact of melatonin on DPSC senescence. METHODS Western blotting, SA-β-Gal staining and ALP staining were used to evaluate the senescence and differentiation potential of DPSCs. The optimal concentration of melatonin was determined using the CCK-8 assay. Differentially expressed genes (DEGs) involved in DPSC senescence were obtained via bioinformatics analysis, followed by RT-qPCR. Gain- and loss-of-function studies were conducted to explore the role of MMP3 in DPSC in vitro expansion and in response to melatonin. GSEA was employed to analyse MMP3-related pathways in cellular senescence. RESULTS Treatment with 0.1 μM melatonin attenuated cellular senescence and differentiation potential suppression in DPSCs due to long-term in vitro expansion. MMP3 was a crucial gene in senescence, as confirmed by bioinformatics analysis, RT-qPCR and Western blotting. Furthermore, gain- and loss-of-function studies revealed that MMP3 played a regulatory role in cellular senescence. Rescue assays showed that overexpression of MMP3 reversed the effect of melatonin on senescence. GSEA revealed that the MMP3-dependent anti-senescence effect of melatonin was associated with the IL6-JAK-STAT3, TNF-α-Signalling-VIA-NF-κB, COMPLEMENT, NOTCH Signalling and PI3K-AKT-mTOR pathways. CONCLUSION Melatonin attenuated DPSC senescence caused by long-term expansion by inhibiting MMP3.
Collapse
Affiliation(s)
- Zeying Zhang
- Department of Endodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yandong Bao
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Penggong Wei
- Department of Endodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xiaoyuan Yan
- Department of Endodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qiujing Qiu
- Department of Endodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Lihong Qiu
- Department of Endodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
18
|
Mei T, Cao H, Zhang L, Cao Y, Ma T, Sun Z, Liu Z, Hu Y, Le W. 3D Printed Conductive Hydrogel Patch Incorporated with MSC@GO for Efficient Myocardial Infarction Repair. ACS Biomater Sci Eng 2024; 10:2451-2462. [PMID: 38429076 DOI: 10.1021/acsbiomaterials.3c01837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Myocardial infarction (MI) results in an impaired heart function. Conductive hydrogel patch-based therapy has been considered as a promising strategy for cardiac repair after MI. In our study, we fabricated a three-dimensional (3D) printed conductive hydrogel patch made of fibrinogen scaffolds and mesenchymal stem cells (MSCs) combined with graphene oxide (GO) flakes (MSC@GO), capitalizing on GO's excellent mechanical property and electrical conductivity. The MSC@GO hydrogel patch can be attached to the epicardium via adhesion to provide strong electrical integration with infarcted hearts, as well as mechanical and regeneration support for the infarcted area, thereby up-regulating the expression of connexin 43 (Cx43) and resulting in effective MI repair in vivo. In addition, MI also triggers apoptosis and damage of cardiomyocytes (CMs), hindering the normal repair of the infarcted heart. GO flakes exhibit a protective effect against the apoptosis of implanted MSCs. In the mouse model of MI, MSC@GO hydrogel patch implantation supported cardiac repair by reducing cell apoptosis, promoting gap connexin protein Cx43 expression, and then boosting cardiac function. Together, this study demonstrated that the conductive hydrogel patch has versatile conductivity and mechanical support function and could therefore be a promising candidate for heart repair.
Collapse
Affiliation(s)
- Tianxiao Mei
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200092, China
| | - Hao Cao
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Laihai Zhang
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Yunfei Cao
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Teng Ma
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Zeyi Sun
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Zhongmin Liu
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200092, China
| | - Yihui Hu
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200092, China
| | - Wenjun Le
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200092, China
| |
Collapse
|
19
|
Jiang N, Tian X, Wang Q, Hao J, Jiang J, Wang H. Regulation Mechanisms and Maintenance Strategies of Stemness in Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:455-483. [PMID: 38010581 DOI: 10.1007/s12015-023-10658-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Stemness pertains to the intrinsic ability of mesenchymal stem cells (MSCs) to undergo self-renewal and differentiate into multiple lineages, while simultaneously impeding their differentiation and preserving crucial differentiating genes in a state of quiescence and equilibrium. Owing to their favorable attributes, including uncomplicated isolation protocols, ethical compliance, and ease of procurement, MSCs have become a focal point of inquiry in the domains of regenerative medicine and tissue engineering. As age increases or ex vivo cultivation is prolonged, the functionality of MSCs decreases and their stemness gradually diminishes, thereby limiting their potential therapeutic applications. Despite the existence of several uncertainties surrounding the comprehension of MSC stemness, considerable advancements have been achieved in the clarification of the potential mechanisms that lead to stemness loss, as well as the associated strategies for stemness maintenance. This comprehensive review provides a systematic overview of the factors influencing the preservation of MSC stemness, the molecular mechanisms governing it, the strategies for its maintenance, and the therapeutic potential associated with stemness. Finally, we underscore the obstacles and prospective avenues in present investigations, providing innovative perspectives and opportunities for the preservation and therapeutic utilization of MSC stemness.
Collapse
Affiliation(s)
- Nizhou Jiang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiliang Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Quanxiang Wang
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jiayu Hao
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China
| | - Jian Jiang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China.
| | - Hong Wang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China.
| |
Collapse
|
20
|
Park JS, Kim DY, Hong HS. FGF2/HGF priming facilitates adipose-derived stem cell-mediated bone formation in osteoporotic defects. Heliyon 2024; 10:e24554. [PMID: 38304814 PMCID: PMC10831751 DOI: 10.1016/j.heliyon.2024.e24554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Aims The activity of adipose-derived stem cells (ADSCs) is susceptible to the physiological conditions of the donor. Therefore, employing ADSCs from donors of advanced age or with diseases for cell therapy necessitates a strategy to enhance therapeutic efficacy before transplantation. This study aims to investigate the impact of supplementing Fibroblast Growth Factor 2 (FGF2) and Hepatocyte Growth Factor (HGF) on ADSC-mediated osteogenesis under osteoporotic conditions and to explore the underlying mechanisms of action. Main methods Adipose-derived stem cells (ADSCs) obtained from ovariectomized (OVX) rats were cultured ex vivo. These cells were cultured in an osteogenic medium supplemented with FGF2 and HGF and subsequently autologously transplanted into osteoporotic femur defects using Hydroxyapatite-Tricalcium Phosphate. The assessment of bone formation was conducted four weeks post-transplantation. Key findings Osteoporosis detrimentally affects the viability and osteogenic differentiation potential of ADSCs, often accompanied by a deficiency in FGF2 and HGF signaling. However, priming with FGF2 and HGF facilitated the formation of immature osteoblasts from OVX ADSCs in vitro, promoting the expression of osteoblastogenic proteins, including Runx-2, osterix, and ALP, during the early phase of osteogenesis. Furthermore, FGF2/HGF priming augmented the levels of VEGF and SDF-1α in the microenvironment of OVX ADSCs under osteogenic induction. Importantly, transplantation of OVX ADSCs primed with FGF2/HGF for 6 days significantly enhanced bone formation compared to non-primed cells. The success of bone regeneration was confirmed by the expression of type-1 collagen and osteocalcin in the bone tissue of the deficient area. Significance Our findings corroborate that priming with FGF2/HGF can improve the differentiation potential of ADSCs. This could be applied in autologous stem cell therapy for skeletal disease in the geriatric population.
Collapse
Affiliation(s)
- Jeong Seop Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Do Young Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
- East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, South Korea
- Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, 02447, South Korea
| |
Collapse
|
21
|
Li X, Jiang O, Wang S. Molecular mechanisms of cellular metabolic homeostasis in stem cells. Int J Oral Sci 2023; 15:52. [PMID: 38040705 PMCID: PMC10692173 DOI: 10.1038/s41368-023-00262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023] Open
Abstract
Many tissues and organ systems have intrinsic regeneration capabilities that are largely driven and maintained by tissue-resident stem cell populations. In recent years, growing evidence has demonstrated that cellular metabolic homeostasis plays a central role in mediating stem cell fate, tissue regeneration, and homeostasis. Thus, a thorough understanding of the mechanisms that regulate metabolic homeostasis in stem cells may contribute to our knowledge on how tissue homeostasis is maintained and provide novel insights for disease management. In this review, we summarize the known relationship between the regulation of metabolic homeostasis and molecular pathways in stem cells. We also discuss potential targets of metabolic homeostasis in disease therapy and describe the current limitations and future directions in the development of these novel therapeutic targets.
Collapse
Affiliation(s)
- Xiaoyu Li
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ou Jiang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
22
|
Tan M, Xu W, Yan G, Xu Y, Xiao Q, Liu A, Peng L. Oriented artificial niche provides physical-biochemical stimulations for rapid nerve regeneration. Mater Today Bio 2023; 22:100736. [PMID: 37521524 PMCID: PMC10374615 DOI: 10.1016/j.mtbio.2023.100736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Abstract
Skin wound is always accompanied with nerve damage, leading to significant sensory function loss. Currently, the functional matrix material based stem cell transplantation and in situ nerve regeneration are thought to be effective strategies, of which, how to recruit stem cells, retard senescence, and promote neural differentiation has been obstacle to be overcome. However, the therapeutic efficiency of the reported systems has yet to be improved and side effect reduced. Herein, a conduit matrix with three-dimensional ordered porous structures, regular porosity, appropriate mechanical strength, and conductive features was prepared by orienting the freezing technique, which was further filled with neural-directing exosomes to form a neural-stimulating matrix for providing hybrid physical-biochemical stimulations. This neural-stimulating matrix was then compacted with methacrylate gelatin (GelMA) hydrogel thin coat that loaded with chemokines and anti-senescence drugs, forming a multi-functional artificial niche (termed as GCr-CSL) that promotes MSCs recruitment, anti-senescence, and neural differentiation. GCr-CSL was shown to rapidly enhances in situ nerve regeneration in skin wound therapy, and with great potential in promoting sensory function recovery. This study demonstrates proof-of-concept in building a biomimetic niche to organize endogenous MSCs recruitment, differentiation, and functionalization for fast neurological and sensory recovery.
Collapse
Affiliation(s)
- Minhong Tan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
- College of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Weizhong Xu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, PR China
| | - Ge Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yang Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Qiyao Xiao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Aiping Liu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, PR China
| | - Lihua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, PR China
- Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, PR China
| |
Collapse
|
23
|
Su Y, Ai S, Shen Y, Cheng W, Xu C, Sui L, Zhao Y. Regulatory Effects of Three-Dimensional Cultured Lipopolysaccharide-Pretreated Periodontal Ligament Stem Cell-Derived Secretome on Macrophages. Int J Mol Sci 2023; 24:ijms24086981. [PMID: 37108145 PMCID: PMC10139044 DOI: 10.3390/ijms24086981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Phenotypic transformation of macrophages plays important immune response roles in the occurrence, development and regression of periodontitis. Under inflammation or other environmental stimulation, mesenchymal stem cells (MSCs) exert immunomodulatory effects through their secretome. It has been found that secretome derived from lipopolysaccharide (LPS)-pretreated or three-dimensional (3D)-cultured MSCs significantly reduced inflammatory responses in inflammatory diseases, including periodontitis, by inducing M2 macrophage polarization. In this study, periodontal ligament stem cells (PDLSCs) pretreated with LPS were 3D cultured in hydrogel (termed SupraGel) for a certain period of time and the secretome was collected to explore its regulatory effects on macrophages. Expression changes of immune cytokines in the secretome were also examined to speculate on the regulatory mechanisms in macrophages. The results indicated that PDLSCs showed good viability in SupraGel and could be separated from the gel by adding PBS and centrifuging. The secretome derived from LPS-pretreated and/or 3D-cultured PDLSCs all inhibited the polarization of M1 macrophages, while the secretome derived from LPS-pretreated PDLSCs (regardless of 3D culture) had the ability to promote the polarization of M1 to M2 macrophages and the migration of macrophages. Cytokines involved in the production, migration and polarization of macrophages, as well as multiple growth factors, increased in the PDLSC-derived secretome after LPS pretreatment and/or 3D culture, which suggested that the secretome had the potential to regulate macrophages and promote tissue regeneration, and that it could be used in the treatment of inflammation-related diseases such as periodontitis in the future.
Collapse
Affiliation(s)
- Yuran Su
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Sifan Ai
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Youqing Shen
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Wen Cheng
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Chenyu Xu
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Lei Sui
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yanhong Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
24
|
Al-Azab M, Safi M, Idiiatullina E, Al-Shaebi F, Zaky MY. Aging of mesenchymal stem cell: machinery, markers, and strategies of fighting. Cell Mol Biol Lett 2022; 27:69. [PMID: 35986247 PMCID: PMC9388978 DOI: 10.1186/s11658-022-00366-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023] Open
Abstract
Human mesenchymal stem cells (MSCs) are primary multipotent cells capable of differentiating into osteocytes, chondrocytes, and adipocytes when stimulated under appropriate conditions. The role of MSCs in tissue homeostasis, aging-related diseases, and cellular therapy is clinically suggested. As aging is a universal problem that has large socioeconomic effects, an improved understanding of the concepts of aging can direct public policies that reduce its adverse impacts on the healthcare system and humanity. Several studies of aging have been carried out over several years to understand the phenomenon and different factors affecting human aging. A reduced ability of adult stem cell populations to reproduce and regenerate is one of the main contributors to the human aging process. In this context, MSCs senescence is a major challenge in front of cellular therapy advancement. Many factors, ranging from genetic and metabolic pathways to extrinsic factors through various cellular signaling pathways, are involved in regulating the mechanism of MSC senescence. To better understand and reverse cellular senescence, this review highlights the underlying mechanisms and signs of MSC cellular senescence, and discusses the strategies to combat aging and cellular senescence.
Collapse
|
25
|
The Efficacy of HGF/VEGF Gene Therapy for Limb Ischemia in Mice with Impaired Glucose Tolerance: Shift from Angiogenesis to Axonal Growth and Oxidative Potential in Skeletal Muscle. Cells 2022; 11:cells11233824. [PMID: 36497083 PMCID: PMC9737863 DOI: 10.3390/cells11233824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Combined non-viral gene therapy (GT) of ischemia and cardiovascular disease is a promising tool for potential clinical translation. In previous studies our group has developed combined gene therapy by vascular endothelial growth factor 165 (VEGF165) + hepatocyte growth factor (HGF). Our recent works have demonstrated that a bicistronic pDNA that carries both human HGF and VEGF165 coding sequences has a potential for clinical application in peripheral artery disease (PAD). The present study aimed to test HGF/VEGF combined plasmid efficacy in ischemic skeletal muscle comorbid with predominant complications of PAD-impaired glucose tolerance and type 2 diabetes mellitus (T2DM). METHODS Male C57BL mice were housed on low-fat (LFD) or high-fat diet (HFD) for 10 weeks and metabolic parameters including FBG level, ITT, and GTT were evaluated. Hindlimb ischemia induction and plasmid administration were performed at 10 weeks with 3 weeks for post-surgical follow-up. Limb blood flow was assessed by laser Doppler scanning at 7, 14, and 21 days after ischemia induction. The necrotic area of m.tibialis anterior, macrophage infiltration, angio- and neuritogenesis were evaluated in tissue sections. The mitochondrial status of skeletal muscle (total mitochondria content, ETC proteins content) was assessed by Western blotting of muscle lysates. RESULTS At 10 weeks, the HFD group demonstrated impaired glucose tolerance in comparison with the LFD group. HGF/VEGF plasmid injection aggravated glucose intolerance in HFD conditions. Blood flow recovery was not changed by HGF/VEGF plasmid injection either in LFD or HFD conditions. GT in LFD, but not in HFD conditions, enlarged the necrotic area and CD68+ cells infiltration. However, HGF/VEGF plasmid enhanced neuritogenesis and enlarged NF200+ area on muscle sections. In HFD conditions, HGF/VEGF plasmid injection significantly increased mitochondria content and ETC proteins content. CONCLUSIONS The current study demonstrated a significant role of dietary conditions in pre-clinical testing of non-viral GT drugs. HGF/VEGF combined plasmid demonstrated a novel aspect of potential participation in ischemic skeletal muscle regeneration, through regulation of innervation and bioenergetics of muscle. The obtained results made HGF/VEGF combined plasmid a very promising tool for PAD therapy in impaired glucose tolerance conditions.
Collapse
|
26
|
Liu Z, Yan N, Chen Y, Hu B. Hepatocyte Growth Factor Promotes Differentiation Potential and Stress Response of Human Stem Cells from Apical Papilla. Cells Tissues Organs 2022; 213:40-54. [PMID: 36170806 DOI: 10.1159/000527212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Harsh local microenvironment, such as hypoxia and lack of instructive clues for transplanted stem cells, presents the serious obstacle for stem cell therapies' efficacy. Therefore, continued efforts have been taken to improve stem cells' viability and plasticity. Hepatocyte growth factor (HGF) has previously been reported to mitigate the complications of various human diseases in animal model studies and in some clinical trials. Besides, human stem cells from the root apical papilla (SCAP) are deemed a better resource of mesenchymal stem cells due to derived stem cells holding greater amplification ability in vitro compared with those from other dental resources. To move forward, evaluating effects and understanding underlying molecular mechanisms of HGF on SCAP for periodontal regeneration are needed. In this study, HGF was transgenically expressed in SCAP, and it was found that HGF enhanced osteo/dentinogenic differentiation capacity of SCAP compared with those of non-treated control in an ectopic mineralization model. Moreover, HGF reduced the apoptosis of SCAP under both normoxic and hypoxic conditions, whereas the combination of HGF and hypoxia exposure had inhibitory effects on cell proliferation during an 8-day in vitro culture period. Transcriptome analysis further revealed that suppressed cell cycle progression and activated BMP/TGFβ, Hedgehog, WNT, FGF, HOX, and other morphogen family members result upon HGF overexpression, which may render SCAP recapitulate part of neural crest stem cell characteristics. Moreover, strengthened stress response modulation such as unfolded protein response, macroautophagy, and anti-apoptotic molecules might explain the increased viability of SCAP. In all, our results imply that these potential mechanisms underlying HGF-promoting SCAP differentiation could be further elucidated and harnessed to improve periodontal tissue regeneration.
Collapse
Affiliation(s)
- Zhenhai Liu
- Department of Stomatology, Beijing Jishuitan Hospital, Beijing, China
| | - Na Yan
- Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences. National Center for Nanoscience and Technology, Beijing, China
| | - Ying Chen
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Wuxi, China
| | - Bin Hu
- Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences. National Center for Nanoscience and Technology, Beijing, China
| |
Collapse
|
27
|
In Vitro Differentiation of Human Amniotic Epithelial Cells into Hepatocyte-like Cells. Cells 2022; 11:cells11142138. [PMID: 35883581 PMCID: PMC9317663 DOI: 10.3390/cells11142138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023] Open
Abstract
Human amniotic epithelial cells (hAECs) represent an interesting clinical alternative to human embryonic (hESCs) and induced pluripotent (hiPSCs) stem cells in regenerative medicine. The potential of hAECs can be enhanced ex vivo by their partial pre-differentiation. The aim of this study was to evaluate the effectiveness of 18-day differentiation of hAECs into endodermal cells, hepatic precursor cells, and cells showing functional features of hepatocytes using culture media supplemented with high (100 ng/mL) concentrations of EGF or HGF. The cells obtained after differentiation showed changes in morphology and increased expression of AFP, ALB, CYP3A4, CYP3A7, and GSTP1 genes. HGF was more effective than EGF in increasing the expression of liver-specific genes in hAECs. However, EGF stimulated the differentiation process more efficiently and yielded more hepatocyte-like cells capable of synthesizing α-fetoprotein during differentiation. Additionally, after 18 days, GST transferases, albumin, and CYP P450s, which proved their partial functionality, were expressed. In summary, HGF and EGF at a dose of 100 ng/mL can be successfully used to obtain hepatocyte-like cells between days 7 and 18 of hAEC differentiation. However, the effectiveness of this process is lower compared with hiPSC differentiation; therefore, optimization of the composition of the medium requires further research.
Collapse
|
28
|
Xie Y, Yu L, Cheng Z, Peng Y, Cao Z, Chen B, Duan Y, Wang Y. SHED-derived exosomes promote LPS-induced wound healing with less itching by stimulating macrophage autophagy. J Nanobiotechnology 2022; 20:239. [PMID: 35597946 PMCID: PMC9124392 DOI: 10.1186/s12951-022-01446-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/29/2022] [Indexed: 12/15/2022] Open
Abstract
High-quality cutaneous wound healing is associated with rapid wound closure and a comfortable healing process. Currently, exosomes derived from mesenchymal stem cells displayed a prominent therapeutic effect on skin wound closure. But the therapeutic approaches for wound itching are very limited in clinical. Stem cells from human exfoliated deciduous teeth (SHED) may offer a unique exosome resource for cell-free therapeutics in potential clinical applications. Here, we investigated the common mechanisms underlying wound closure and unpleasant sensation of itching, focusing on the contribution of the SHED-derived exosome to immune response and wound itching during healing. The effects of SHED-derived exosomes on inflammatory wound healing were examined using lipopolysaccharide (LPS)-induced wounds in a mouse model. We found prolonged inflammation and distinct itch responses in skin wound tissue during LPS-induced wound healing. SHED-derived exosomes facilitated LPS-induced wound closure and relieved wound itching. Therefore, they are ideal for the treatment of wound healing. Macrophages in skin wound tissues are responsible for autophagy during wound healing. Macrophage autophagy also regulates cell proliferation, migration, and neuronal signal transduction in vitro. SHED-derived exosomes containing miR-1246 enhanced autophagy by regulating macrophage function through the AKT, ERK1/2, and STAT3 signaling pathways. Thus, SHED-derived exosomes promote wound healing with less itching in an LPS-induced wound model by stimulating macrophage autophagy, which has implications for the treatment of inflammatory wound healing.
Collapse
Affiliation(s)
- Yunyi Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Le Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Zhilan Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Yingying Peng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Zeyuan Cao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Beichen Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Yihong Duan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China.
| |
Collapse
|
29
|
Lei T, Liu Y, Deng S, Xiao Z, Yang Y, Zhang X, Bi W, Du H. Hydrogel supplemented with human platelet lysate enhances multi-lineage differentiation of mesenchymal stem cells. J Nanobiotechnology 2022; 20:176. [PMID: 35366889 PMCID: PMC8976277 DOI: 10.1186/s12951-022-01387-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 12/18/2022] Open
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) can be used as a potential clinical material. But the use of xenogeneic ingredients will increase the risk of zoonotic disease transmission. Human platelet lysate (HPL) is a potential surrogate and used in human cell expansion with reliability in clinical applications. In this study, we synthesized chitosan/gelatin/gellan gum hydrogel supplemented with HPL and investigated the effect of 3D culture for SHED. TMT-tagged proteomics was used to decipher the secretome protein profiles of SHEDs and a total of 3209 proteins were identified, of which 23 were up-regulated and 192 were down-regulated. The results showed that hydrogel supplemented with HPL promoted SHED proliferation. After induction, the hydrogel coating contributed to osteogenic differentiation, adipogenic differentiation and differentiation into neural-like cells of SHED. SHED encapsulated in a hydrogel promotes migration and angiogenesis of HUVEC. In conclusion, our research found that hydrogel supplemented with HPL can be used as a method for SHED in standardized production and can contribute to the clinical application of SHED in cell therapy.
Collapse
|
30
|
Zhu R, Wan H, Yang H, Song M, Chai Y, Yu B. The Role of Senescence-Associated Secretory Phenotype in Bone Loss. Front Cell Dev Biol 2022; 10:841612. [PMID: 35223858 PMCID: PMC8864518 DOI: 10.3389/fcell.2022.841612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
As the population of most nations have a large proportion of older individuals, there is an increase in the prevalence of osteoporosis. Consequently, scientists have focused their attention on the pathogenic mechanisms of osteoporosis. Owing to an increase in studies on cellular senescence in recent years, research has begun to focus on the function of the senescent microenvironment in osteoporosis. With chronic inflammation, senescent cells in the bone marrow secrete a series of factors known as senescence-associated secretory phenotype (SASP) factors, acting on their own or surrounding healthy cells and consequently exacerbating ageing.The components of the SASP may differ depending on the cause of osteoporosis. This review aimed to summarize the relationship between SASP factors and osteoporosis and suggest new insights into the mechanistic investigation of osteoporosis.
Collapse
Affiliation(s)
- Runjiu Zhu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haoyang Wan
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Yang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingrui Song
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Chai
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Horcharoensuk P, Yang-en S, Narkwichean A, Rungsiwiwut R. Proline-based solution maintains cell viability and stemness of canine adipose-derived mesenchymal stem cells after hypothermic storage. PLoS One 2022; 17:e0264773. [PMID: 35231072 PMCID: PMC8887718 DOI: 10.1371/journal.pone.0264773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Transportation of mesenchymal stem cells (MSCs) under hypothermic conditions in 0.9% normal saline solution (NSS) might increase cell death and alter the stemness of MSCs. The present study aimed to evaluate the effect of proline-based solution (PL-BS) on cell viability and the stemness of newly established canine adipose-derived mesenchymal stem cells (cAD-MSCs) under hypothermic conditions. Characterized cAD-MSCs were stored in 1, 10, and 100 mM PL-BS or NSS at 4°C for 6, 9, and 12 hours prior to an evaluation. The results demonstrated that storage in 1 mM PL-BS for 6 hours decreased cell apoptosis and proliferation ability, but improved cell viability and mitochondrial membrane potential. cAD-MSCs maintained their high expression of CD44 and CD90, but had a low expression of CD34 and MHC class II. Trilineage differentiation ability of cAD-MSCs was not affected by storage in 1 mM PL-BS. Gene expression analysis demonstrated that immunomodulatory genes, including IDO, HGF, PGE-2, and IL-6, were upregulated in cAD-MSCs stored in 1 mM PL-BS. In conclusion, PL-BS can be effectively applied for storing cAD-MSCs under hypothermic conditions. These findings provide a new solution for effective handling of cAD-MSCs which might be promising for clinical applications.
Collapse
Affiliation(s)
| | - Sunantha Yang-en
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Amarin Narkwichean
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Ruttachuk Rungsiwiwut
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
32
|
Wang Z, Li H, Fang J, Wang X, Dai S, Cao W, Guo Y, Li Z, Zhu H. Comparative Analysis of the Therapeutic Effects of Amniotic Membrane and Umbilical Cord Derived Mesenchymal Stem Cells for the Treatment of Type 2 Diabetes. Stem Cell Rev Rep 2022; 18:1193-1206. [PMID: 35015214 PMCID: PMC8749914 DOI: 10.1007/s12015-021-10320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 11/09/2022]
Abstract
Type 2 diabetes mellitus (T2DM), one of the most common carbohydrate metabolism disorders, is characterized by chronic hyperglycemia and insulin resistance (IR), and has become an urgent global health challenge. Mesenchymal stem cells (MSCs) originating from perinatal tissues such as umbilical cord (UC) and amniotic membrane (AM) serve as ideal candidates for the treatment of T2DM due to their great advantages in terms of abundant source, proliferation capacity, immunomodulation and plasticity for insulin-producing cell differentiation. However, the optimally perinatal MSC source to treat T2DM remains elusive. This study aims to compare the therapeutic efficacy of MSCs derived from AM and UC (AMMSCs and UCMSCs) of the same donor in the alleviation of T2DM symptoms and explore the underlying mechanisms. Our results showed that AMMSCs and UCMSCs displayed indistinguishable immunophenotype and multi-lineage differentiation potential, but UCMSCs had a much higher expansion capacity than AMMSCs. Moreover, we uncovered that single-dose intravenous injection of either AMMSCs or UCMSCs could comparably reduce hyperglycemia and improve IR in T2DM db/db mice. Mechanistic investigations revealed that either AMMSC or UCMSC infusion could greatly improve glycolipid metabolism in the liver of db/db mice, which was evidenced by decreased liver to body weight ratio, reduced lipid accumulation, upregulated glycogen synthesis, and increased Akt phosphorylation. Taken together, these data indicate that the same donor-derived AMMSCs and UCMSCs possessed comparable effects and shared a similar hepatoprotective mechanism on the alleviation of T2DM symptoms.
Collapse
Affiliation(s)
- Zhifeng Wang
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China. .,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Haisen Li
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Jingmeng Fang
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Xiaoyu Wang
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Shuhang Dai
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Wei Cao
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Yinhong Guo
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Zhe Li
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Hao Zhu
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China.
| |
Collapse
|
33
|
Xiao H, Wu D, Yang T, Fu W, Yang L, Hu C, Wan H, Hu X, Zhang C, Wu T. Extracellular vesicles derived from HBMSCs improved myocardial infarction through inhibiting zinc finger antisense 1 and activating Akt/Nrf2/HO-1 pathway. Bioengineered 2022; 13:905-916. [PMID: 34974805 PMCID: PMC8805844 DOI: 10.1080/21655979.2021.2014389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
Myocardial infarction (MI) is believed to be one of the most common cardiovascular diseases, and it is seriously threatening the health of people in the world. The extracellular vesicles (EVs) isolated from mesenchymal stem cells and zinc finger antisense 1 (ZFAS1) have been believed to be involved in the regulation of MI, but the mechanism has not been fully clarified. Left anterior descending artery ligation was used to establish MI animal model, hypoxia treatment was applied to establish MI cell model. CCK8, transwell, and wound healing methods were applied to measure cell proliferation, invasion, and migration. Overexpression of ZFAS1 was established via transfecting pcDNA-ZFAS1. Overexpression of ZFAS1 significantly reversed the influence of EVs on cell migration, invasion, and apoptosis. Similar effect of EVs and ZFAS1 on morphological changes of MI rat heart tissues were also observed. The activation of Akt/Nrf2/HO-1 pathway by EVs was remarkably suppressed by pcDNA-ZFAS1. Inhibitor of Akt/Nrf2/HO-1 pathway remarkably reversed the impact of EVs on the cell viability. EVs might improve MI through inhibiting ZFAS1 and promoting Akt/Nrf2/HO-1 pathway. This study might provide a new thought for the prevention and treatment of MI damage through regulating ZFAS1 or Akt/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Huiling Xiao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Dan Wu
- Department of medical technology, Jiangxi Health Vocational College, Nanchang, Jiangxi, China
| | - Tao Yang
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Fu
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lu Yang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chenkai Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hongbing Wan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaomin Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chenjie Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Tao Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
34
|
Zhang Z, Li Y, Zhang T, Shi M, Song X, Yang S, Liu H, Zhang M, Cui Q, Li Z. Hepatocyte Growth Factor-Induced Tendon Stem Cell Conditioned Medium Promotes Healing of Injured Achilles Tendon. Front Cell Dev Biol 2021; 9:654084. [PMID: 33898452 PMCID: PMC8059769 DOI: 10.3389/fcell.2021.654084] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Tendon repair is a medical challenge. Our present study investigated the effectiveness of acellular therapy consisting of conditioned medium (CM) of tendon stem cells (TSCs) induced with hepatocyte growth factor (HGF) in promoting the healing of injured Achilles tendon in a rat model. Proteomic analysis of soluble substances in the CM was performed using an array chip, and bioinformatic analysis was carried out to evaluate interactions among the factors. The effects of CM on viability and migratory capacity of tendon fibroblasts derived from rats with ruptured Achilles tendon were evaluated with the Cell Counting Kit 8 and wound healing assay, respectively. The expression of extracellular matrix (ECM)-related protein was assessed by western blotting. Rats with Achilles tendon injury were treated with CM by local injection for 2 weeks, and the organization of tendon fibers at the lesion site was evaluated by hematoxylin and eosin and Masson's trichrome staining of tissue samples. The deposition and degradation of ECM proteins and the expression of inflammatory factors at the lesion site were evaluated by immunohistochemistry and immunofluorescence. Biomechanical testing was carried out on the injured tendons to assess functional recovery. There were 12 bioactive molecules in the CM, with HGF as the hub of the protein-protein interaction network. CM treatment enhanced the viability and migration of tendon fibroblasts, altered the expression of ECM proteins, promoted the organization of tendon fibers, suppressed inflammation and improved the biomechanics of the injured Achilles tendon. These results suggest that HGF stimulates the secretion of soluble secretory products by TSCs and CM promotes the repair and functional recovery of ruptured Achilles tendon. Thus, HGF-induced TSC CM has therapeutic potential for the treatment of tendinopathy.
Collapse
Affiliation(s)
- Zenan Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yutian Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tingting Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Manyu Shi
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Song
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shulong Yang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hengchen Liu
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingzhao Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingbo Cui
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaozhu Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
35
|
Liu Y, Li F, Cai Z, Wang D, Hou R, Zhang H, Zhang M, Yie S, Wu K, Zeng C, An J. Isolation and characterization of mesenchymal stem cells from umbilical cord of giant panda. Tissue Cell 2021; 71:101518. [PMID: 33676235 DOI: 10.1016/j.tice.2021.101518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Umbilical cord-derived mesenchymal stem cells (UC-MSCs) constitute a class of cells with significant self-renewal and multilineage differentiation properties and have great potential for therapeutic applications and the genetic conservation of endangered animals. In this study, we successfully isolated and cultured UC-MSCs from the blood vessels of giant panda umbilical cord (UC). The cells were arranged in a vortex or cluster pattern and exhibited a normal karyotype, showing the morphological characteristics of fibroblasts. In addition, we found that basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) promoted cell proliferation, whereas stem cell factor (SCF) did not promote cell proliferation. Cultured UC-MSCs were negative for CD34 (hematopoietic stem cell marker) and CD31 (endothelial cell marker), but positive for MSC markers (CD44, CD49f, CD105, and CD73) and stem cell markers (KLF4, SOX2, and THY1). Similar to other MSCs, giant panda UC-MSCs have multiple differentiation ability and can differentiate into adipocytes, osteoblasts and chondrocytes. Giant panda UC-MSCs are new resources for basic research as cell models following their differentiation into different cell types and for future clinical treatments of giant panda diseases.
Collapse
Affiliation(s)
- Yuliang Liu
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China; Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Feiping Li
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Zhigang Cai
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Donghui Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Hao Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China
| | - Ming Zhang
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Shangmian Yie
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Kongju Wu
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Changjun Zeng
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China.
| | - Junhui An
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China.
| |
Collapse
|