1
|
Fateh K, Mansoori F, Atashi A. The Evaluation of Mass/DNA Copy Number of Mitochondria in Umbilical Cord Blood-derived Hematopoietic Stem Cells Cocultured with MSCs. Indian J Hematol Blood Transfus 2024; 40:638-646. [PMID: 39469179 PMCID: PMC11512953 DOI: 10.1007/s12288-024-01774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/08/2024] [Indexed: 10/30/2024] Open
Abstract
Over recent decades, UCB has been widely used as an excellent alternative source of HSCs for treating many hematologic disorders. Recent studies suggest using mesenchymal stroma cell co-cultures to increase the number of HSCs prior to transplantation. Considering the critical role of mitochondria in the cell's fate and the importance of the self-renewal capacity of HSCs in HSCT, we decided to investigate the mass/DNA copy number of mitochondria in HSCs while co-cultured with MSCs and alone after seven days. UCB units were collected from full-term deliveries. MSCs and HSCs were isolated from UCB and the purity of cells was confirmed by flow cytometry. The mtDNA-Copy Number of HSCs was calculated using prob-based real-time PCR. Furthermore, Mito Tracker Green dye measured the mass of mitochondria of HSCs. HSCs from MSC co-culture group showed significantly fewer mtDNA-CN compared to HSCs alone after seven days (p < 0.001). Besides, by comparing the two groups on day seven to HSCs on day zero, we observed a mild increase in the mitochondrial mass of HSCs alone compared to the MSC-HSC co-culture group (p < 0.05). Concerning previous studies that have proved the association between lower mass/DNA-copy number of mitochondria in CD34 + HSCs and lower metabolic activity along with higher quiescence maintenance, and by considering the results of this experiment, it seems that the MSC-HSC co-cultures might be associated with a higher expansion of HSCs as well as stemness maintenance leading to the improvement in engraftment. Nevertheless, further investigations are required to clarify the exact connection between lower mass/DNA-copy number of mitochondria and stemness maintenance in HSCs.
Collapse
Affiliation(s)
- Kosar Fateh
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mansoori
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
2
|
Fereydani NM, Galehdari H, Hoveizi E, Alghasi A, Ajami M. Ex vivo expansion of hematopoietic stem cells in two/ three-dimensional co-cultures with various source of stromal cells. Tissue Cell 2024; 87:102331. [PMID: 38430847 DOI: 10.1016/j.tice.2024.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/19/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
The ex vivo expansion of hematopoietic stem cells, with both high quantities and quality, is considered a paramount issue in cell and gene therapy for hematological diseases. Complex interactions between the bone marrow microenvironment and hematopoietic stem cells reveal the importance of using 2D and 3D coculture as a physiological system simulator in the proliferation, differentiation, and homeostasis of HSCs. Herein, the capacity of mesenchymal stem cells derived from different sources to support the expansion and maintenance of HSPC was compared with each other. We evaluated the fold increase of HSPC, CD34 marker expression, cytokine secretion profile of different MSCs, and the frequency of hematopoietic colony-forming unit parameters. Our results show that there was no significant difference between adipose tissue-MSC, Wharton jelly-MSC, and Endometrial-MSCs in HSPC expansion (fold increase: 34.74±4.38 in Wj-MSC, 32.22±5.07 in AD-MSC, 25.9±1.27 in En-MSCs); However, there were significantly more than the expansion media alone (4.4±0.69). The results obtained from the cytokine secretion analysis also confirm these results. Also, there were significant differences in the clonogenicity of Wj-MSC, En-MSCs, and expansion media (CFU-GEMM: 7±1.73, 2.3±1.15, and 2.3±1.52), which indicated that Wj-MSC could significantly maintain the primitive state. As a result, using Wj-mesenchymal stem cells on a 3D coculture system effectively increases the HSPC expansion and maintains the colonization potential of hematopoietic stem cells.
Collapse
Affiliation(s)
- Nasim Mayeli Fereydani
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hamid Galehdari
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Elham Hoveizi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Arash Alghasi
- Thalassemia & Hemoglobinopathy Research center, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Monireh Ajami
- Department of Hematology, School of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Albayrak E, Kocabaş F. Therapeutic targeting and HSC proliferation by small molecules and biologicals. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:425-496. [PMID: 37061339 DOI: 10.1016/bs.apcsb.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Hematopoietic stem cells (HSCs) have considerably therapeutic value on autologous and allogeneic transplantation for many malignant/non-malignant hematological diseases, especially with improvement of gene therapy. However, acquirement of limited cell dose from HSC sources is the main handicap for successful transplantation. Therefore, many strategies based on the utilization of various cytokines, interaction of stromal cells, modulation of several extrinsic and intrinsic factors have been developed to promote ex vivo functional HSC expansion with high reconstitution ability until today. Besides all these strategies, small molecules become prominent with their ease of use and various advantages when they are translated to the clinic. In the last two decades, several small molecule compounds have been investigated in pre-clinical studies and, some of them were evaluated in different stages of clinical trials for their safety and efficiencies. In this chapter, we will present an overview of HSC biology, function, regulation and also, pharmacological HSC modulation with small molecules from pre-clinical and clinical perspectives.
Collapse
|
4
|
Albayrak E, Akgol S, Turan RD, Uslu M, Kocabas F. BML-260 promotes the growth of cord blood and mobilized peripheral blood hematopoietic stem and progenitor cells with improved reconstitution ability. J Cell Biochem 2022; 123:2009-2029. [PMID: 36070493 DOI: 10.1002/jcb.30324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022]
Abstract
Hematopoietic stem cells (HSCs), which are multipotent and have the ability to self-renew, are frequently used in the treatment of hematological diseases and cancer. Small molecules that target HSC quiescence regulators could be used for ex vivo expansion of both mobilized peripheral blood (mPB) and umbilical cord blood (UCB) hematopoietic stem and progenitor cells (HSPC). We identified and investigated 35 small molecules that target HSC quiescence factors. We looked at how they affected HSC activity, such as expansion, quiescence, multilineage capacity, cycling ability, metabolism, cytotoxicity, and genotoxicity. A transplantation study was carried out on immunocompromised mice to assess the expanded cells' repopulation and engraftment abilities. 4-[(5Z)-5-benzylidene-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl]benzoic acid (BML)-260 and tosyl-l-arginine methyl ester (TAME) significantly increased both mPB and UCB-HSPC content and activated HSC re-entry into the cell cycle. The improved multilineage capacity was confirmed by the colony forming unit (CFU) assay. Furthermore, gene expression analysis revealed that BML-260 and TAME molecules aided HSC expansion by modulating cell cycle kinetics, such as p27, SKP2, and CDH1. In addition to these in vitro findings, we discovered that BML-260-expanded HSCs had a high hematopoietic reconstitution capacity with increased immune cell content after xenotransplantation into immunocompromised mice. In addition to the BML-260 molecule, a comparison study of serum-containing and serum-free chemically defined media, including various supplements, was performed. These in vitro and xenotransplantation results show that BML-260 molecules can be used for human HSC expansion and regulation of function. Furthermore, the medium composition discovered may be a novel platform for human HSPC expansion that could be used in clinical trials.
Collapse
Affiliation(s)
- Esra Albayrak
- Center of Stem Cell Research and Application, 19 Mayıs University, Samsun, Turkey.,Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Sezer Akgol
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Raife Dilek Turan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Merve Uslu
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.,Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Fatih Kocabas
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
5
|
Pochon C, Notarantonio AB, Laroye C, Reppel L, Bensoussan D, Bertrand A, Rubio MT, D'Aveni M. Wharton's jelly-derived stromal cells and their cell therapy applications in allogeneic haematopoietic stem cell transplantation. J Cell Mol Med 2022; 26:1339-1350. [PMID: 35088933 PMCID: PMC8899189 DOI: 10.1111/jcmm.17105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/30/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
For decades, mesenchymal stromal cells (MSCs) have been of great interest in the fields of regenerative medicine, tissue engineering and immunomodulation. Their tremendous potential makes it desirable to cryopreserve and bank MSCs to increase their accessibility and availability. Postnatally derived MSCs seem to be of particular interest because they are harvested after delivery without ethical controversy, they have the capacity to expand at a higher rate than adult‐derived MSCs, in which expansion decreases with ageing, and they have demonstrated immunological and haematological supportive properties similar to those of adult‐derived MSCs. In this review, we focus on MSCs obtained from Wharton's jelly (the mucous connective tissue of the umbilical cord between the amniotic epithelium and the umbilical vessels). Wharton's jelly MSCs (WJ‐MSCs) are a good candidate for cellular therapy in haematology, with accumulating data supporting their potential to sustain haematopoietic stem cell engraftment and to modulate alloreactivity such as Graft Versus Host Disease (GVHD). We first present an overview of their in‐vitro properties and the results of preclinical murine models confirming the suitability of WJ‐MSCs for cellular therapy in haematology. Next, we focus on clinical trials and discuss tolerance, efficacy and infusion protocols reported in haematology for GVHD and engraftment.
Collapse
Affiliation(s)
- Cécile Pochon
- Pediatric Oncohematology Department, CHRU Nancy, Université de Lorraine, Nancy, France.,UMR 7365 CNRS, IMoPA, Université de Lorraine, Nancy, France
| | - Anne-Béatrice Notarantonio
- UMR 7365 CNRS, IMoPA, Université de Lorraine, Nancy, France.,Hematology Department, CHRU Nancy, Université de Lorraine, Nancy, France
| | - Caroline Laroye
- Pediatric Oncohematology Department, CHRU Nancy, Université de Lorraine, Nancy, France.,Cell Therapy Unit, CHRU Nancy, Université de Lorraine, Nancy, France
| | - Loic Reppel
- UMR 7365 CNRS, IMoPA, Université de Lorraine, Nancy, France.,Cell Therapy Unit, CHRU Nancy, Université de Lorraine, Nancy, France
| | - Danièle Bensoussan
- UMR 7365 CNRS, IMoPA, Université de Lorraine, Nancy, France.,Cell Therapy Unit, CHRU Nancy, Université de Lorraine, Nancy, France
| | - Allan Bertrand
- UMR 7365 CNRS, IMoPA, Université de Lorraine, Nancy, France
| | - Marie-Thérèse Rubio
- UMR 7365 CNRS, IMoPA, Université de Lorraine, Nancy, France.,Hematology Department, CHRU Nancy, Université de Lorraine, Nancy, France
| | - Maud D'Aveni
- UMR 7365 CNRS, IMoPA, Université de Lorraine, Nancy, France.,Hematology Department, CHRU Nancy, Université de Lorraine, Nancy, France
| |
Collapse
|
6
|
Bucar S, Branco ADDM, Mata MF, Milhano JC, Caramalho Í, Cabral JMS, Fernandes-Platzgummer A, da Silva CL. Influence of the mesenchymal stromal cell source on the hematopoietic supportive capacity of umbilical cord blood-derived CD34 +-enriched cells. Stem Cell Res Ther 2021; 12:399. [PMID: 34256848 PMCID: PMC8278708 DOI: 10.1186/s13287-021-02474-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
Background Umbilical cord blood (UCB) is a clinically relevant alternative source of hematopoietic stem/progenitor cells (HSPC). To overcome the low cell number per UCB unit, ex vivo expansion of UCB HSPC in co-culture with mesenchymal stromal cells (MSC) has been established. Bone marrow (BM)-derived MSC have been the standard choice, but the use of MSC from alternative sources, less invasive and discardable, could ease clinical translation of an expanded CD34+ cell product. Here, we compare the capacity of BM-, umbilical cord matrix (UCM)-, and adipose tissue (AT)-derived MSC, expanded with/without xenogeneic components, to expand/maintain UCB CD34+-enriched cells ex vivo. Methods UCB CD34+-enriched cells were isolated from cryopreserved mononuclear cells and cultured for 7 days over an established feeder layer (FL) of BM-, UCM-, or AT-derived MSC, previously expanded using fetal bovine serum (FBS) or fibrinogen-depleted human platelet lysate (HPL) supplemented medium. UCB cells were cultured in serum-free medium supplemented with SCF/TPO/FLT3-L/bFGF. Fold increase in total nucleated cells (TNC) as well as immunophenotype and clonogenic potential (cobblestone area-forming cells and colony-forming unit assays) of the expanded hematopoietic cells were assessed. Results MSC from all sources effectively supported UCB HSPC expansion/maintenance ex vivo, with expansion factors (in TNC) superior to 50x, 70x, and 80x in UCM-, BM-, and AT-derived MSC co-cultures, respectively. Specifically, AT-derived MSC co-culture resulted in expanded cells with similar phenotypic profile compared to BM-derived MSC, but resulting in higher total cell numbers. Importantly, a subpopulation of more primitive cells (CD34+CD90+) was maintained in all co-cultures. In addition, the presence of a MSC FL was essential to maintain and expand a subpopulation of progenitor T cells (CD34+CD7+). The use of HPL to expand MSC prior to co-culture establishment did not influence the expansion potential of UCB cells. Conclusions AT represents a promising alternative to BM as a source of MSC for co-culture protocols to expand/maintain HSPC ex vivo. On the other hand, UCM-derived MSC demonstrated inferior hematopoietic supportive capacity compared to MSC from adult tissues. Despite HPL being considered an alternative to FBS for clinical-scale manufacturing of MSC, further studies are needed to determine its impact on the hematopoietic supportive capacity of these cells.
Collapse
Affiliation(s)
- Sara Bucar
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - André Dargen de Matos Branco
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Márcia F Mata
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - João Coutinho Milhano
- Hospital São Francisco Xavier, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | | | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal. .,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
7
|
Shang Y, Guan H, Zhou F. Biological Characteristics of Umbilical Cord Mesenchymal Stem Cells and Its Therapeutic Potential for Hematological Disorders. Front Cell Dev Biol 2021; 9:570179. [PMID: 34012958 PMCID: PMC8126649 DOI: 10.3389/fcell.2021.570179] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 04/08/2021] [Indexed: 01/14/2023] Open
Abstract
Umbilical cord mesenchymal stem cells (UC-MSCs) are a class of multifunctional stem cells isolated and cultured from umbilical cord. They possessed the characteristics of highly self-renewal, multi-directional differentiation potential and low immunogenicity. Its application in the field of tissue engineering and gene therapy has achieved a series of results. Recent studies have confirmed their characteristics of inhibiting tumor cell proliferation and migration to nest of cancer. The ability of UC-MSCs to support hematopoietic microenvironment and suppress immune system suggests that they can improve engraftment after hematopoietic stem cell transplantation, which shows great potential in treatment of hematologic diseases. This review will focus on the latest advances in biological characteristics and mechanism of UC-MSCs in treatment of hematological diseases.
Collapse
Affiliation(s)
- Yufeng Shang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haotong Guan
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Fathi E, Kholosi Pashutan M, Farahzadi R, Nozad Charoudeh H. L-carnitine in a certain concentration increases expression of cell surface marker CD34 and apoptosis in the rat bone marrow CD34 + hematopoietic stem cells. IRANIAN JOURNAL OF VETERINARY RESEARCH 2021; 22:264-271. [PMID: 35126533 PMCID: PMC8806168 DOI: 10.22099/ijvr.2021.39045.5677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Stem cell based therapy has been encouraged as an attractive method in regenerative medicine. Poor survival and maintenance of the cells transferred into the damaged tissue are broadly accepted as serious barriers to enhancing the efficacy of regenerative medicine. For this reason, some antioxidants such as L-carnitine (LC) are used as a favorite strategy to improve cell survival and retention properties. AIMS This study aims to evaluate the effect of LC on the expression of CD34 marker and its effect on apoptosis and SUZ12 gene expression. METHODS Rat bone marrow mono-nuclear cells (rBMNCs) were isolated. Then, CD34+ hematopoietic stem cells (HSCs) were enriched using the magnetic activated cell sorting (MACS) method. The cells were treated with 0.2 and 0.4 mM LC. Gene and protein expression levels of the CD34 were then measured by real-time PCR and flow cytometry, respectively. The percentage of apoptosis and SUZ12 gene expression were measured using the Annexin V/PI method and real-time PCR, respectively. RESULTS The results showed that in the experimental group, of the CD34+ HSCs treated with 0.2 mM LC, gene and protein expressions of CD34 increased by 1.7 fold and 0.49%, respectively. At the concentration of 0.4 mM, the early cell apoptosis increased by 25.9% (P<0.05). Also, in the concentration of 0.2 and 0.4 mM LC, the SUZ12 gene expression increased by 1.10 and 1.75 folds compared to the control group (P<0.05 and P<0.01), respectively. CONCLUSION The results of this study could be used to improve chronic myeloid leukemia (CML) as a multidirectional therapeutic strategy.
Collapse
Affiliation(s)
- E. Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - M. Kholosi Pashutan
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - R. Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H. Nozad Charoudeh
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|