1
|
Qu Y, Xu M, Yuan F, Zhang H, Li H, Guo R, Yu J, Ren Q, Wang R, Wang P, Wang H. Hypoglycemic effects of a new heteropolysaccharide from common bean (Phaseolus vulgaris L.) seeds in type 2 diabetes mellitus mice via modulating gut microbiota. Int J Biol Macromol 2024; 283:137825. [PMID: 39571858 DOI: 10.1016/j.ijbiomac.2024.137825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/01/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
Type 2 diabetes poses significant health issues worldwide; however, relatively few effective treatment strategies are currently available. This research seeks to explore the potential hypoglycemic impact of compounds derived from common bean (Phaseolus vulgaris L.) by structurally characterizing a new type of heteropolysaccharide (CIE2-F) and evaluating its hypoglycemic effects in a murine model. CIE2-F primarily comprises 10 monosaccharides, Mw: 9.25 × 105 Da. The polysaccharide exhibited significant anti-obesity effects, alleviated pathological liver damage, and reduced hyperglycemia. In addition, the polysaccharide mitigated insulin resistance and regulated dyslipidemia by increasing serum HDL-C and reducing LDL-C, total cholesterol, and triglycerides in diabetic mice. Furthermore, 16S rRNA sequencing revealed that CIE2-F enriched beneficial gut microbiota, including Akkermansia and Verrucomicrobia, while decreasing pathogenic bacteria.
Collapse
Affiliation(s)
- Yaning Qu
- School of Life Sciences, Jianghan University, Wuhan 430056, China; Innovation Center for Comprehensive Utilization of Food and Medicine Homologous Specialty Resources, Wuhan 430056, China
| | - Mengyue Xu
- School of Life Sciences, Jianghan University, Wuhan 430056, China; Innovation Center for Comprehensive Utilization of Food and Medicine Homologous Specialty Resources, Wuhan 430056, China
| | - Fahu Yuan
- School of Life Sciences, Jianghan University, Wuhan 430056, China; Innovation Center for Comprehensive Utilization of Food and Medicine Homologous Specialty Resources, Wuhan 430056, China
| | - Hongxing Zhang
- School of Life Sciences, Jianghan University, Wuhan 430056, China; Innovation Center for Comprehensive Utilization of Food and Medicine Homologous Specialty Resources, Wuhan 430056, China
| | - Hui Li
- School of Life Sciences, Jianghan University, Wuhan 430056, China; Innovation Center for Comprehensive Utilization of Food and Medicine Homologous Specialty Resources, Wuhan 430056, China
| | - Rui Guo
- School of Life Sciences, Jianghan University, Wuhan 430056, China; Hubei Province Engineering Research Center for Legume Plants, Wuhan 430056, Hubei, China
| | - Jinyi Yu
- School of Life Sciences, Jianghan University, Wuhan 430056, China; Innovation Center for Comprehensive Utilization of Food and Medicine Homologous Specialty Resources, Wuhan 430056, China
| | - Qinai Ren
- School of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Runkui Wang
- School of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Peng Wang
- School of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Hongbo Wang
- School of Life Sciences, Jianghan University, Wuhan 430056, China; Innovation Center for Comprehensive Utilization of Food and Medicine Homologous Specialty Resources, Wuhan 430056, China; Hubei Province Engineering Research Center for Legume Plants, Wuhan 430056, Hubei, China.
| |
Collapse
|
2
|
Huang Y, Liang M, Liao Y, Ji Z, Lin W, Pu X, Wang L, Wang W. Investigating the Mechanisms of 15-PGDH Inhibitor SW033291 in Improving Type 2 Diabetes Mellitus: Insights from Metabolomics and Transcriptomics. Metabolites 2024; 14:509. [PMID: 39330516 PMCID: PMC11434390 DOI: 10.3390/metabo14090509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
This study focused on exploring the effects of SW033291, an inhibitor of 15-hydroxyprostaglandin dehydrogenase, on type 2 diabetes mellitus (T2DM) mice from a comprehensive perspective. Studies have demonstrated that SW033291 benefits tissue repair, organ function, and muscle mass in elderly mice. Our recent investigation initially reported the beneficial effect of SW033291 on T2DM progression. Herein, we used a T2DM mouse model induced by a high-fat diet and streptozotocin injection. Then, serum and liver metabolomics, as well as liver transcriptomic analyses, were performed to provide a systematic perspective of the SW033291-ameliorated T2DM. The results indicate SW033291 improved T2DM by regulating steroid hormone biosynthesis and linoleic/arachidonic acid metabolism. Furthermore, integrated transcriptomic and metabolomic analyses suggested that key genes and metabolites such as Cyp2c55, Cyp3a11, Cyp21a1, Myc, Gstm1, Gstm3, 9,10-dihydroxyoctadecenoic acid, 11-dehydrocorticosterone, and 12,13-dihydroxy-9Z-octadecenoic acid played crucial roles in these pathways. qPCR analysis validated the significant decreases in the hepatic gene expressions of Cyp2c55, Cyp3a11, Myc, Gstm1, and Gstm3 in the T2DM mice, which were reversed following SW033291 treatment. Meanwhile, the elevated mRNA level of Cyp21a1 in T2DM mice was decreased after SW033291 administration. Taken together, our findings suggest that SW033291 has promising potential in alleviating T2DM and could be a novel therapeutic candidate.
Collapse
Affiliation(s)
- Yuanfeng Huang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| | - Mingjie Liang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
- Guangdong Nephrotic Drug Engineering Technology Research Center, Guangdong Consun Pharmaceutical Group, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangzhou 510700, China
| | - Yiwen Liao
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| | - Zirui Ji
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| | - Wanfen Lin
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| | - Xiangjin Pu
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| | - Lexun Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| | - Weixuan Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| |
Collapse
|
3
|
Campesi I, Franconi F, Serra PA. The Appropriateness of Medical Devices Is Strongly Influenced by Sex and Gender. Life (Basel) 2024; 14:234. [PMID: 38398743 PMCID: PMC10890141 DOI: 10.3390/life14020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Until now, research has been performed mainly in men, with a low recruitment of women; consequentially, biological, physiological, and physio-pathological mechanisms are less understood in women. Obviously, without data obtained on women, it is impossible to apply the results of research appropriately to women. This issue also applies to medical devices (MDs), and numerous problems linked to scarce pre-market research and clinical trials on MDs were evidenced after their introduction to the market. Globally, some MDs are less efficient in women than in men and sometimes MDs are less safe for women than men, although recently there has been a small but significant decrease in the sex and gender gap. As an example, cardiac resynchronization defibrillators seem to produce more beneficial effects in women than in men. It is also important to remember that MDs can impact the health of healthcare providers and this could occur in a sex- and gender-dependent manner. Recently, MDs' complexity is rising, and to ensure their appropriate use they must have a sex-gender-sensitive approach. Unfortunately, the majority of physicians, healthcare providers, and developers of MDs still believe that the human population is only constituted by men. Therefore, to overcome the gender gap, a real collaboration between the inventors of MDs, health researchers, and health providers should be established to test MDs in female and male tissues, animals, and women.
Collapse
Affiliation(s)
- Ilaria Campesi
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy
- Laboratorio Nazionale sulla Farmacologia e Medicina di Genere, Istituto Nazionale Biostrutture Biosistemi, 07100 Sassari, Italy;
| | - Flavia Franconi
- Laboratorio Nazionale sulla Farmacologia e Medicina di Genere, Istituto Nazionale Biostrutture Biosistemi, 07100 Sassari, Italy;
| | - Pier Andrea Serra
- Dipartimento di Medicina, Chirurgia e Farmacia, Università degli Studi di Sassari, 07100 Sassari, Italy;
| |
Collapse
|
4
|
Ock SA, Kim SY, Ju WS, Kim YI, Wi HY, Lee P. Adipose Tissue-Derived Mesenchymal Stem Cells Extend the Lifespan and Enhance Liver Function in Hepatocyte Organoids. Int J Mol Sci 2023; 24:15429. [PMID: 37895114 PMCID: PMC10607770 DOI: 10.3390/ijms242015429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, we generated hepatocyte organoids (HOs) using frozen-thawed primary hepatocytes (PHs) within a three-dimensional (3D) Matrigel dome culture in a porcine model. Previously studied hepatocyte organoid analogs, spheroids, or hepatocyte aggregates created using PHs in 3D culture systems have limitations in their in vitro lifespans. By co-culturing adipose tissue-derived mesenchymal stem cells (A-MSCs) with HOs within a 3D Matrigel dome culture, we achieved a 3.5-fold increase in the in vitro lifespan and enhanced liver function compared to a conventional two-dimensional (2D) monolayer culture, i.e., more than twice that of the HO group cultured alone, reaching up to 126 d. Although PHs were used to generate HOs, we identified markers associated with cholangiocyte organoids such as cytokeratin 19 and epithelial cellular adhesion molecule (EPCAM). Co-culturing A-MSCs with HOs increased the secretion of albumin and urea and glucose consumption compared to HOs cultured alone. After more than 100 d, we observed the upregulation of tumor protein P53 (TP53)-P21 and downregulation of EPCAM, albumin (ALB), and cytochrome P450 family 3 subfamily A member 29 (CYP3A29). Therefore, HOs with function and longevity improved through co-culturing with A-MSCs can be used to create large-scale human hepatotoxicity testing models and precise livestock nutrition assessment tools.
Collapse
Affiliation(s)
- Sun A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea
| | | | | | | | | | | |
Collapse
|
5
|
Malachowska B, Yang WL, Qualman A, Muro I, Boe DM, Lampe JN, Kovacs EJ, Idrovo JP. Transcriptomics, metabolomics, and in-silico drug predictions for liver damage in young and aged burn victims. Commun Biol 2023; 6:597. [PMID: 37268765 DOI: 10.1038/s42003-023-04964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Burn induces a systemic response affecting multiple organs, including the liver. Since the liver plays a critical role in metabolic, inflammatory, and immune events, a patient with impaired liver often exhibits poor outcomes. The mortality rate after burns in the elderly population is higher than in any other age group, and studies show that the liver of aged animals is more susceptible to injury after burns. Understanding the aged-specific liver response to burns is fundamental to improving health care. Furthermore, no liver-specific therapy exists to treat burn-induced liver damage highlighting a critical gap in burn injury therapeutics. In this study, we analyzed transcriptomics and metabolomics data from the liver of young and aged mice to identify mechanistic pathways and in-silico predict therapeutic targets to prevent or reverse burn-induced liver damage. Our study highlights pathway interactions and master regulators that underlie the differential liver response to burn injury in young and aged animals.
Collapse
Affiliation(s)
- Beata Malachowska
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andrea Qualman
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
| | - Israel Muro
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
| | - Devin M Boe
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
- Graduate Program in Immunology, University of Colorado, Aurora, CO, 80045, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, 80045, USA
| | - Elizabeth J Kovacs
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
- Graduate Program in Immunology, University of Colorado, Aurora, CO, 80045, USA
- Molecular Biology Program, University of Colorado, Aurora, CO, 80045, USA
| | - Juan-Pablo Idrovo
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Darolti I, Mank JE. Sex-biased gene expression at single-cell resolution: cause and consequence of sexual dimorphism. Evol Lett 2023; 7:148-156. [PMID: 37251587 PMCID: PMC10210449 DOI: 10.1093/evlett/qrad013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
Gene expression differences between males and females are thought to be key for the evolution of sexual dimorphism, and sex-biased genes are often used to study the molecular footprint of sex-specific selection. However, gene expression is often measured from complex aggregations of diverse cell types, making it difficult to distinguish between sex differences in expression that are due to regulatory rewiring within similar cell types and those that are simply a consequence of developmental differences in cell-type abundance. To determine the role of regulatory versus developmental differences underlying sex-biased gene expression, we use single-cell transcriptomic data from multiple somatic and reproductive tissues of male and female guppies, a species that exhibits extensive phenotypic sexual dimorphism. Our analysis of gene expression at single-cell resolution demonstrates that nonisometric scaling between the cell populations within each tissue and heterogeneity in cell-type abundance between the sexes can influence inferred patterns of sex-biased gene expression by increasing both the false-positive and false-negative rates. Moreover, we show that, at the bulk level, the subset of sex-biased genes that are the product of sex differences in cell-type abundance can significantly confound patterns of coding-sequence evolution. Taken together, our results offer a unique insight into the effects of allometry and cellular heterogeneity on perceived patterns of sex-biased gene expression and highlight the power of single-cell RNA-sequencing in distinguishing between sex-biased genes that are the result of regulatory change and those that stem from sex differences in cell-type abundance, and hence are a consequence rather than a cause of sexual dimorphism.
Collapse
Affiliation(s)
- Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Ock SA, Seo KM, Ju WS, Kim YI, Wi HY, Lee P. Effect of Serum and Oxygen on the In Vitro Culture of Hanwoo Korean Native Cattle-Derived Skeletal Myogenic Cells Used in Cellular Agriculture. Foods 2023; 12:foods12071384. [PMID: 37048206 PMCID: PMC10093918 DOI: 10.3390/foods12071384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Skeletal muscle-derived myogenic cells (SKMCs) are novel protein sources capable of replacing animal meat. However, SKMCs have not been commercialized owing to poor productivity and the high cost of in vitro cell culture. Therefore, we cultured SKMCs in varying serum (5–20%) and oxygen concentrations (5–20%) to investigate the parameters that most impact cell productivity (serum, hypoxia, and culture medium) and examined cell proliferation ability and genes involved in myogenesis/proliferation/apoptosis/reactive oxygen species (ROS). In fetal bovine serum (FBS) groups, hypoxia induction doubled cell number, and the 20% FBS/normoxia group exhibited similar cell numbers as 5% FBS/5% hypoxia, confirming that 5% hypoxia reduced serum requirement by four-fold. The use of 20% FBS downregulated MTF5/MYOD1/MYOG/MYH1, whereas hypoxia induction with ≤10% FBS upregulated them. Although 20% FBS lowered TERT expression through rapid cell proliferation, NOX1, a major factor of ROS, was suppressed. DMEM/F12 demonstrated better differentiation potential than F10 by upregulating MYF3/MYOD1/MYOG/MYH1 and downregulating MSTN, particularly DMEM/F12 with 2% FBS/5% hypoxia. The myogenic fusion index was higher in DMEM/F12 without FBS than in DMEM/F12 with FBS (0.5–5%); however, the total nuclei number was reduced owing to apoptosis. Therefore, high serum levels are essential in influencing SKMC growth, followed by hypoxia as a synergistic component.
Collapse
|
8
|
Human-Induced Pluripotent Stem Cell-Based Models for Studying Sex-Specific Differences in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:57-88. [PMID: 34921676 DOI: 10.1007/5584_2021_683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The prevalence of neurodegenerative diseases is steadily increasing worldwide, and epidemiological studies strongly suggest that many of the diseases are sex-biased. It has long been suggested that biological sex differences are crucial for neurodegenerative diseases; however, how biological sex affects disease initiation, progression, and severity is not well-understood. Sex is a critical biological variable that should be taken into account in basic research, and this review aims to highlight the utility of human-induced pluripotent stem cells (iPSC)-derived models for studying sex-specific differences in neurodegenerative diseases, with advantages and limitations. In vitro systems utilizing species-specific, renewable, and physiologically relevant cell sources can provide powerful platforms for mechanistic studies, toxicity testings, and drug discovery. Matched healthy, patient-derived, and gene-corrected human iPSCs, from both sexes, can be utilized to generate neuronal and glial cell types affected by specific neurodegenerative diseases to study sex-specific differences in two-dimensional (2D) and three-dimensional (3D) human culture systems. Such relatively simple and well-controlled systems can significantly contribute to the elucidation of molecular mechanisms underlying sex-specific differences, which can yield effective, and potentially sex-based strategies, against neurodegenerative diseases.
Collapse
|