1
|
Li M, Tang Y, Zhou C, Geng Y, Zhang C, Hsu Y, Ma L, Guo W, Li M, Wang Y. The Application of Stem Cells and Exosomes in Promoting Nerve Conduits for Peripheral Nerve Repair. Biomater Res 2025; 29:0160. [PMID: 40231207 PMCID: PMC11994886 DOI: 10.34133/bmr.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 04/16/2025] Open
Abstract
The repair of peripheral nerve injury (PNI) presents a multifaceted and protracted challenge, with current therapeutic approaches failing to achieve optimal repair outcomes, thereby not satisfying the considerable clinical demand. The advent of tissue engineering has led to a growing body of experimental evidence indicating that the synergistic application of nerve conduits, which provide structural guidance, alongside the biological signals derived from exosomes and stem cells, yields superior therapeutic results for PNI compared to isolated interventions. This combined approach holds great promise for clinical application. In this review, we present the latest advancements in the treatment of PNI through the integration of stem cells or exosomes with nerve conduits. We have addressed the inadequate efficiency of exosomes or stem cells in conjunction with nerve conduits from 3 perspectives: enhancing stem cells or exosomes, improving nerve conduits, and incorporating physical stimulation.
Collapse
Affiliation(s)
- Mengen Li
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
- Department of Orthopedics and Trauma,
Peking University People’s Hospital, Beijing 100044, China
| | - Ye Tang
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
- Department of Orthopedics and Trauma,
Peking University People’s Hospital, Beijing 100044, China
| | - Chengkai Zhou
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
| | - Yan Geng
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
| | - Chenxi Zhang
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
| | - Yuwei Hsu
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
- Emergency Department,
Peking University People’s Hospital, Beijing 100044, China
| | - Le Ma
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
| | - Wei Guo
- Emergency Department,
Peking University People’s Hospital, Beijing 100044, China
| | - Ming Li
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
| | - Yanhua Wang
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Department of Orthopedics and Trauma,
Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
2
|
Liu J, Li Y, Zhang Y, Zhao Z, Liu B. Engineered stromal vascular fraction for tissue regeneration. Front Pharmacol 2025; 16:1510508. [PMID: 40183080 PMCID: PMC11966044 DOI: 10.3389/fphar.2025.1510508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
The treatment of various tissue injuries presents significant challenges, particularly in the reconstruction of large and severe tissue defects, with conventional clinical methods often yielding suboptimal results. However, advances in engineering materials have introduced new possibilities for tissue repair. Bioactive components are commonly integrated with synthetic materials to enhance tissue reconstruction. Stromal vascular fraction (SVF), an adipose-derived cell cluster, has shown considerable potential in tissue regeneration due to its simple and efficient way of obtaining and its richness in growth factors. Therefore, this review illustrated the preparation, characterization, mechanism of action, and applications of engineered SVF in various tissue repair processes, to provide some references for the option of better methods for tissue defect reconstruction.
Collapse
Affiliation(s)
- Jianfeng Liu
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, China
| | - Yiwei Li
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, China
| | - Yanan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, China
| | - Zhiwei Zhao
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, China
| | - Bin Liu
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, China
| |
Collapse
|
3
|
Duan H, Wang W, Shi Y, Wang L, Khan GJ, Luo M, Zhou J, Yang J, He C, Li F, Hu H, Zhai K. Anti-colorectal cancer actions of Glycyrrhiza uralensis Fisch. and its underlying mechanism via HPLC integration and network pharmacological approaches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156370. [PMID: 39823802 DOI: 10.1016/j.phymed.2025.156370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
BACKGROUND The therapeutic and prognostic outcomes for colorectal cancer (CRC) remain unsatisfactory. Among multiple reported bioactive functionalities of Glycyrrhiza uralensis Fisch. one vital recently reported activity is its therapeutic role against numerous cancers but limited information is available related to its underlying key mechanisms and therapeutically active ingredients, especially against CRC treatment. OBJECTIVE The aim of current study aims is to reconnoiter G. uralensis pharmacological basis and primary molecular mode of action in treating CRC. METHODS For examining the G. uralensis active ingredients and underlying mechanism investigation against CRC including, potential anti-CRC phytochemicals, targets, and related signaling pathways, HPLC and Network-pharmacology analysis techniques was employed, respectively. Whereas, for binding capabilities of active components to their targets, molecular-docking, molecular dynamic simulation technique employed and cell proliferation assays screened the best anti-CRC components, followed by biological function experiments on SW480 cells for verification. Finally, the SW480-xenograft model and subsequent related experiments further confirmed the effect of Liquiritin on CRC. RESULTS Seven compounds were identified from G. uralensis through HPLC. Network pharmacology and molecular docking results indicated that G. uralensis components exhibited significant anti-cancer effects. These effects were mediated through cancer and MAPK-related signaling pathways, targeting TP53, SRC, STAT3, and PIK3CA proteins. In-vitro experiments showed that liquiritin had better anti-CRC effects compared to other components as it significantly repressed the SW480 propagation, development of colony, relocation, and invasion. Additionally, liquiritin has been shown to significantly reduce tumor size in tumor-bearing mice by targeting p53 and inhibiting the p38 MAPK pathway. CONCLUSION In G. uralensis, main API is liquiritin that target CRC tumorigeneses via inhibition of p53 and p38 MAPK, thus can be used for CRC therapy. The findings provide a solid pharmacological basis and potential therapeutic targets for G. uralensis in the treatment of CRC.
Collapse
Affiliation(s)
- Hong Duan
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
| | - Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Ying Shi
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
| | - Li Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Mengmeng Luo
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
| | - Jing Zhou
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
| | - Jianhua Yang
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China
| | - Chenghui He
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China
| | - Fei Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| | - Henggui Hu
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China.
| | - Kefeng Zhai
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain.
| |
Collapse
|
4
|
Hekimoglu ER, Esrefoglu M, Cimen FBK, Pasin Ö, Dedeakayogullari H. Therapeutic Potential of Stromal Vascular Fraction in Enhancing Wound Healing: A Preclinical Study. Aesthetic Plast Surg 2024:10.1007/s00266-024-04554-5. [PMID: 39681692 DOI: 10.1007/s00266-024-04554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Adipose tissue provides an abundant source of stromal vascular fraction (SVF) cells for immediate administration. It can also give rise to many multipotent adipose-derived stromal cells. SVF is the population of cells obtained from mechanical or enzymatic digestion of lipoaspirate with no necessity for cell culture or expansion. Recently, the heterogeneous cell population found in the SVF gained wide-ranging translational significance in regenerative medicine. METHODS Forty-eight male rats were randomly divided into two main groups, including the control and SVF groups. Each group was further divided into four groups as follows: 0th-, 3rd-, 7th-, and 10th-day groups. A skin excision of 1 × 1 cm covering the epidermis and dermis was performed on the back skin. Just after the wound was created, a subepidermal injection of SVF was applied. SVF was obtained from human adipose tissue using Lipocube SVFTM. On the 0th (1 h after the injections), 3rd, 7th, and 10th days, rats were killed, and skin excisions from the wound areas tissues were performed. Histopathological, biochemical, and western blotting analyses were performed on tissues. RESULTS Our data showed that SVF obtained from a healthy woman improved wound healing in healthy rats. SVF has promoted wound healing mainly because of its antioxidant, antiapoptotic, and fibroblast/myofibroblast stimulating effects. SVF stimulated collagen production and contraction of the wound lips, supporting the closure. CONCLUSIONS Our study provides additional data about the efficacy and pathophysiological and molecular mechanisms of the action of SVF on wound healing in healthy subjects. Our study is an experimental animal study. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
Affiliation(s)
- Emine Rumeysa Hekimoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Fatih, Istanbul, Turkey.
| | - Mukaddes Esrefoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Fatih, Istanbul, Turkey
| | - Fatma Bedia Karakaya Cimen
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Fatih, Istanbul, Turkey
| | - Özge Pasin
- Department of Biostatistics, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Huri Dedeakayogullari
- Department of Medical Biochemistry, Faculty of Medicine, Istinye University, Istanbul, Turkey
| |
Collapse
|
5
|
Appell C, Jiwan NC, Shen CL, Luk HY. Curcumin Mitigates Muscle Atrophy Potentially by Attenuating Calcium Signaling and Inflammation in a Spinal Nerve Ligation Model. Curr Issues Mol Biol 2024; 46:12497-12511. [PMID: 39590336 PMCID: PMC11592774 DOI: 10.3390/cimb46110742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Denervation-induced calcium/calmodulin-dependent protein kinase II (CaMKII) activation and inflammation can result in muscle atrophy. Curcumin and bisdemethoxycurcumin are well known to exhibit an anti-inflammatory effect. In addition, curcumin has been shown to attenuate CaMKII activation in neuronal cells. This study aimed to examine the effect of curcumin or bisdemethoxycurcumin on CaMKII activation, inflammation, and muscle cross-sectional area (CSA) in spinal nerve ligated rats. Sixteen female rats were assigned to sham (CON), spinal nerve ligation (SNL), SNL+ curcumin 100 mg/kg BW (100CUR), and SNL+ bisdemethoxycurcumin 50 mg/kg BW (50CMO) for 4 weeks. Ipsilateral (surgical) soleus and tibialis anterior (TA) muscles was stained for dystrophin to measure CSA. Ipsilateral and contralateral (non-surgical) plantaris muscles were analyzed for protein content for acetylcholine receptor (AChR), CaMKII, CaMKIIThr286, nuclear factor-κB (NF-κB), NF-κBSer536, and interleukin-1β (IL-1β) and normalized to α-tubulin and then CON. A significant (p < 0.050) group effect was observed for TA CSA where CON (11,082.25 ± 1617.68 μm2; p < 0.001) and 100CUR (9931.04 ± 2060.87 μm2; p = 0.018) were larger than SNL (4062.25 ± 151.86 μm2). In the ipsilateral plantaris, the SNL (4.49 ± 0.69) group had greater CaMKII activation compared to CON (1.00 ± 0.25; p = 0.010), 100CUR (1.12 ± 0.45; p = 0.017), and 50CMO (0.78 ± 0.19; p = 0.009). The ipsilateral plantaris (2.11 ± 0.66) had greater IL-1β protein content than the contralateral leg (0.65 ± 0.14; p = 0.041) in the SNL group. In plantaris, the SNL (1.65 ± 0.51) group had greater NF-κB activation compared to CON (1.00 ± 0.29; p = 0.021), 100CUR (0.61 ± 0.10; p = 0.003), 50CMO (0.77 ± 0.25; p = 0.009) groups. The observed reduction in Ca2+ signaling and inflammation in type II plantaris muscle fibers might reflect the changes within the type II TA muscle fibers which may contribute to the mitigation of TA mass loss with curcumin supplementation.
Collapse
Affiliation(s)
- Casey Appell
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.A.); (N.C.J.)
| | - Nigel C. Jiwan
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.A.); (N.C.J.)
- Department of Kinesiology, Hope College, Holland, MI 49423, USA
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Hui-Ying Luk
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.A.); (N.C.J.)
| |
Collapse
|
6
|
Ahmed AF, Madi MA, Ali AH, Mokhemer SA. The ameliorating effects of adipose-derived stromal vascular fraction cells on blue light-induced rat retinal injury via modulation of TLR4 signaling, apoptosis, and glial cell activity. Cell Tissue Res 2024:10.1007/s00441-024-03925-3. [PMID: 39441358 DOI: 10.1007/s00441-024-03925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Blue light (BL)-induced retinal injury has become a very common problem due to over exposure to blue light-emitting sources. This study aimed to investigate the possible ameliorating impact of stromal vascular fraction cells (SVFCs) on BL-induced retinal injury. Forty male albino rats were randomly allocated into four groups. The control group rats were kept in 12-h light/12-h dark. Rats of SVFC-control as the control group, but rats were intravenously injected once by SVFCs. Rats of both the BL-group and BL-SVFC group were exposed to BL for 2 weeks; then rats of the BL-SVFC group were intravenously injected once by SVFCs. Following the BL exposure, rats were kept for 8 weeks. Physical and physiological studies were performed; then retinal tissues were collected for biochemical and histological studies. The BL-group showed physical and physiological changes indicating affection of the visual function. Biochemical marker assessment showed a significant increase in MDA, TLR4 and MYD88 tissue levels with a significant decrease in TAC levels. Histological and ultrastructural assessment showed disruption of the normal histological architecture with retinal pigment epithelium, photoreceptors, and ganglion cell deterioration. A significant increase in NF-κB, caspase-3, and GFAP immunoreactivity was also detected. BL-SVFC group showed a significant improvement in physical, physiological, and biochemical parameters. Retinal tissues revealed amelioration of retinal structural and ultrastructural deterioration and a significant decrease in NF-κB and caspase-3 immunoreactivity with a significant increase in GFAP immunoreaction. This study concluded that SVFCs could ameliorate the BL-induced retinal injury through TLR-4/MYD-88/NF-κB signaling inhibition, regenerative, anti-oxidative, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Amira Fathy Ahmed
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Maha Ahmed Madi
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Azza Hussein Ali
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Sahar A Mokhemer
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt.
| |
Collapse
|
7
|
Zhang B, Gao S, Liu S, Gong X, Wu J, Zhang Y, Ma L, Sheng L. Regenerative mechanisms of stem cells and their clinical applications for degenerative eye diseases. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2024; 29:42. [PMID: 40224196 PMCID: PMC11992415 DOI: 10.4103/jrms.jrms_358_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/14/2024] [Accepted: 03/18/2024] [Indexed: 04/15/2025]
Abstract
There are different types of treatment for eye diseases. Although the majority of eye diseases are curable with primary treatments and surgery, some of degenerative eye damages need regeneration that is not gained by conventional procedures. Stem cells, such as mesenchymal stem cells, human embryonic stem cell-derived retinal pigmented epithelium, and inducible pluripotent stem cells, are now considered one of the most important and safe methods for regeneration of various damaged tissues or organs. However, how will stem cell therapy contribute to regeneration and overcome degenerative eye diseases? This review discusses the regenerative mechanisms, clinical applications, and advantages of different types of stem cells for restoring degenerative eye diseases.
Collapse
Affiliation(s)
- Baodong Zhang
- Department of Ophthalmology, Hulun Buir Aier Eye Hospital, Hulunbuir, Inner Mongolia, China
| | - Shusong Gao
- Department of Ophthalmology, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Shibo Liu
- Department of Ophthalmology, Hulun Buir Aier Eye Hospital, Hulunbuir, Inner Mongolia, China
| | - Xuewu Gong
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jing Wu
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yu Zhang
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Li Ma
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Lijie Sheng
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
8
|
Ertlen C, Seblani M, Bonnet M, Brezun JM, Coyle T, Sabatier F, Fuentes S, Decherchi P, Serratrice N, Marqueste T. Efficacy of the immediate adipose-derived stromal vascular fraction autograft on functional sensorimotor recovery after spinal cord contusion in rats. Stem Cell Res Ther 2024; 15:29. [PMID: 38303017 PMCID: PMC10835949 DOI: 10.1186/s13287-024-03645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Spinal cord injuries (SCI) lead to functional alteration with important consequences such as motor and sensory disorders. The repair strategies developed to date remain ineffective. The adipose tissue-derived stromal vascular fraction (SVF) is composed of a cocktail of cells with trophic, pro-angiogenic and immunomodulatory effects. Numerous therapeutic benefits were shown for tissue reconstitution, peripheral neuropathy and for the improvement of neurodegenerative diseases. Here, the therapeutic efficacy of SVF on sensorimotor recovery after an acute thoracic spinal cord contusion in adult rats was determined. METHOD Male Sprague Dawley rats (n = 45) were divided into 3 groups: SHAM (without SCI and treatment), NaCl (animals with a spinal lesion and receiving a saline injection through the dura mater) and SVF (animals with a spinal lesion and receiving a fraction of fat removed from adipocytes through the dura mater). Some animals were sacrificed 14 days after the start of the experiment to determine the inflammatory reaction by measuring the interleukin-1β, interleukin-6 and Tumor Necrosis Factor-α in the lesion area. Other animals were followed once a week for 12 weeks to assess functional recovery (postural and locomotor activities, sensorimotor coordination). At the end of this period, spinal reflexivity (rate-dependent depression of the H-reflex) and physiological adjustments (ventilatory response to metabosensitive muscle activation following muscle fatigue) were measured with electrophysiological tools. RESULTS Compared to non-treated animals, results indicated that the SVF reduced the endogenous inflammation and increased the behavioral recovery in treated animals. Moreover, H-reflex depression and ventilatory adjustments to muscle fatigue were found to be comparable between SHAM and SVF groups. CONCLUSION Our results highlight the effectiveness of SVF and its high therapeutic potential to improve sensorimotor functions and to restore the segmental sensorimotor loop and the communication between supra- and sub-lesional spinal cord regions after traumatic contusion.
Collapse
Affiliation(s)
- Céline Ertlen
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Mostafa Seblani
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Maxime Bonnet
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Jean-Michel Brezun
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Thelma Coyle
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Florence Sabatier
- Assistance Publique - Hôpitaux de Marseille (AP-HM), INSERM 1409 Centre d'Investigation Clinique en Biothérapies, Unité de Culture Et Thérapie Cellulaire, Hôpital de La Conception, 147, Boulevard Baille, 13385, Marseille Cedex 05, France
| | - Stéphane Fuentes
- Assistance Publique - Hôpitaux de Marseille (AP-HM), Service de Neurochirurgie, Hôpital de La Timone, 264, Rue Saint-Pierre, 13005, Marseille, France
| | - Patrick Decherchi
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France.
| | - Nicolas Serratrice
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
- Assistance Publique - Hôpitaux de Marseille (AP-HM), Service de Neurochirurgie, Hôpital de La Timone, 264, Rue Saint-Pierre, 13005, Marseille, France
| | - Tanguy Marqueste
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France.
| |
Collapse
|
9
|
Akbaribazm M. Exploring the Regenerative Potential of Stem Cells for Treating Eye Diseases: A Review of the New Findings. OBM GENETICS 2024; 08:1-14. [DOI: 10.21926/obm.genet.2401212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The escalating prevalence of vision loss due to eye diseases has instigated a quest for innovative therapies, given that conventional approaches often fall short in repairing and regenerating damaged eye tissues, particularly the retina. Stem cell-based interventions have emerged as a promising avenue, with numerous studies in animal models and human trials exploring their potential to enhance visual acuity. Beyond addressing conditions like age-related macular degeneration (AMD) and diabetic retinopathy (DR), stem cell therapies demonstrate efficacy in treating genetic disorders such as retinitis pigmentosa (RP). In severe eye damage necessitating regeneration, stem cells play a pivotal role, leveraging their regenerative capabilities. Noteworthy is the transplantation of retinal pigment epithelial (RPE) cells derived from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), showcasing promising results in preclinical models and clinical studies, leading to improved retinal function without severe side effects. Mesenchymal stem cells (MSCs) have successfully treated optic neuropathy, RP, DR, and glaucoma, yielding positive clinical outcomes. The safety of adult stem cells, particularly MSCs derived from adipose tissue or bone marrow, has been firmly established. This review highlights significant advancements in utilizing human ESC-derived retinal pigmented epithelium and iPSCs for treating eye injuries. While cell-based therapy is relatively nascent, with numerous clinical trials pending review, stem cells' regenerative potential and clinical applications in addressing eye diseases offer substantial promise. This study aims to comprehensively examine the applications of stem cells in the context of eye diseases and their potential role in regenerative medicine.
Collapse
|
10
|
Habibie YA, Emril DR, Azharuddin A, Syahrizal D. Effect of umbilical cord mesenchymal stem cells on hypoxia-inducible factor-1 alpha (HIF-1α) production in arteriovenous fistula (AVF) animal model: A preliminary study. NARRA J 2023; 3:e225. [PMID: 38455624 PMCID: PMC10919707 DOI: 10.52225/narra.v3i3.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/28/2023] [Indexed: 03/09/2024]
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that plays a crucial role in cellular responses to hypoxia, such as in the development of intimal hyperplasia, a common complication in arteriovenous fistula (AVF) creation. While the application of umbilical cord mesenchymal stem cells (UC-MSCs) has shown promise in various regenerative medicine applications, including tissue repair and angiogenesis, the effect of UC-MSCs on HIF-1α level in the AVF has not been tested. Therefore, the aim of this study was to evaluate the effect of UC-MSCs administration on HIF-1α levels in the AVF animal model. An experimental study was conducted on 28 local male rabbits (Lepus domestica) using a post-test-only design. The rabbits were divided randomly into four groups: normal rabbit group (negative control), placebo-treated AVF rabbit group (positive control), AVF rabbits treated with in-situ UC-MSCs injection (one dose, 106 UC-MSCs/kg body weight), and AVF rabbits treated with intravenous UC-MSCs (one dose, 106 UC-MSCs/kg body weight (BW). HIF-1α level was measured using ELISA method after 28 days post-treatment. All data were analyzed using the one-way analysis of variance (ANOVA) and continued with the Duncan's post-hoc test. The data indicated that the levels of HIF-1α were different among all four groups (p<0.001). The post-hoc analysis revealed that the HIF-1α levels in both UC-MSC treated groups were significantly lower compared to untreated AVF rabbits (p<0.05). This study suggests that UC-MSCs could be a promising therapy to prevent and reduce intimal hyperplasia in AVF.
Collapse
Affiliation(s)
- Yopie A. Habibie
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Division of Thoracic Cardiac and Vascular Surgery, Department of Surgery, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Division of Thoracic Cardiac and Vascular Surgery, Department of Surgery, Dr. Zainoel Abidin Hospital, Banda Aceh, Indonesia
| | - Dessy R. Emril
- Division of Pain and Headache, Department of Neurology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Division of Pain and Headache, Department of Neurology, Dr. Zainoel Abidin Hospital, Banda Aceh, Indonesia
| | - Azharuddin Azharuddin
- Division of Orthopedic and Traumatology, Department of Surgery, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Division of Orthopedic and Traumatology, Department of Surgery, Dr. Zainoel Abidin Hospital, Banda Aceh, Indonesia
| | - Dedy Syahrizal
- Department of Biochemistry, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
11
|
Dinh H, Kovács ZZA, Márványkövi F, Kis M, Kupecz K, Szűcs G, Freiwan M, Lauber GY, Acar E, Siska A, Ibos KE, Bodnár É, Kriston A, Kovács F, Horváth P, Földesi I, Cserni G, Podesser BK, Pokreisz P, Kiss A, Dux L, Csabafi K, Sárközy M. The kisspeptin-1 receptor antagonist peptide-234 aggravates uremic cardiomyopathy in a rat model. Sci Rep 2023; 13:14046. [PMID: 37640761 PMCID: PMC10462750 DOI: 10.1038/s41598-023-41037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Uremic cardiomyopathy is characterized by diastolic dysfunction, left ventricular hypertrophy (LVH), and fibrosis. Dysregulation of the kisspeptin receptor (KISS1R)-mediated pathways are associated with the development of fibrosis in cancerous diseases. Here, we investigated the effects of the KISS1R antagonist peptide-234 (P234) on the development of uremic cardiomyopathy. Male Wistar rats (300-350 g) were randomized into four groups: (i) Sham, (ii) chronic kidney disease (CKD) induced by 5/6 nephrectomy, (iii) CKD treated with a lower dose of P234 (ip. 13 µg/day), (iv) CKD treated with a higher dose of P234 (ip. 26 µg/day). Treatments were administered daily from week 3 for 10 days. At week 13, the P234 administration did not influence the creatinine clearance and urinary protein excretion. However, the higher dose of P234 led to reduced anterior and posterior wall thicknesses, more severe interstitial fibrosis, and overexpression of genes associated with left ventricular remodeling (Ctgf, Tgfb, Col3a1, Mmp9), stretch (Nppa), and apoptosis (Bax, Bcl2, Casp7) compared to the CKD group. In contrast, no significant differences were found in the expressions of apoptosis-associated proteins between the groups. Our results suggest that the higher dose of P234 hastens the development and pathophysiology of uremic cardiomyopathy by activating the fibrotic TGF-β-mediated pathways.
Collapse
Affiliation(s)
- Hoa Dinh
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
- Department of Biochemistry, Bach Mai Hospital, Hanoi, 100000, Vietnam
| | - Zsuzsanna Z A Kovács
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Fanni Márványkövi
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Merse Kis
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Klaudia Kupecz
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Gergő Szűcs
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Marah Freiwan
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Gülsüm Yilmaz Lauber
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, A1090, Vienna, Austria
| | - Eylem Acar
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, A1090, Vienna, Austria
| | - Andrea Siska
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Katalin Eszter Ibos
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Éva Bodnár
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - András Kriston
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, 6726, Szeged, Hungary
- Single-Cell Technologies Ltd, Szeged, 6726, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
| | - Ferenc Kovács
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, 6726, Szeged, Hungary
- Single-Cell Technologies Ltd, Szeged, 6726, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
| | - Péter Horváth
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, 6726, Szeged, Hungary
- Single-Cell Technologies Ltd, Szeged, 6726, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
| | - Imre Földesi
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Gábor Cserni
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, A1090, Vienna, Austria
| | - Peter Pokreisz
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, A1090, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, A1090, Vienna, Austria
| | - László Dux
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary.
| | - Krisztina Csabafi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Márta Sárközy
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary.
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary.
| |
Collapse
|
12
|
Borisov V, Gili Sole L, Reid G, Milan G, Hutter G, Grapow M, Eckstein FS, Isu G, Marsano A. Upscaled Skeletal Muscle Engineered Tissue with In Vivo Vascularization and Innervation Potential. Bioengineering (Basel) 2023; 10:800. [PMID: 37508827 PMCID: PMC10376693 DOI: 10.3390/bioengineering10070800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Engineering functional tissues of clinically relevant size (in mm-scale) in vitro is still a challenge in tissue engineering due to low oxygen diffusion and lack of vascularization. To address these limitations, a perfusion bioreactor was used to generate contractile engineered muscles of a 3 mm-thickness and a 8 mm-diameter. This study aimed to upscale the process to 50 mm in diameter by combining murine skeletal myoblasts (SkMbs) with human adipose-derived stromal vascular fraction (SVF) cells, providing high neuro-vascular potential in vivo. SkMbs were cultured on a type-I-collagen scaffold with (co-culture) or without (monoculture) SVF. Large-scale muscle-like tissue showed an increase in the maturation index over time (49.18 ± 1.63% and 76.63 ± 1.22%, at 9 and 11 days, respectively) and a similar force of contraction in mono- (43.4 ± 2.28 µN) or co-cultured (47.6 ± 4.7 µN) tissues. Four weeks after implantation in subcutaneous pockets of nude rats, the vessel length density within the constructs was significantly higher in SVF co-cultured tissues (5.03 ± 0.29 mm/mm2) compared to monocultured tissues (3.68 ± 0.32 mm/mm2) (p < 0.005). Although no mature neuromuscular junctions were present, nerve-like structures were predominantly observed in the engineered tissues co-cultured with SVF cells. This study demonstrates that SVF cells can support both in vivo vascularization and innervation of contractile muscle-like tissues, making significant progress towards clinical translation.
Collapse
Affiliation(s)
- Vladislav Borisov
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Laia Gili Sole
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Gregory Reid
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Giulia Milan
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Gregor Hutter
- Laboratory of Brain Tumor Immunotherapy, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Martin Grapow
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Friedrich Stefan Eckstein
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Giuseppe Isu
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Anna Marsano
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
13
|
Farid MF, Abouelela YS, Yasin NAE, Al-Mokaddem AK, Prince A, Ibrahim MA, Rizk H. Laser-activated autologous adipose tissue-derived stromal vascular fraction restores spinal cord architecture and function in multiple sclerosis cat model. Stem Cell Res Ther 2023; 14:6. [PMID: 36627662 PMCID: PMC9832640 DOI: 10.1186/s13287-022-03222-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is the most frequent non-traumatic neurological debilitating disease among young adults with no cure. Over recent decades, efforts to treat neurodegenerative diseases have shifted to regenerative cell therapy. Adipose tissue-derived stromal vascular fraction (SVF) comprises a heterogeneous cell population, considered an easily accessible source of MSCs with therapeutic potential in autoimmune diseases. This study aimed to assess the regenerative capacity of low-level laser-activated SVF in an MS cat model. METHODS Fifteen adult Persian cats were used in this study: Group I (control negative group, normal cats), Group II (EB-treated group, induced for MS by ethidium bromide (EB) intrathecal injection), and Group III (SVF co-treated group, induced for MS then treated with SVF on day 14 post-induction). The SVF was obtained after digesting the adipose tissue with collagenase type I and injecting it intrathecal through the foramen magnum. RESULTS The results showed that the pelvic limb's weight-bearing locomotion activity was significantly (P ≤ 0.05) recovered in Group III, and the Basso, Beattie, and Bresnahan (BBB) scores of hindlimb locomotion were significantly higher in Group III (14 ± 0.44) than Group II (4 ± 0.31). The lesion's extent and intensity were reduced in the magnetic resonance imaging (MRI) of Group III. Besides, the same group showed a significant increase in the expression of neurotrophic factors: BDNF, SDF and NGF (0.61 ± 0.01, 0.51 ± 0.01 and 0.67 ± 0.01, respectively) compared with Group II (0.33 ± 0.01, 0.36 ± 0.006 and 0.2 ± 0.01, respectively). Furthermore, SVF co-treated group revealed a significant (P ≤ 0.05) increase in oligodendrocyte transcription factor (Olig2) and myelin basic protein (4 ± 0.35 and 6 ± 0.45, respectively) that was decreased in group II (1.8 ± 0.22 and 2.9 ± 0.20, respectively). Moreover, group III showed a significant (P ≤ 0.05) reduction in Bax and glial fibrillary acidic protein (4 ± 0.53 and 3.8 ± 0.52, respectively) as compared with group II (10.7 ± 0.49 and 8.7 ± 0.78, respectively). The transmission electron microscopy demonstrated regular more compact, and markedly (P ≤ 0.05) thicker myelin sheaths (mm) in Group III (0.3 ± 0.006) as compared with group II (0.1 ± 0.004). Based on our results, the SVF co-treated group revealed remyelination and regeneration capacity with a reduction in apoptosis and axonal degeneration. CONCLUSION SVF is considered an easy, valuable, and promising therapeutic approach for treating spinal cord injuries, particularly MS.
Collapse
Affiliation(s)
- Mariam F. Farid
- grid.7776.10000 0004 0639 9286Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Yara S. Abouelela
- grid.7776.10000 0004 0639 9286Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Noha A. E. Yasin
- grid.7776.10000 0004 0639 9286Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Asmaa K. Al-Mokaddem
- grid.7776.10000 0004 0639 9286Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdelbary Prince
- grid.7776.10000 0004 0639 9286Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt ,grid.511523.10000 0004 7532 2290Department of Biomedical Research, Armed Forces College of Medicine, Cairo, 12211 Egypt
| | - Marwa A. Ibrahim
- grid.7776.10000 0004 0639 9286Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hamdy Rizk
- grid.7776.10000 0004 0639 9286Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| |
Collapse
|
14
|
The Effect of Mesenchymal Stem Cells, Adipose Tissue Derived Stem Cells, and Cellular Stromal Vascular Fraction on the Repair of Acute Anal Sphincter Injury in Rats. Bioengineering (Basel) 2022; 9:bioengineering9070318. [PMID: 35877369 PMCID: PMC9311655 DOI: 10.3390/bioengineering9070318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Anal sphincter incontinence (ASI) can cause a serious decline in the quality of life and can cause a socioeconomic burden. Studies have shown that bone marrow mesenchymal stem cells (MSC) have significant therapeutic effects on ASI, but the cost and risk of MSC harvest limit their further application. In contrast, adipose tissue derived stem cells (ADSC) and cellular stromal vascular fraction (CSVF) as stem cell sources have multipotency and the advantage of easy harvest. Objective: Here we aim to investigate the effects of ADSC and CSVF on treating ASI and compare them to that of bone marrow MSC. Methods: Bone marrow MSC, ADSC, and CSVF were obtained and labeled with green fluorescent protein (GFP), and CSVF was labeled with DIL. Sprague Dawley (SD) rats were divided into 5 groups. Four groups were injected with 0.2 mL phosphate buffer saline (PBS), 1 × 107/0.2 mL of MSC, ADSC, or CSVF, respectively, after model establishment. The control group received no treatment. The repair was assessed by anal functional tests and immunostaining on day 5 and day 10 after injection. Results: MSC, ADSC, and CSVF significantly promoted tissue repair and the recovery of muscle contraction and electromyographic activity in ASI. The generation of myosatellite cells by injected MSC, ADSC, and CSVF was found in the wounded area. On day 5, CSVF showed highest therapeutic effect, while on day 10, MSC and ADSC showed higher therapeutic effects than CSVF. When comparing the effects of MSC and ADSC, ADSC was slightly better than MSC in the indexes of anal pressure, etc. Conclusion: ADSC and CVSF are alternative stem cell sources for ASI repair.
Collapse
|
15
|
Deng R, Wang Y, Bu Y, Wu H. BNIP3 mediates the different adaptive responses of fibroblast-like synovial cells to hypoxia in patients with osteoarthritis and rheumatoid arthritis. Mol Med 2022; 28:64. [PMID: 35690741 PMCID: PMC9188199 DOI: 10.1186/s10020-022-00490-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/25/2022] [Indexed: 01/01/2023] Open
Abstract
Background Hypoxia is one of the important characteristics of synovial microenvironment in rheumatoid arthritis (RA), and plays an important role in synovial hyperplasia. In terms of cell survival, fibroblast-like synovial cells (FLSs) are relatively affected by hypoxia. In contrast, fibroblast-like synovial cells from patients with RA (RA-FLSs) are particularly resistant to hypoxia-induced cell death. The purpose of this study was to evaluate whether fibroblast-like synovial cells in patients with osteoarthritis (OA-FLSs) and RA-FLSs have the same adaptation to hypoxia. Methods CCK-8, flow cytometry and BrdU were used to detect the proliferation of OA-FLSs and RA-FLSs under different oxygen concentrations. Apoptosis was detected by AV/PI, TUNEL and Western blot, mitophagy was observed by electron microscope, laser confocal microscope and Western blot, the state of mitochondria was detected by ROS and mitochondrial membrane potential by flow cytometry, BNIP3 and HIF-1α were detected by Western blot and RT-qPCR. The silencing of BNIP3 was achieved by stealth RNA system technology. Results After hypoxia, the survival rate of OA-FLSs decreased, while the proliferation activity of RA-FLSs further increased. Hypoxia induced an increase in apoptosis and inhibition of mitophagy in OA-FLSs, but not in RA-FLSs. Hypoxia led to a more lasting adaptive response. RA-FLSs displayed a more significant increase in the expression of genes transcriptionally regulated by HIF-1α. Interestingly, they showed higher BNIP3 expression than OA-FLSs, and showed stronger mitophagy and proliferation activities. BNIP3 siRNA experiment confirmed the potential role of BNIP3 in the survival of RA-FLSs. Inhibition of BNIP3 resulted in the decrease of cell proliferation, mitophagy and the increase of apoptosis. Conclusion In summary, RA-FLSs maintained intracellular redox balance through mitophagy to promote cell survival under hypoxia. The mitophagy of OA-FLSs was too little to maintain the redox balance of mitochondria, resulting in apoptosis. The difference of mitophagy between OA-FLSs and RA-FLSs under hypoxia is mediated by the level of BNIP3 expression.
Collapse
Affiliation(s)
- Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China.,Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China.,Anhui Province Key Laboratory of Research &, Development of Chinese Medicine, Hefei, 230012, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China.,Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China.,Anhui Province Key Laboratory of Research &, Development of Chinese Medicine, Hefei, 230012, China
| | - Yanhong Bu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China.,Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China.,Anhui Province Key Laboratory of Research &, Development of Chinese Medicine, Hefei, 230012, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China. .,Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China. .,Anhui Province Key Laboratory of Research &, Development of Chinese Medicine, Hefei, 230012, China. .,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
16
|
Secretome from In Vitro Mechanically Loaded Myoblasts Induces Tenocyte Migration, Transition to a Fibroblastic Phenotype and Suppression of Collagen Production. Int J Mol Sci 2021; 22:ijms222313089. [PMID: 34884895 PMCID: PMC8657858 DOI: 10.3390/ijms222313089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
It is known that mechanical loading of muscles increases the strength of healing tendon tissue, but the mechanism involved remains elusive. We hypothesized that the secretome from myoblasts in co-culture with tenocytes affects tenocyte migration, cell phenotype, and collagen (Col) production and that the effect is dependent on different types of mechanical loading of myoblasts. To test this, we used an in vitro indirect transwell co-culture system. Myoblasts were mechanically loaded using the FlexCell® Tension system. Tenocyte cell migration, proliferation, apoptosis, collagen production, and several tenocyte markers were measured. The secretome from myoblasts decreased the Col I/III ratio and increased the expression of tenocyte specific markers as compared with tenocytes cultured alone. The secretome from statically loaded myoblasts significantly enhanced tenocyte migration and Col I/III ratio as compared with dynamic loading and controls. In addition, the secretome from statically loaded myoblasts induced tenocytes towards a myofibroblast-like phenotype. Taken together, these results demonstrate that the secretome from statically loaded myoblasts has a profound influence on tenocytes, affecting parameters that are related to the tendon healing process.
Collapse
|