1
|
Choi M, Al Fahad MA, Shanto PC, Park SS, Lee BT. Surface modification of decellularized kidney scaffold with chemokine and AKI-CKD cytokine juice to increase the recellularization efficiency of bio-engineered kidney. Biomaterials 2025; 316:123007. [PMID: 39674100 DOI: 10.1016/j.biomaterials.2024.123007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Chronic kidney disease (CKD) is a prevalent global health issue, primarily caused by glomerular dysfunction, diabetes, endovascular disorders, hypertensive nephrosclerosis, and other vascular diseases. Despite the increase in available organ sources, significant challenges remain in securing organ compatibility, prompting extensive research into creating a bio-artificial kidney free from immune rejection. In this study, a bio-engineered kidney was established using a stem cell chemoattractant within a bioreactor system; rBMSCs were used to recellularize the decellularized kidney scaffold coated with SDF-1α/AKI-CKD cytokine juice under mimic-hypoxic conditions as these chemokines and cytokines are crucial for the cell migration. LC-MS/MS proteomic analysis of the scaffold suggested that it contains various important proteins related to angiogenesis, cell migration, differentiation, etc. The in-silico binding simulation and Immunohistochemical (IHC) staining were utilized to detect the coated chemokines and cytokines. Cells were administered through both ureter and arterial routes of the kidney scaffold to differentiate into epithelial and endothelial cells. After 14 days of the recellularization process utilizing a mimic-hypoxia-induced bioreactor, the SDF-1α/AKI-CKD CJ-coated kidney scaffold exhibited high levels of cell attachment, migration, and proliferation in both the cortex and medulla. Additionally, the coating of the cytokines remarkably enhanced the expression of specific renal cell markers within the complex microfilter-like tubular structures. This study underscores a recellularization strategy that addresses the challenges associated with constructing bio-artificial kidneys and contributes to the growing field of bio-artificial organ research.
Collapse
Affiliation(s)
- Minji Choi
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Prayas Chakma Shanto
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Seong-Su Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea.
| |
Collapse
|
2
|
Villani V, Frank CN, Cravedi P, Hou X, Bin S, Kamitakahara A, Barbati C, Buono R, Da Sacco S, Lemley KV, De Filippo RE, Lai S, Laviano A, Longo VD, Perin L. A kidney-specific fasting-mimicking diet induces podocyte reprogramming and restores renal function in glomerulopathy. Sci Transl Med 2024; 16:eadl5514. [PMID: 39475573 DOI: 10.1126/scitranslmed.adl5514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/24/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
Cycles of a fasting-mimicking diet (FMD) promote regeneration and reduce damage in the pancreases, blood, guts, and nervous systems of mice, but their effect on kidney disease is unknown. In addition, a FMD has not been tested in rats. Here, we show that cycles of a newly developed low-salt FMD (LS-FMD) restored normal proteinuria and nephron structure and function in rats with puromycin-induced nephrosis compared with that in animals with renal damage that did not receive the dietary intervention. LS-FMD induced modulation of a nephrogenic gene program, resembling renal developmental processes in multiple kidney structures. LS-FMD also activated podocyte-lineage reprogramming pathways and promoted a quiescent state in mature podocytes in the rat kidney damage model. In a pilot clinical study in patients with chronic kidney disease, FMD cycles of 5 days each month for 3 months promoted renoprotection, including reduction of proteinuria and improved endothelial function, compared with that in patients who did not receive the FMD cycles. These results show that FMD cycles, which promote the reprogramming of multiple renal cell types and lead to glomerular damage reversal in rats, should be tested further for the treatment of progressive kidney diseases.
Collapse
Affiliation(s)
- Valentina Villani
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA 90027, USA
| | - Camille Nicolas Frank
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Paolo Cravedi
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029-5674, USA
| | - Xiaogang Hou
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA 90027, USA
| | - Sofia Bin
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029-5674, USA
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna 40126, Italy
| | - Anna Kamitakahara
- Division of Neurology, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cristiani Barbati
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Italian National Institute of Health, Rome 00185, Italy
| | - Roberta Buono
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Stefano Da Sacco
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kevin V Lemley
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Roger E De Filippo
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Silvia Lai
- Department of Translational and Precision Medicine, Nephrology Unit, Sapienza University of Rome, Rome 00185, Italy
| | - Alessandro Laviano
- Department of Translational and Precision Medicine, Sapienza University, Rome 00185, Italy
| | - Valter D Longo
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Laura Perin
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
3
|
Zoccali C, Mallamaci F, Lightstone L, Jha V, Pollock C, Tuttle K, Kotanko P, Wiecek A, Anders HJ, Remuzzi G, Kalantar-Zadeh K, Levin A, Vanholder R. A new era in the science and care of kidney diseases. Nat Rev Nephrol 2024; 20:460-472. [PMID: 38575770 DOI: 10.1038/s41581-024-00828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Abstract
Notable progress in basic, translational and clinical nephrology research has been made over the past five decades. Nonetheless, many challenges remain, including obstacles to the early detection of kidney disease, disparities in access to care and variability in responses to existing and emerging therapies. Innovations in drug development, research technologies, tissue engineering and regenerative medicine have the potential to improve patient outcomes. Exciting prospects include the availability of new drugs to slow or halt the progression of chronic kidney disease, the development of bioartificial kidneys that mimic healthy kidney functions, and tissue engineering techniques that could enable transplantable kidneys to be created from the cells of the recipient, removing the risk of rejection. Cell and gene therapies have the potential to be applied for kidney tissue regeneration and repair. In addition, about 30% of kidney disease cases are monogenic and could potentially be treated using these genetic medicine approaches. Systemic diseases that involve the kidney, such as diabetes mellitus and hypertension, might also be amenable to these treatments. Continued investment, communication, collaboration and translation of innovations are crucial to realize their full potential. In addition, increasing sophistication in exploring large datasets, implementation science, and qualitative methodologies will improve the ability to deliver transformational kidney health strategies.
Collapse
Affiliation(s)
- Carmine Zoccali
- Kidney Research Institute, New York City, NY, USA.
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy.
- Associazione Ipertensione Nefrologia Trapianto Kidney (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy.
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit Azienda Ospedaliera "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
- CNR-IFC, Institute of Clinical Physiology, Research Unit of Clinical Epidemiology and Physiopathology of Kidney Diseases and Hypertension of Reggio Calabria, Reggio Calabria, Italy
| | - Liz Lightstone
- Department of Immunology and Inflammation, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Vivek Jha
- George Institute for Global Health, UNSW, New Delhi, India
- School of Public Health, Imperial College, London, UK
- Prasanna School of Public Health, Manipal Academy of Medical Education, Manipal, India
| | - Carol Pollock
- Kolling Institute, Royal North Shore Hospital University of Sydney, Sydney, NSW, Australia
| | - Katherine Tuttle
- Providence Medical Research Center, Providence Inland Northwest, Spokane, Washington, USA
- Department of Medicine, University of Washington, Seattle, Spokane, Washington, USA
- Kidney Research Institute, Institute of Translational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Peter Kotanko
- Kidney Research Institute, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, 40-027, Katowice, Poland
| | - Hans Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCSS, Bergamo, Italy
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, California, USA
- Division of Nephrology and Hypertension, University of California Irvine, School of Medicine, Orange, Irvine, USA
- Veterans Affairs Healthcare System, Division of Nephrology, Long Beach, California, USA
| | - Adeera Levin
- University of British Columbia, Vancouver General Hospital, Division of Nephrology, Vancouver, British Columbia, Canada
- British Columbia, Provincial Kidney Agency, Vancouver, British Columbia, Canada
| | - Raymond Vanholder
- European Kidney Health Alliance, Brussels, Belgium
- Nephrology Section, Department of Internal Medicine and Paediatrics, University Hospital Ghent, Ghent, Belgium
| |
Collapse
|
4
|
Taherian M, Bayati P, Mojtabavi N. Stem cell-based therapy for fibrotic diseases: mechanisms and pathways. Stem Cell Res Ther 2024; 15:170. [PMID: 38886859 PMCID: PMC11184790 DOI: 10.1186/s13287-024-03782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Fibrosis is a pathological process, that could result in permanent scarring and impairment of the physiological function of the affected organ; this condition which is categorized under the term organ failure could affect various organs in different situations. The involvement of the major organs, such as the lungs, liver, kidney, heart, and skin, is associated with a high rate of morbidity and mortality across the world. Fibrotic disorders encompass a broad range of complications and could be traced to various illnesses and impairments; these could range from simple skin scars with beauty issues to severe rheumatologic or inflammatory disorders such as systemic sclerosis as well as idiopathic pulmonary fibrosis. Besides, the overactivation of immune responses during any inflammatory condition causing tissue damage could contribute to the pathogenic fibrotic events accompanying the healing response; for instance, the inflammation resulting from tissue engraftment could cause the formation of fibrotic scars in the grafted tissue, even in cases where the immune system deals with hard to clear infections, fibrotic scars could follow and cause severe adverse effects. A good example of such a complication is post-Covid19 lung fibrosis which could impair the life of the affected individuals with extensive lung involvement. However, effective therapies that halt or slow down the progression of fibrosis are missing in the current clinical settings. Considering the immunomodulatory and regenerative potential of distinct stem cell types, their application as an anti-fibrotic agent, capable of attenuating tissue fibrosis has been investigated by many researchers. Although the majority of the studies addressing the anti-fibrotic effects of stem cells indicated their potent capabilities, the underlying mechanisms, and pathways by which these cells could impact fibrotic processes remain poorly understood. Here, we first, review the properties of various stem cell types utilized so far as anti-fibrotic treatments and discuss the challenges and limitations associated with their applications in clinical settings; then, we will summarize the general and organ-specific mechanisms and pathways contributing to tissue fibrosis; finally, we will describe the mechanisms and pathways considered to be employed by distinct stem cell types for exerting anti-fibrotic events.
Collapse
Affiliation(s)
- Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Elshoff D, Mehta P, Ziouzenkova O. Chronic Kidney Disease Diets for Kidney Failure Prevention: Insights from the IL-11 Paradigm. Nutrients 2024; 16:1342. [PMID: 38732588 PMCID: PMC11085624 DOI: 10.3390/nu16091342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Nearly every fifth adult in the United States and many older adults worldwide are affected by chronic kidney disease (CKD), which can progress to kidney failure requiring invasive kidney replacement therapy. In this review, we briefly examine the pathophysiology of CKD and discuss emerging mechanisms involving the physiological resolution of kidney injury by transforming growth factor beta 1 (TGFβ1) and interleukin-11 (IL-11), as well as the pathological consequences of IL-11 overproduction, which misguides repair processes, ultimately culminating in CKD. Taking these mechanisms into account, we offer an overview of the efficacy of plant-dominant dietary patterns in preventing and managing CKD, while also addressing their limitations in terms of restoring kidney function or preventing kidney failure. In conclusion, this paper outlines novel regeneration strategies aimed at developing a reno-regenerative diet to inhibit IL-11 and promote repair mechanisms in kidneys affected by CKD.
Collapse
Affiliation(s)
- Denise Elshoff
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA;
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Priyanka Mehta
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
6
|
Krishnaraj A, Bakbak E, Teoh H, Pan Y, Firoz IN, Pandey AK, Terenzi DC, Verma R, Bari B, Bakbak AI, Kunjummar SP, Yanagawa B, Connelly KA, Mazer CD, Rotstein OD, Quan A, Bhatt DL, McGuire DK, Hess DA, Verma S. Vascular Regenerative Cell Deficiencies in South Asian Adults. J Am Coll Cardiol 2024; 83:755-769. [PMID: 38355246 DOI: 10.1016/j.jacc.2023.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/26/2023] [Accepted: 12/06/2023] [Indexed: 02/16/2024]
Abstract
BACKGROUND South Asian individuals shoulder a disproportionate burden of cardiometabolic diseases. OBJECTIVES The purpose of this study was to determine if vascular regenerative cell content varies significantly between South Asian and White European people. METHODS Between January 2022 and January 2023, 60 South Asian and 60 White European adults with either documented cardiovascular disease or established diabetes with ≥1 other cardiovascular risk factor were prospectively enrolled. Vascular regenerative cell content in venous blood was enumerated using a flow cytometry assay that is based on high aldehyde dehydrogenase (ALDHhi) activity and cell surface marker phenotyping. The primary outcome was the difference in frequency of circulating ALDHhi progenitor cells, monocytes, and granulocytes between the 2 groups. RESULTS Compared with White European participants, those of South Asian ethnicity were younger (69 ± 10 years vs 66 ± 9 years; P < 0.05), had lower weight (88 ± 19 kg vs 75 ± 13 kg; P < 0.001), and exhibited a greater prevalence of type 2 diabetes (62% vs 92%). South Asian individuals had markedly lower circulating frequencies of pro-angiogenic ALDHhiSSClowCD133+ progenitor cells (P < 0.001) and ALDHhiSSCmidCD14+CD163+ monocytes with vessel-reparative capacity (P < 0.001), as well as proportionally more ALDHhi progenitor cells with high reactive oxygen species content (P < 0.05). After correction for sex, age, body mass index, and glycated hemoglobin, South Asian ethnicity was independently associated with lower ALDHhiSSClowCD133+ cell count. CONCLUSIONS South Asian people with cardiometabolic disease had less vascular regenerative and reparative cells suggesting compromised vessel repair capabilities that may contribute to the excess vascular risk in this population. (The Role of South Asian vs European Origins on Circulating Regenerative Cell Exhaustion [ORIGINS-RCE]; NCT05253521).
Collapse
Affiliation(s)
- Aishwarya Krishnaraj
- Division of Cardiac Surgery, St Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ehab Bakbak
- Division of Cardiac Surgery, St Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Hwee Teoh
- Division of Cardiac Surgery, St Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, St Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
| | - Yi Pan
- Division of Cardiac Surgery, St Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - Irene N Firoz
- Division of Cardiac Surgery, St Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Arjun K Pandey
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Raj Verma
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Basel Bari
- Markham Health+ Plex, Markham, Ontario, Canada
| | | | | | - Bobby Yanagawa
- Division of Cardiac Surgery, St Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Division of Cardiology, St Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - C David Mazer
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia, St Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada; Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ori D Rotstein
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Division of General Surgery, St Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai Health System, New York, New York, USA
| | - Darren K McGuire
- Division of Cardiology, University of Texas Southwestern Medical Center and Parkland Health and Hospital System, Dallas, Texas, USA
| | - David A Hess
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Physiology and Pharmacology, Western University, London, Ontario, Canada; Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada.
| | - Subodh Verma
- Division of Cardiac Surgery, St Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Bahrami M, Darabi S, Roozbahany NA, Abbaszadeh HA, Moghadasali R. Great potential of renal progenitor cells in kidney: From the development to clinic. Exp Cell Res 2024; 434:113875. [PMID: 38092345 DOI: 10.1016/j.yexcr.2023.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
The mammalian renal organ represents a pinnacle of complexity, housing functional filtering units known as nephrons. During embryogenesis, the depletion of niches containing renal progenitor cells (RPCs) and the subsequent incapacity of adult kidneys to generate new nephrons have prompted the formulation of protocols aimed at isolating residual RPCs from mature kidneys and inducing their generation from diverse cell sources, notably pluripotent stem cells. Recent strides in the realm of regenerative medicine and the repair of tissues using stem cells have unveiled critical signaling pathways essential for the maintenance and generation of human RPCs in vitro. These findings have ushered in a new era for exploring novel strategies for renal protection. The present investigation delves into potential transcription factors and signaling cascades implicated in the realm of renal progenitor cells, focusing on their protection and differentiation. The discourse herein elucidates contemporary research endeavors dedicated to the acquisition of progenitor cells, offering crucial insights into the developmental mechanisms of these cells within the renal milieu and paving the way for the formulation of innovative treatment modalities.
Collapse
Affiliation(s)
- Maryam Bahrami
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Hojjat Allah Abbaszadeh
- Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
8
|
Lindoso RS, Collino F, Kasai-Brunswick TH, Costa MR, Verdoorn KS, Einicker-Lamas M, Vieira-Beiral HJ, Wessely O, Vieyra A. Resident Stem Cells in Kidney Tissue. RESIDENT STEM CELLS AND REGENERATIVE THERAPY 2024:159-203. [DOI: 10.1016/b978-0-443-15289-4.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Lewis AM, Foseh G, Tu W, Peden K, Akue A, KuKuruga M, Rotroff D, Lewis G, Mazo I, Bauer SR. GLI1+ perivascular, renal, progenitor cells: The likely source of spontaneous neoplasia that created the AGMK1-9T7 cell line. PLoS One 2023; 18:e0293406. [PMID: 38060571 PMCID: PMC10703308 DOI: 10.1371/journal.pone.0293406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/11/2023] [Indexed: 12/18/2023] Open
Abstract
The AGMK1-9T7 cell line has been used to study neoplasia in tissue culture. By passage in cell culture, these cells evolved to become tumorigenic and metastatic in immunodeficient mice at passage 40. Of the 20 x 106 kidney cells originally plated, less than 2% formed the colonies that evolved to create this cell line. These cells could be the progeny of some type of kidney progenitor cells. To characterize these cells, we documented their renal lineage by their expression of PAX-2 and MIOX, detected by indirect immunofluorescence. These cells assessed by flow-cytometry expressed high levels of CD44, CD73, CD105, Sca-1, and GLI1 across all passages tested; these markers have been reported to be expressed by renal progenitor cells. The expression of GLI1 was confirmed by immunofluorescence and western blot analysis. Cells from passages 13 to 23 possessed the ability to differentiate into adipocytes, osteoblasts, and chondrocytes; after passage 23, their ability to form these cell types was lost. These data indicate that the cells that formed the AGMK1-9T7 cell line were GLI1+ perivascular, kidney, progenitor cells.
Collapse
Affiliation(s)
- Andrew M. Lewis
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Gideon Foseh
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Wei Tu
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Keith Peden
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Adovi Akue
- Flow Cytometry Unit, OMPT, Center for Biologics Evaluation and Research, OVRR, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Mark KuKuruga
- Flow Cytometry Unit, OMPT, Center for Biologics Evaluation and Research, OVRR, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Daniel Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Gladys Lewis
- TCL and M Associates, Leesburg, Virginia, United States of America
| | - Ilya Mazo
- HIVE Team, Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, FDA, Silver Spring, Maryland, United States of America
| | - Steven R. Bauer
- Division of Cellular and Gene Therapies, Office of Therapeutic Products, Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
| |
Collapse
|
10
|
Zawrzykraj M, Deptuła M, Kondej K, Tymińska A, Pikuła M. The effect of chemotherapy and radiotherapy on stem cells and wound healing. Current perspectives and challenges for cell-based therapies. Biomed Pharmacother 2023; 168:115781. [PMID: 39491418 DOI: 10.1016/j.biopha.2023.115781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024] Open
Abstract
Cancers are part of the group of diseases that carry a high mortality rate. According to World Health Organization in 2020 reported 10 million deaths due to cancers. Treatment of oncological patients is focused on chemotherapeutic agents, radiology, or immunology. Surgical interventions are also an important aspect of treatment. The above methods contribute to saving the patients' health and lives. However, cancer treatment possesses side effects. Commonly observed complications are hair loss, mucositis, nausea, diarrhea, or various skin damage. To improve the quality of medical care for cancer patients, new methods of reducing side effects are sought. Strategies include the use of stem cells (SCs). Due to unlimited proliferation potential and differentiating abilities, SCs are used in the treatment of many disease entities, including wounds. One of the most used types of stem cells supposed adipose-derived mesenchymal stromal cells (AD-MSCs). Clinical trials confirm the application of AD-MSCs in wound healing. Furthermore, in vivo studies considered the utilization of AD-MSCs in radiation injury. The use of stem cells in cancer treatment still involves many questions, such as the impact of treatment on SCs' condition and oncological safety. However, development in regenerative medicine research may contribute to the use of stem cells in personalized medicine, customized for the patient. This could represent a breakthrough step in preventing the side effects of cancer therapies, including chronic wounds.
Collapse
Affiliation(s)
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Poland
| | - Karolina Kondej
- Department of Plastic Surgery, Medical University of Gdansk, Poland
| | - Agata Tymińska
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Poland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Poland.
| |
Collapse
|
11
|
Sharqawi A, Mansour MF, Elatrash GA, Ismail EA, Ralph D, El-Sakka AI. Role of adipose-derived stem cells in healing surgically induced trauma of the rat's tunica albuginea. Sex Med 2023; 11:qfad058. [PMID: 38028732 PMCID: PMC10661659 DOI: 10.1093/sexmed/qfad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background Injection of adipose-derived stem cells (ADSCs) into the injured tunica albuginea (TA) may prevent fibrosis, restore the balance between pro- and antifibrotic pathways, and potentially mitigate erectile dysfunction caused by abnormal TA healing. Aim To assess the potential role of ADSC injection on structural, ultrastructural, functional, and molecular changes in surgically induced trauma of the rat's TA. Methods Forty adult male albino Wistar rats were divided into 5 groups of 8 rats each: group 1, sham; group 2, injury to TA without treatment; group 3, injury to TA and suture repair; group 4, injury to TA and injection of ADSCs without suture repair; group 5, injury to TA followed by injection of ADSCs and suture repair. Outcomes After 6 weeks, all groups were subjected to functional, histologic, and ultrastructural examination and molecular expression of healing growth factors. Results The intracavernous pressure (ICP; mean ± SD) was 114 ± 2, 32 ± 2, 65 ± 2, 68 ± 2, and 111 ± 2 mm Hg in groups 1 to 5, respectively. There were significant differences in ICP between each of groups 3 to 5 and group 2 (P < .05), and groups 3 and 4 each had significant differences with group 1 (P < .05). No significant difference in ICP occurred between groups 3 and 4 (P > .05). There were significant histologic and ultrastructural alterations in tunical tissues from group 2; however, these changes were markedly less in group 5 in terms of lower levels of fibrotic changes, elastosis, and superior overall neuroendothelial expression. Groups 3 and 4 showed improved structural and ultrastructural parameters when compared with group 2. Group 5 demonstrated lower levels of transforming growth factor β1 and basic fibroblast growth factor expression. Clinical Implications This experimental model may encourage administration of ADSCs to prevent the deleterious effects of trauma to the TA. Strengths and Limitations Injecting ADSCs can improve the healing process and erectile dysfunction in a rat model following TA injury, and combining ADSC injection with surgical suturing resulted in superior outcomes. The main limitation was the absence of long-term ICP measurements and a longer follow-up period that may provide further insight into the chronic phase of the healing process. Conclusion ADSC injection may prevent structural, ultrastructural, functional, and molecular alterations in surgically induced trauma of the rat's TA and enhance the effect of tunical suturing after trauma.
Collapse
Affiliation(s)
| | - Mona F Mansour
- Department of Physiology, Suez Canal University, Ismailia 4111, Egypt
| | - Gamal A Elatrash
- Department of Urology, Suez Canal University, Ismailia 4111, Egypt
| | - Ezzat A Ismail
- Department of Urology, Suez Canal University, Ismailia 4111, Egypt
| | - David Ralph
- Institute of Urology, University College of London Hospital, London W1G 8PH, United Kingdom
| | - Ahmed I El-Sakka
- Department of Urology, Suez Canal University, Ismailia 4111, Egypt
| |
Collapse
|
12
|
Lasorsa F, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Autorino R, Battaglia M, Ditonno P, Lucarelli G. Cancer Stem Cells in Renal Cell Carcinoma: Origins and Biomarkers. Int J Mol Sci 2023; 24:13179. [PMID: 37685983 PMCID: PMC10487877 DOI: 10.3390/ijms241713179] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The term "cancer stem cell" (CSC) refers to a cancer cell with the following features: clonogenic ability, the expression of stem cell markers, differentiation into cells of different lineages, growth in nonadhesive spheroids, and the in vivo ability to generate serially transplantable tumors that reflect the heterogeneity of primary cancers (tumorigenicity). According to this model, CSCs may arise from normal stem cells, progenitor cells, and/or differentiated cells because of striking genetic/epigenetic mutations or from the fusion of tissue-specific stem cells with circulating bone marrow stem cells (BMSCs). CSCs use signaling pathways similar to those controlling cell fate during early embryogenesis (Notch, Wnt, Hedgehog, bone morphogenetic proteins (BMPs), fibroblast growth factors, leukemia inhibitory factor, and transforming growth factor-β). Recent studies identified a subpopulation of CD133+/CD24+ cells from ccRCC specimens that displayed self-renewal ability and clonogenic multipotency. The development of agents targeting CSC signaling-specific pathways and not only surface proteins may ultimately become of utmost importance for patients with RCC.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Martina Milella
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 71013 Milan, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Riccardo Autorino
- Department of Urology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michele Battaglia
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
13
|
Quatredeniers M, Serafin AS, Benmerah A, Rausell A, Saunier S, Viau A. Meta-analysis of single-cell and single-nucleus transcriptomics reveals kidney cell type consensus signatures. Sci Data 2023; 10:361. [PMID: 37280226 DOI: 10.1038/s41597-023-02209-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
While the amount of studies involving single-cell or single-nucleus RNA-sequencing technologies grows exponentially within the biomedical research area, the kidney field requires reference transcriptomic signatures to allocate each cluster its matching cell type. The present meta-analysis of 39 previously published datasets, from 7 independent studies, involving healthy human adult kidney samples, offers a set of 24 distinct consensus kidney cell type signatures. The use of these signatures may help to assure the reliability of cell type identification in future studies involving single-cell and single-nucleus transcriptomics while improving the reproducibility in cell type allocation.
Collapse
Affiliation(s)
- Marceau Quatredeniers
- Université de Paris Cité, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, INSERM UMR 1163, F-75015, France.
| | - Alice S Serafin
- Université de Paris Cité, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, INSERM UMR 1163, F-75015, France
| | - Alexandre Benmerah
- Université de Paris Cité, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, INSERM UMR 1163, F-75015, France
| | - Antonio Rausell
- Université de Paris Cité, Imagine Institute, Laboratory of Clinical Bioinformatics, Paris, INSERM UMR 1163, F-75015, France
| | - Sophie Saunier
- Université de Paris Cité, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, INSERM UMR 1163, F-75015, France
| | - Amandine Viau
- Université de Paris Cité, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, INSERM UMR 1163, F-75015, France
| |
Collapse
|
14
|
Miao J, Huang J, Liang Y, Zhang Y, Li J, Meng P, Shen W, Li X, Wu Q, Wang X, Niu H, Tang Y, Zhou S, Zhou L. Sirtuin 6 is a key contributor to gender differences in acute kidney injury. Cell Death Discov 2023; 9:134. [PMID: 37185276 PMCID: PMC10130034 DOI: 10.1038/s41420-023-01432-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Acute kidney injury (AKI) is rapidly increasing nowadays and at a high risk to progress into chronic kidney disease (CKD). Of note, men are more susceptive to AKI, suggesting gender differences in AKI patients. However, the underlying mechanisms remain largely unclear. To test it, we adopted two experimental models of AKI, including ischemia/reperfusion injury and rhabdomyolysis, which were constructed in age-matched male and female mice. We found severe damages of tubular apoptosis, mitochondrial dysfunction, and loss of renal function showing in male mice, while female mice only had very mild injury. We further tested the expression of Sirtuins, and found that female mice could preserve more Sirtuin members' expression in case of kidney damage. Among Sirtuin family, Sirtuin 6 was maximally preserved in injured kidney in female mice, suggesting its important role involved in the gender differences of AKI pathogenesis. We then found that knockdown of androgen receptor (AR) attenuated tubular damage, mitochondrial dysfunction and retarded the loss of renal function. Overexpression of Sirtuin 6 also showed similar results. Furthermore, in cultured tubular cells, dihydrotestosterone (DHT) decreased Sirtuin 6 expression and exacerbated cell apoptosis. Ectopic expression of Sirtuin 6 sufficiently inhibited DHT-induced cell apoptosis. Mechanically, we found AR inhibited Sirtuin 6, leading to the repression of binding of Sirtuin 6 with PGC-1α. This resulted in acetylation of PGC-1α and inhibition of its activity, further triggered the loss of mitochondrial homeostasis. Our results provided new insights to the underlying mechanisms of gender differences in AKI, suggesting Sirtuin 6 maybe a new therapeutic target for preventing AKI in male patients.
Collapse
Affiliation(s)
- Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiewu Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Liang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunfang Zhang
- Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Jiemei Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Meng
- Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolong Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinyu Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxu Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongxin Niu
- Department of General Practice, Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Ying Tang
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Huang J, Liang Y, Zhou L. Natural products for kidney disease treatment: Focus on targeting mitochondrial dysfunction. Front Pharmacol 2023; 14:1142001. [PMID: 37007023 PMCID: PMC10050361 DOI: 10.3389/fphar.2023.1142001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The patients with kidney diseases are increasing rapidly all over the world. With the rich abundance of mitochondria, kidney is an organ with a high consumption of energy. Hence, renal failure is highly correlated with the breakup of mitochondrial homeostasis. However, the potential drugs targeting mitochondrial dysfunction are still in mystery. The natural products have the superiorities to explore the potential drugs regulating energy metabolism. However, their roles in targeting mitochondrial dysfunction in kidney diseases have not been extensively reviewed. Herein, we reviewed a series of natural products targeting mitochondrial oxidative stress, mitochondrial biogenesis, mitophagy, and mitochondrial dynamics. We found lots of them with great medicinal values in kidney disease. Our review provides a wide prospect for seeking the effective drugs targeting kidney diseases.
Collapse
|
16
|
Gaudet A, Zheng X, Kambham N, Bhalla V. Esm-1 mediates transcriptional polarization associated with diabetic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530562. [PMID: 36993439 PMCID: PMC10054923 DOI: 10.1101/2023.03.01.530562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background Esm-1, endothelial cell-specific molecule-1, is a susceptibility gene for diabetic kidney disease (DKD) and is a cytokine- and glucose-regulated, secreted proteoglycan, that is notably expressed in kidney and attenuates inflammation and albuminuria. Esm1 has restricted expression at the vascular tip during development but little is known about its expression pattern in mature tissues, and its precise effects in diabetes. Methods We utilized publicly available single-cell RNA sequencing data to explore the characteristics of Esm1 expression in 27,786 renal endothelial cells obtained from four adult human and three mouse databases. We validated our findings using bulk transcriptome data from an additional 20 healthy subjects and 41 patients with DKD and using RNAscope. Using correlation matrices, we relate Esm1 expression to the glomerular transcriptome and evaluated these matrices with systemic over-expression of Esm-1. Results In both mice and humans, Esm1 is expressed in a subset of all renal endothelial cell types and represents a minority of glomerular endothelial cells. In patients, Esm1 (+) cells exhibit a highly conserved enrichment for blood vessel development genes. With diabetes, these cells are fewer in number and profoundly shift expression to reflect chemotaxis pathways. Analysis of these gene sets highlight candidate genes such as Igfbp5 for cross talk between cell types. We also find that diabetes induces correlations in the expression of large clusters of genes, within cell type-enriched transcripts. Esm1 significantly correlates with a majority genes within these clusters, delineating a glomerular transcriptional polarization reflected by the magnitude of Esm1 deficiency. In diabetic mice, these gene clusters link Esm1 expression to albuminuria, and over-expression of Esm-1 reverses the expression pattern in many of these genes. Conclusions A comprehensive analysis of single cell and bulk transcriptomes demonstrates that diabetes correlates with lower Esm1 expression and with changes in the functional characterization of Esm1 (+) cells. Esm1 is both a marker for glomerular transcriptional polarization, and a mediator that re-orients the transcriptional program in DKD.
Collapse
|
17
|
Wang H, Li M, Fei L, Xie C, Ding L, Zhu C, Zeng F, Liu N. Bone Marrow-Derived Mesenchymal Stem Cells Transplantation Attenuates Renal Fibrosis Following Acute Kidney Injury in Rats by Diminishing Pericyte-Myofibroblast Transition and Extracellular Matrix Augment. Transplant Proc 2023; 55:225-234. [PMID: 36604251 DOI: 10.1016/j.transproceed.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Renal fibrosis is a common chronic outcome of acute kidney injury (AKI). Pericyte-myofibroblasts transition and production of abundant extracellular matrix are the important pathologic basis. This study investigated the effect of bone marrow-derived mesenchymal stem cells (BMSCs) transplantation on the AKI kidney fibrosis and the possible mechanisms. METHODS By constructing the animal and cell model of AKI pericyte injury, the therapeutic effect of BMSCs on pericyte-myofibroblasts transition was detected. The production and accumulation of extracellular matrix, including collagen I, collagen III, and fibronectin were also tested. The mechanism was revealed by means of analysis of signal pathway. RESULTS After AKI insult, many myofibroblasts emerged in the renal interstitium together with a large amount of extracellular matrix components. The BMSCs transplantation significantly decreased the number of myofibroblasts trans-differentiated from pericytes in the AKI model. The changes of vascular endothelial growth factor subtypes and Ang-I/AngII secreted by pericytes were also significantly reduced after BMSCs co-culture. At the same time, extracellular matrix components, including collagen I, collagen III, and fibronectin, decreased significantly. Transplantation treatment alleviated the fibrosis score. The transforming growth factor β (TGF-β) concentration decreased as well as the levels of Smad2/3 and p-Smad2/3 with the presence of BMSCs therapy. CONCLUSIONS Bone marrow-derived mesenchymal stem cells transplantation diminished pericyte-myofibroblast transition and extracellular matrix augment after AKI by regulating the TGF-β/Smad2/3 signaling pathway. It may be used as a novel therapeutic method for retarding renal fibrosis, which is worthy of further study.
Collapse
Affiliation(s)
- Hao Wang
- Department of Nephrology, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Maoting Li
- Department of Nephrology, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Liyan Fei
- Department of Nephrology, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Chuang Xie
- Department of Nephrology, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Lingling Ding
- Department of Nephrology, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Changhao Zhu
- Department of Nephrology, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Fanzhou Zeng
- Department of Nephrology, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Nanmei Liu
- Department of Nephrology, Naval Medical Center of PLA, Naval Medical University, Shanghai, China.
| |
Collapse
|
18
|
Li J, Gong X. Bibliometric and visualization analysis of kidney repair associated with acute kidney injury from 2002 to 2022. Front Pharmacol 2023; 14:1101036. [PMID: 37153766 PMCID: PMC10157647 DOI: 10.3389/fphar.2023.1101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Background: Renal repair is closely related to the prognosis of acute kidney injury (AKI) and has attracted increasing attention in the research field. However, there is a lack of a comprehensive bibliometric analysis in this research area. This study aims at exploring the current status and hotspots of renal repair research in AKI from the perspective of bibliometrics. Methods: Studies published between 2002 and 2022 related to kidney repair after AKI were collected from Web of Science core collection (WoSCC) database. Bibliometric measurement and knowledge graph analysis to predict the latest research trends in the field were performed using bibliometrics software CiteSpace and VOSviewer. Results: The number of documents related to kidney repair after AKI has steadily increased over 20 years. The United States and China contribute more than 60% of documents and are the main drivers of research in this field. Harvard University is the most active academic institution that contributes the most documents. Humphreys BD and Bonventre JV are the most prolific authors and co-cited authors in the field. The American Journal of Physiology-Renal Physiology and Journal of the American Society of Nephrology are the most popular journals in the field with the greatest number of documents. "exosome", "macrophage polarization", "fibroblast", and" aki-ckd transition" are high-frequency keywords in this field in recent years. Extracellular vesicles (including exosomes), macrophage polarization, cell cycle arrest, hippo pathway, and sox9 are current research hotspots and potential targets in this field. Conclusion: This is the first comprehensive bibliometric study on the knowledge structure and development trend of AKI-related renal repair research in recent years. The results of the study comprehensively summarize and identify research frontiers in AKI-related renal repair.
Collapse
|
19
|
Ijima S, Saito Y, Nagaoka K, Yamamoto S, Sato T, Miura N, Iwamoto T, Miyajima M, Chikenji TS. Fisetin reduces the senescent tubular epithelial cell burden and also inhibits proliferative fibroblasts in murine lupus nephritis. Front Immunol 2022; 13:960601. [PMID: 36466895 PMCID: PMC9714549 DOI: 10.3389/fimmu.2022.960601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease characterized by the involvement of multiple organs. Lupus nephritis (LN) is a major risk factor for overall morbidity and mortality in SLE patients. Hence, designing effective drugs is pivotal for treating individuals with LN. Fisetin plays a senolytic role by specifically eliminating senescent cells, inhibiting cell proliferation, and exerting anti-inflammatory, anti-oxidant, and anti-tumorigenic effects. However, limited research has been conducted on the utility and therapeutic mechanisms of fisetin in chronic inflammation. Similarly, whether the effects of fisetin depend on cell type remains unclear. In this study, we found that LN-prone MRL/lpr mice demonstrated accumulation of Ki-67-positive myofibroblasts and p15INK4B-positive senescent tubular epithelial cells (TECs) that highly expressed transforming growth factor β (TGF-β). TGF-β stimulation induced senescence of NRK-52E renal TECs and proliferation of NRK-49F renal fibroblasts, suggesting that TGF-β promotes senescence and proliferation in a cell type-dependent manner, which is inhibited by fisetin treatment in vitro. Furthermore, fisetin treatment in vivo reduced the number of senescent TECs and myofibroblasts, which attenuated kidney fibrosis, reduced senescence-associated secretory phenotype (SASP) expression, and increased TEC proliferation. These data suggest that the effects of fisetin vary depending on the cell type and may have therapeutic effects in complex and diverse LN pathologies.
Collapse
Affiliation(s)
- Shogo Ijima
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kentaro Nagaoka
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Sena Yamamoto
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tsukasa Sato
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Norihiro Miura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Taiki Iwamoto
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Maki Miyajima
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Takako S. Chikenji
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
20
|
Asian Pigeonwing Plants (Clitoria ternatea) Synergized Mesenchymal Stem Cells by Modulating the Inflammatory Response in Rats with Cisplatin-Induced Acute Kidney Injury. Pharmaceuticals (Basel) 2022; 15:ph15111396. [DOI: 10.3390/ph15111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Acute kidney injury is a heterogeneous set of disorders distinguished by a sudden decrease in the glomerular filtration rate, which is evidenced by an increase in the serum creatinine concentration or oliguria and categorized by stage and cause. It is an ever-growing health problem worldwide, with no reliable treatment. In the present study, we evaluated the role of Clitoria ternatea combined with mesenchymal stem cells in treating cisplatin-induced acute kidney injury in rats. Animals were challenged with cisplatin, followed by 400 mg/kg of Asian pigeonwing extract and/or mesenchymal stem cells (106 cells/150 g body weight). Kidney functions and enzymes were recorded, and histopathological sectioning was also performed. The expression profile of IL-1β, IL-6, and caspase-3 was assessed using the quantitative polymerase chain reaction. The obtained data indicated that mesenchymal stem cells combined with the botanical extract modulated the creatinine uric acid and urea levels. Cisplatin increased the level of malondialdehyde and decreased the levels of both superoxide dismutase and glutathione; however, the dual treatment was capable of restoring the normal levels. Furthermore, all treatments modulated the IL-6, IL-1β, and caspase-3 gene expression profiles. The obtained data shed some light on adjuvant therapy using C. ternatea and mesenchymal stem cells in treating acute kidney injury; however, further investigations are required to understand these agents’ synergistic mechanisms fully. The total RNA was extracted from the control, the positive control, and all of the therapeutically treated animals. The expression profiles of the IL-6, IL-1β, and caspase-3 genes were evaluated using the real-time polymerase chain reaction. Cisplatin treatment caused a significant upregulation in IL-6. All treatments could mitigate the IL-6-upregulating effect of cisplatin, with the mesenchymal stem cell treatment being the most effective. The same profile was observed in the IL-1β and caspase-3 genes, except that the dual treatment (mesenchymal stem cells and the botanical extract) was the most effective in ameliorating the adverse effect of cisplatin; it downregulated caspase-3 expression better than the positive control.
Collapse
|
21
|
Raghubar AM, Roberts MJ, Wood S, Healy HG, Kassianos AJ, Mallett AJ. Cellular milieu in clear cell renal cell carcinoma. Front Oncol 2022; 12:943583. [PMID: 36313721 PMCID: PMC9614096 DOI: 10.3389/fonc.2022.943583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is globally the most prevalent renal cancer. The cells of origin in ccRCC have been identified as proximal tubular epithelial cells (PTEC); however, the transcriptomic pathways resulting in the transition from normal to malignant PTEC state have remained unclear. Immunotherapy targeting checkpoints have revolutionized the management of ccRCC, but a sustained clinical response is achieved in only a minority of ccRCC patients. This indicates that our understanding of the mechanisms involved in the malignant transition and resistance to immune checkpoint therapy in ccRCC is unclear. This review examines recent single-cell transcriptomics studies of ccRCC to clarify the transition of PTEC in ccRCC development, and the immune cell types, states, and interactions that may limit the response to targeted immune therapy, and finally suggests stromal cells as key drivers in recurrent and locally invasive ccRCC. These and future single-cell transcriptomics studies will continue to clarify the cellular milieu in the ccRCC microenvironment, thus defining actional clinical, therapeutic, and prognostic characteristics of ccRCC.
Collapse
Affiliation(s)
- Arti M. Raghubar
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Anatomical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Matthew J. Roberts
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Department of Urology, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Department of Urology, Redcliffe Hospital, Redcliffe, QLD, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Simon Wood
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Helen G. Healy
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Kassianos
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Mallett
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- College of Medicine & Dentistry, James Cook University, Townsville, QLD, Australia
- Department of Renal Medicine, Townsville University Hospital, Townsville, QLD, Australia
- *Correspondence: Andrew J. Mallett,
| |
Collapse
|
22
|
Association between cancer genes and germ layer specificity. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:218. [PMID: 36175592 DOI: 10.1007/s12032-022-01823-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/14/2022] [Indexed: 10/14/2022]
Abstract
Cancer signaling pathways defining cell fates are related to differentiation. During the developmental process, three germ layers (endoderm, mesoderm, and ectoderm) are formed during embryonic development that differentiate into organs via the epigenetic regulation of specific genes. To examine the relationship, the specificities of cancer gene mutations that depend on the germ layers are studied. The major organs affected by cancer were determined based on statistics from the National Cancer Information Center of Korea, and were grouped according to their germ layer origins. Then, the gene mutation frequencies were evaluated to identify any bias based on the differentiation group using the Catalogue of Somatic Mutations in Cancer (COSMIC) database. The chi-square test showed that the p-value of 152 of 166 genes was less than 0.05, and 151 genes showed p-values of less than 0.05 even after adjusting for the false discovery rate (FDR). The germ layer-specific genes were evaluated using visualization based on basic statistics, and the results matched the top ranking genes depending on organs in the COSMIC database.The current study confirmed the germ layer specificity of major cancer genes. The germ layer specificity of mutated driver genes is possibly important in cancer treatments because each mutated gene may react differently depending on the germ layer of origin. By understanding the mechanism of gene mutation in the development and progression of cancer in the context of cell-fate pathways, a more effective therapeutic strategy for cancer can be established.
Collapse
|
23
|
In-vitro and in-vivo biocompatibility of dECM-alginate as a promising candidate in cell delivery for kidney regeneration. Int J Biol Macromol 2022; 211:616-625. [PMID: 35577186 DOI: 10.1016/j.ijbiomac.2022.05.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 05/10/2022] [Indexed: 12/14/2022]
Abstract
In this study, kidney decellularized extracellular matrix (dECM) and alginate (ALG) hybrid injectable hydrogel, with the purpose of delivering progenitor cells for tissue engineering, were prepared by using a physical crosslinking method in a CaCl2 solution with high porosity for the exchange of nutrition and waste. In addition, the physical appearance and surface morphology of the hydrogel were investigated using optical and scanning electron microscopy, respectively. The functional groups of the dECM/ALG xerogels was examined via Fourier transform infrared spectroscopy. The biocompatibility of dECM/ALG xerogels was examined in-vitro using renal progenitor cells obtained from adult rat kidney. Enhanced biocompatibility and significant hemostatic behavior was noticed. Furthermore, the in-vivo biocompatibility of dECM/ALG hydrogel with progenitor cells was determined in the deep renal cortex for 7 and 21 days, in order to assess the foreign body reaction and inflammatory response. Early-stage glomerulus-like structure and dense linear cell network-like phenomenon were noticed. Loading of progenitor cells together with hydrogel enhances the cell density obviously due to cell migration from host and form a pattern. The desired early stage in-vivo response to progenitor cell-laden dECM/ALG hydrogel plays a potential role in kidney regeneration long term.
Collapse
|
24
|
Chen S, Zhang M, Li J, Huang J, Zhou S, Hou X, Ye H, Liu X, Xiang S, Shen W, Miao J, Hou FF, Liu Y, Zhou L. β-catenin-controlled tubular cell-derived exosomes play a key role in fibroblast activation via the OPN-CD44 axis. J Extracell Vesicles 2022; 11:e12203. [PMID: 35312232 PMCID: PMC8936047 DOI: 10.1002/jev2.12203] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023] Open
Abstract
Tubular injury and peripheral fibroblast activation are the hallmarks of chronic kidney disease (CKD), suggesting intimate communication between the two types of cells. However, the underlying mechanisms remain to be determined. Exosomes play a role in shuttling proteins and other materials to recipient cells. In our study, we found that exosomes were aroused by β‐catenin in renal tubular cells. Osteopontin (OPN), especially its N‐terminal fragment (N‐OPN), was encapsulated in β‐catenin‐controlled tubular cell‐derived exosome cargo, and subsequently passed to fibroblasts. Through binding with CD44, exosomal OPN promoted fibroblast proliferation and activation. Gene deletion of β‐catenin in tubular cells (Ksp‐β‐catenin−/−) or gene ablation of CD44 (CD44−/−) greatly ameliorated renal fibrosis. Notably, N‐OPN was carried by exosome and secreted into the urine of patients with CKD, and negatively correlated with kidney function. The urinary exosomes from patients with CKD greatly accelerated renal fibrosis, which was blocked by CD44 deletion. These results suggest that exosome‐mediated activation of the OPN/CD44 axis plays a key role in renal fibrosis, which is controlled by β‐catenin.
Collapse
Affiliation(s)
- Shuangqin Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Division of Nephrology, Ruikang Hospital, Guangxi University of Traditional Chinese Medicine, Guangxi Integrated Chinese and Western Medicine Clinical Research Center for Kidney Disease, Nanning, China
| | - Meijia Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiemei Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiewu Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaotao Hou
- Pathology Department, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, China
| | - Huiyun Ye
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xi Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaowei Xiang
- Division of Nephrology, Ruikang Hospital, Guangxi University of Traditional Chinese Medicine, Guangxi Integrated Chinese and Western Medicine Clinical Research Center for Kidney Disease, Nanning, China
| | - Weiwei Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health, Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
25
|
Weng X, Li J, Guan Q, Zhao H, Wang Z, Gleave ME, Nguan CY, Du C. The functions of clusterin in renal mesenchymal stromal cells: Promotion of cell growth and regulation of macrophage activation. Exp Cell Res 2022; 413:113081. [PMID: 35218723 DOI: 10.1016/j.yexcr.2022.113081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 12/24/2022]
Abstract
Clusterin (CLU) increases resistance to renal ischemia-reperfusion injury and promotes renal tissue repair. However, the mechanisms underlying of the renal protection of CLU remain unknown. Mesenchymal stromal cells (MSCs) may contribute to kidney cell turnover and injury repair. This study investigated the in vitro functions of CLU in kidney mesenchymal stromal cells (KMSCs). KMSCs were grown in plastic culture plates. Cell surface markers, apoptosis and phagocytosis were determined by flow cytometry, and CLU protein by Western blot. There were no differences in the expression of MSC markers (positive: CD133, Sca-1, CD44, CD117 and NG2, and negative: CD34, CD45, CD163, CD41, CD276, CD138, CD79a, CD146 and CD140b) and in the trilineage differentiation to chondrocytes, adipocytes and osteocytes between wild type (WT) and CLU knockout (KO) KMSCs. CLU was expressed intracellularly and secreted by WT KMSCs, and it was up-regulated by hypoxia. CLU did not prevent hypoxia-induced cell apoptosis but promoted cell growth in KMSC cultures. Furthermore, incubation with CLU-containing culture medium from WT KMSCs increased CD206 expression and phagocytic capacity of macrophages. In conclusion, our data for the first time demonstrate the function of CLU in the promotion of KMSCs proliferation, and it may be required for KMSCs-regulated macrophage M2 polarization and phagocytic activity.
Collapse
Affiliation(s)
- Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China; Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jing Li
- Department of Ophthamology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, China
| | - Qiunong Guan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Haimei Zhao
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Zihuan Wang
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; First Clinical Medical School, Southern Medical University, Guangzhou, 510000, China
| | - Martin E Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Yc Nguan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Caigan Du
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
26
|
Molecular Mechanisms of Kidney Injury and Repair. Int J Mol Sci 2022; 23:ijms23031542. [PMID: 35163470 PMCID: PMC8835923 DOI: 10.3390/ijms23031542] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Chronic kidney disease (CKD) will become the fifth global cause of death by 2040, thus emphasizing the need to better understand the molecular mechanisms of damage and regeneration in the kidney. CKD predisposes to acute kidney injury (AKI) which, in turn, promotes CKD progression. This implies that CKD or the AKI-to-CKD transition are associated with dysfunctional kidney repair mechanisms. Current therapeutic options slow CKD progression but fail to treat or accelerate recovery from AKI and are unable to promote kidney regeneration. Unraveling the cellular and molecular mechanisms involved in kidney injury and repair, including the failure of this process, may provide novel biomarkers and therapeutic tools. We now review the contribution of different molecular and cellular events to the AKI-to-CKD transition, focusing on the role of macrophages in kidney injury, the different forms of regulated cell death and necroinflammation, cellular senescence and the senescence-associated secretory phenotype (SAPS), polyploidization, and podocyte injury and activation of parietal epithelial cells. Next, we discuss key contributors to repair of kidney injury and opportunities for their therapeutic manipulation, with a focus on resident renal progenitor cells, stem cells and their reparative secretome, certain macrophage subphenotypes within the M2 phenotype and senescent cell clearance.
Collapse
|
27
|
Kim HR, Jin HS, Eom YB. Metabolite Genome-Wide Association Study for Indoleamine 2,3-Dioxygenase Activity Associated with Chronic Kidney Disease. Genes (Basel) 2021; 12:1905. [PMID: 34946851 PMCID: PMC8701662 DOI: 10.3390/genes12121905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022] Open
Abstract
Chronic kidney disease (CKD) causes progressive damage to kidney function with increased inflammation. This process contributes to complex amino acid changes. Indoleamine 2,3-dioxygenase (IDO) has been proposed as a new biomarker of CKD in previous studies. In our research, we performed a metabolite genome-wide association study (mGWAS) to identify common and rare variants associated with IDO activity in a Korean population. In addition, single-nucleotide polymorphisms (SNPs) selected through mGWAS were further analyzed for associations with the estimated glomerular filtration rate (eGFR) and CKD. A total of seven rare variants achieved the genome-wide significance threshold (p < 1 × 10-8). Among them, four genes (TNFRSF19, LOC105377444, LOC101928535, and FSTL5) associated with IDO activity showed statistically significant associations with eGFR and CKD. Most of these rare variants appeared specifically in an Asian geographic region. Furthermore, 15 common variants associated with IDO activity were detected in this study and five novel genes (RSU1, PDGFD, SNX25, LOC107984031, and UBASH3B) associated with CKD and eGFR were identified. This study discovered several loci for IDO activity via mGWAS and provided insight into the underlying mechanisms of CKD through association analysis with CKD. To the best of our knowledge, this is the first study to suggest a genetic link between IDO activity and CKD through comparative and integrated analysis.
Collapse
Affiliation(s)
- Hye-Rim Kim
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan 31538, Chungnam, Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan 31499, Chungnam, Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan 31538, Chungnam, Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Chungnam, Korea
| |
Collapse
|
28
|
Leng M, Peng Y, Pan M, Wang H. Experimental Study on the Effect of Allogeneic Endothelial Progenitor Cells on Wound Healing in Diabetic Mice. J Diabetes Res 2021; 2021:9962877. [PMID: 34722777 PMCID: PMC8553455 DOI: 10.1155/2021/9962877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Endothelial progenitor cells (EPCs) are involved in the neovascularization in traumatic and ischemic sites, but EPCs are "detained" in bone marrow under diabetic conditions, which results in reduction of the number of EPCs and their biological activity in peripheral blood. Based on our previous study to mobilize autologous bone marrow EPCs by administering AMD3100+G-CSF to realize the optimal effect, our present study is aimed at exploring the effects of transplanting EPCs locally in a wound model of diabetic mice. First, we prepared and identified EPCs, and the biological functions and molecular characteristics were compared between EPCs from DB/+ and DB/DB mice. Then, we performed full-thickness skin resection in DB/DB mice and tested the effect of local transplantation of EPCs on skin wound healing. The wound healing process was recorded using digital photographs. The animals were sacrificed on postoperative days 7, 14, and 17 for histological and molecular analysis. Our results showed that DB/+ EPCs were biologically more active than those of DB/DB EPCs. When compared with the control group, local transplantation of EPCs accelerated wound healing in DB/DB mice by promoting wound granulation tissue formation, angiogenesis, and collagen fiber deposition, but there was no significant difference in wound healing between DB/+ EPCs and DB/DB EPCs transplanted into the wound. Furthermore, local transplantation of EPCs promoted the expression of SDF-1, CXCR4, and VEGF. We speculated that EPC transplantation may promote wound healing through the SDF-1/CXCR4 axis. This point is worth exploring further. Present data are of considerable significance because they raise the possibility of promoting wound healing by isolating autologous EPCs from the patient, which provides a new approach for the clinical treatment of diabetic wounds in the future.
Collapse
Affiliation(s)
- Min Leng
- Department of Burns, The Second Affiliated Hospital, Kunming Medical University, 374 Dian Burma Road, Wuhua District, Kunming 650000, China
- Department of Burns and Plastic, Dazhou Central Hospital, 56 Nanyuemiao Street, Tongchuan District, Dazhou 635000, China
| | - Ying Peng
- Department of Burns, The Second Affiliated Hospital, Kunming Medical University, 374 Dian Burma Road, Wuhua District, Kunming 650000, China
- The First Affiliated Hospital, Kunming Medical Uiversity, 1168 Chunrong West Road, Yuhua Street, Kunming 650000, China
| | - Manchang Pan
- Department of Burns, The Second Affiliated Hospital, Kunming Medical University, 374 Dian Burma Road, Wuhua District, Kunming 650000, China
- Department of Burns, The Changzhou Geriatric Hospital Affiliated with Soochow University, Changzhou 213000, China
| | - Hong Wang
- Department of Burns, The Second Affiliated Hospital, Kunming Medical University, 374 Dian Burma Road, Wuhua District, Kunming 650000, China
| |
Collapse
|