1
|
Wu Z, Su Y, Li J, Liu X, Liu Y, Zhao L, Li L, Zhang L. Induced pluripotent stem cell-derived mesenchymal stem cells: whether they can become new stars of cell therapy. Stem Cell Res Ther 2024; 15:367. [PMID: 39415276 PMCID: PMC11484330 DOI: 10.1186/s13287-024-03968-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/29/2024] [Indexed: 10/18/2024] Open
Abstract
Stem cell therapy constitutes a pivotal subject in contemporary discourse, with donor stem cells having been employed in research and clinical treatments for several decades. Primary cell transplantation encompasses diverse stem cell types, including ectomesenchymal stem cells, hematopoietic stem cells, and various stem cell derivatives such as vesicles and extracellular vesicles. Nevertheless, the emergence of cell engineering techniques has heralded a new epoch in stem cell therapy, markedly broadening their therapeutic potential. Induced pluripotent stem cells (iPSCs) epitomize a significant milestone in modern medical biology. This groundbreaking discovery offers significant potential in disciplines such as biology, pathophysiology, and cellular regenerative medicine. As a result, iPSCs derived differentiated cells have become a pioneering avenue for cell therapy research. Induced mesenchymal stem cells (iMSCs), derived from iPSCs, represent a novel frontier in MSCs related research. Empirical evidence suggests that iMSCs demonstrate enhanced proliferative capacities compared to natural MSCs, with diminished age-related variability and heterogeneity. Numerous clinical trials have highlighted the prospective superiority of iMSCs. This article synthesizes current basic research and clinical trials pertaining to iMSCs, aiming to provide a reference point for future research endeavors.
Collapse
Affiliation(s)
- Zewen Wu
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, 030032, China
| | - Yazhen Su
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Jingxuan Li
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Xinling Liu
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Yang Liu
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Li Zhao
- Shanxi Medical University, Taiyuan, 030000, China
| | - Linxin Li
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Liyun Zhang
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China.
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, 030032, China.
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, 030032, China.
| |
Collapse
|
2
|
Bian C, Chen G, Cheng X, Gu H, Huang Z, Zhou K. Facile fabrication of nano-bioactive glass functionalized blended hydrogel with nucleus pulposus-derived MSCs to improve regeneration potential in treatment of disc degeneration by in vivo rat model. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024:102790. [PMID: 39414222 DOI: 10.1016/j.nano.2024.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Orthopaedic medicine often treats intervertebral disc degeneration (IVDD), which is caused by nucleus pulposus (NP) tissue damage and mechanical stress. Bioactive glasses (BGs), widely used for bone regeneration, can incorporate therapeutic ions into their network. Manganese (Mn) activates human osteoblast integrins, proliferation, and spreading. The CMnBGNPs-NPMSCs are carboxymethyl cellulose hydrogels functionalized with MnBGsNPs and NP-derived mesenchymal stem cells to treat IVDD. To ensure stability and biocompatibility of CMnBGNPs-NPMSCs were characterized for rheological properties like gelation time and swelling ratio. Gene expression analysis of PAX1, FOXF1, CA12, HBB, and OVOS2 via qRT-PCR further assessed the hydrogel's characteristics. Rat models with induced IVDD had hydrogel-MSC composite injected into their intervertebral discs for in vivo studies. Histological examination, immunohistochemical staining for inflammation and disc regeneration markers, and disc height assessments assessed therapeutic efficacy. CMnBGNPs-NPMSCs show promising results for IVDD treatment, offering a novel therapeutic strategy with clinical implications for degenerative disc diseases.
Collapse
Affiliation(s)
- Chong Bian
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Guangnan Chen
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Xiangyang Cheng
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Huijie Gu
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Zhongyue Huang
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Kaifeng Zhou
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China.
| |
Collapse
|
3
|
Shi X, Zhang K, Yu F, Qi Q, Cai X, Zhang Y. Advancements and Innovative Strategies in Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cell Therapy: A Comprehensive Review. Stem Cells Int 2024; 2024:4073485. [PMID: 39377039 PMCID: PMC11458320 DOI: 10.1155/2024/4073485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/24/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
The effectiveness and safety of mesenchymal stem cell (MSC) therapy have been substantiated across various diseases. Nevertheless, challenges such as the restricted in vitro expansion capacity of tissue-derived MSCs and the clinical instability due to the high heterogeneity of isolated cells require urgent resolution. The induced pluripotent stem cell-derived MSCs (iPSC-MSCs), which is differentiated from iPSCs via specific experimental pathways, holds considerable potential as a substitute for tissue derived MSCs. Multiple studies have demonstrated that iPSCs can be differentiated into iPSC-MSCs through diverse differentiation strategies. Research suggests that iPSC-MSCs, when compared to tissue derived MSCs, exhibit superior characteristics in terms of proliferation ability, immune modulation capacity, and biological efficiency. In this review, we meticulously described and summarized the experimental methods of iPSC differentiation into iPSC-MSCs, the application of iPSC-MSCs in various disease models, the latest advancements in clinically relevant iPSC-derived cell products, and the development strategies for the next generation of iPSC-derived therapy products (not only cell products but also their derivatives).
Collapse
Affiliation(s)
- Xiaoyu Shi
- State Industrial Base for Stem Cell Engineering Products, Tianjin 300384, China
| | - Kun Zhang
- State Industrial Base for Stem Cell Engineering Products, Tianjin 300384, China
| | - Fengshi Yu
- State Industrial Base for Stem Cell Engineering Products, Tianjin 300384, China
| | - Qi Qi
- State Industrial Base for Stem Cell Engineering Products, Tianjin 300384, China
| | - Xiaoyu Cai
- State Industrial Base for Stem Cell Engineering Products, Tianjin 300384, China
| | - Yu Zhang
- VCANBIO Cell and Gene Engineering Corp. Ltd., Tianjin, China
| |
Collapse
|
4
|
Tu H, Gao Q, Zhou Y, Peng L, Wu D, Zhang D, Yang J. The role of sirtuins in intervertebral disc degeneration: Mechanisms and therapeutic potential. J Cell Physiol 2024; 239:e31328. [PMID: 38922861 DOI: 10.1002/jcp.31328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, which affects the patients' quality of life and health and imposes a significant socioeconomic burden. Despite great efforts made by researchers to understand the pathogenesis of IDD, effective strategies for preventing and treating this disease remain very limited. Sirtuins are a highly conserved family of (NAD+)-dependent deacetylases in mammals that are involved in a variety of metabolic processes in vivo. In recent years, sirtuins have attracted much attention owing to their regulatory roles in IDD on physiological activities such as inflammation, apoptosis, autophagy, aging, oxidative stress, and mitochondrial function. At the same time, many studies have explored the therapeutic effects of sirtuins-targeting activators or micro-RNA in IDD. This review summarizes the molecular pathways of sirtuins involved in IDD, and summarizes the therapeutic role of activators or micro-RNA targeting Sirtuins in IDD, as well as the current limitations and challenges, with a view to provide possible solutions for the treatment of IDD.
Collapse
Affiliation(s)
- Heng Tu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qian Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yumeng Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Li Peng
- Key Laboratory of Bio-Resource & Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Dan Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Wang J, Zhang M, Wang H. Emerging Landscape of Mesenchymal Stem Cell Senescence Mechanisms and Implications on Therapeutic Strategies. ACS Pharmacol Transl Sci 2024; 7:2306-2325. [PMID: 39144566 PMCID: PMC11320744 DOI: 10.1021/acsptsci.4c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Mesenchymal stem cells (MSCs) hold significant promise for regenerative medicine and tissue engineering due to their unique multipotent differentiation ability and immunomodulatory properties. MSC therapy is widely discussed and utilized in clinical treatment. However, during both in vitro expansion and in vivo transplantation, MSCs are prone to senescence, an irreversible growth arrest characterized by morphological, gene expression, and functional changes in genomic regulation. The microenvironment surrounding MSCs plays a crucial role in modulating their senescence phenotype, influenced by factors such as hypoxia, inflammation, and aging status. Numerous strategies targeting MSC senescence have been developed, including senolytics and senomorphic agents, antioxidant and exosome therapies, mitochondrial transfer, and niche modulation. Novel approaches addressing replicative senescence have also emerged. This paper comprehensively reviews the current molecular manifestations of MSC senescence, addresses the environmental impact on senescence, and highlights potential therapeutic strategies to mitigate senescence in MSC-based therapies. These insights aim to enhance the efficacy and understanding of MSC therapies.
Collapse
Affiliation(s)
- Jing Wang
- Department
of Cellular and Molecular Medicine, University
of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Muqing Zhang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21215, United States
| | - Hu Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21215, United States
| |
Collapse
|
6
|
Yan X, Ding JY, Zhang RJ, Zhang HQ, Kang L, Jia CY, Liu XY, Shen CL. FSTL1 Accelerates Nucleus Pulposus Cell Senescence and Intervertebral Disc Degeneration Through TLR4/NF-κB Pathway. Inflammation 2024; 47:1229-1247. [PMID: 38316670 DOI: 10.1007/s10753-024-01972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a major contributor to low back pain (LBP), and inflammatory factors play crucial roles in its pathogenesis. Follistatin-like 1 (FSTL1) has been reported to induce an inflammatory response in chondrocytes, microglia and preadipocytes, but its role in the pathogenesis of nucleus pulposus cell (NPC) degeneration remains unclear. In this study, we mainly utilized an acidosis-induced NPC degeneration model and a rabbit puncture IVDD model to investigate the role of FSTL1 in IVDD both in vitro and in vivo. We confirmed that FSTL1 expression significantly increased in nucleus pulposus (NP) tissues from IVDD patients and rabbit puncture IVDD models. The expression levels of FSTL1 were significantly increased in all three models of NPC degeneration under harsh microenvironments. In addition, recombinant human FSTL1 (rh-FSTL1) was found to upregulate the expression of p16 and p21, increase the number of senescence-associated β-galactosidase (SA-β-gal)-positive cells, induce senescence-related secretory phenotypes (SASP), and downregulate extracellular matrix (ECM) protein expressions, leading to an imbalance in ECM metabolism destructions. Conversely, silencing of FSTL1 by small interfering RNA (siRNA) ameliorated senescence of NPCs associated with inflammation in IVDD. Furthermore, Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway plays a crucial role in regulating NPC senescence through FSTL1 regulation. Inhibition of TLR4 expression partly reversed the effects of rh-FSTL1 on NPC senescence-associated inflammation. Finally, rabbit IVDD model experiments demonstrated that the specific FSTL1 siRNA markedly repressed the development of IVDD. These findings may offer a therapeutic approach for mitigating inflammation-induced senescence associated with IVDD.
Collapse
Affiliation(s)
- Xu Yan
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Jing-Yu Ding
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Ren-Jie Zhang
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Hua-Qing Zhang
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Liang Kang
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Chong-Yu Jia
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Xiao-Ying Liu
- School of Life Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Cai-Liang Shen
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
7
|
Zhou X, Liu J, Wu F, Mao J, Wang Y, Zhu J, Hong K, Xie H, Li B, Qiu X, Xiao X, Wen C. The application potential of iMSCs and iMSC-EVs in diseases. Front Bioeng Biotechnol 2024; 12:1434465. [PMID: 39135947 PMCID: PMC11317264 DOI: 10.3389/fbioe.2024.1434465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
The immune system, functioning as the body's "defense army", plays a role in surveillance, defense. Any disruptions in immune system can lead to the development of immune-related diseases. Extensive researches have demonstrated the crucial immunoregulatory role of mesenchymal stem cells (MSCs) in these diseases. Of particular interest is the ability to induce somatic cells under specific conditions, generating a new cell type with stem cell characteristics known as induced pluripotent stem cell (iPSC). The differentiation of iPSCs into MSCs, specifically induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs), hold promise as a potential solution to the challenges of MSCs, potentially serving as an alternative to traditional drug therapies. Moreover, the products of iMSCs, termed induced pluripotent stem cell-derived mesenchymal stem cell-derived extracellular vesicles (iMSC-EVs), may exhibit functions similar to iMSCs. With the biological advantages of EVs, they have become the focus of "cell-free therapy". Here, we provided a comprehensive summary of the biological impact of iMSCs on immune cells, explored the applications of iMSCs and iMSC-EVs in diseases, and briefly discussed the fundamental characteristics of EVs. Finally, we overviewed the current advantages and challenges associated with iMSCs and iMSC-EVs. It is our hope that this review related to iMSCs and iMSC-EVs will contribute to the development of new approaches for the treatment of diseases.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinyu Liu
- Department of Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Binbin Li
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinying Qiu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiangbin Xiao
- Department of Cardiovascular, People’s Hospital of Jianyang, Jianyang, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
8
|
Ali EAM, Smaida R, Meyer M, Ou W, Li Z, Han Z, Benkirane-Jessel N, Gottenberg JE, Hua G. iPSCs chondrogenic differentiation for personalized regenerative medicine: a literature review. Stem Cell Res Ther 2024; 15:185. [PMID: 38926793 PMCID: PMC11210138 DOI: 10.1186/s13287-024-03794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Cartilage, an important connective tissue, provides structural support to other body tissues, and serves as a cushion against impacts throughout the body. Found at the end of the bones, cartilage decreases friction and averts bone-on-bone contact during joint movement. Therefore, defects of cartilage can result from natural wear and tear, or from traumatic events, such as injuries or sudden changes in direction during sports activities. Overtime, these cartilage defects which do not always produce immediate symptoms, could lead to severe clinical pathologies. The emergence of induced pluripotent stem cells (iPSCs) has revolutionized the field of regenerative medicine, providing a promising platform for generating various cell types for therapeutic applications. Thus, chondrocytes differentiated from iPSCs become a promising avenue for non-invasive clinical interventions for cartilage injuries and diseases. In this review, we aim to highlight the current strategies used for in vitro chondrogenic differentiation of iPSCs and to explore their multifaceted applications in disease modeling, drug screening, and personalized regenerative medicine. Achieving abundant functional iPSC-derived chondrocytes requires optimization of culture conditions, incorporating specific growth factors, and precise temporal control. Continual improvements in differentiation methods and integration of emerging genome editing, organoids, and 3D bioprinting technologies will enhance the translational applications of iPSC-derived chondrocytes. Finally, to unlock the benefits for patients suffering from cartilage diseases through iPSCs-derived technologies in chondrogenesis, automatic cell therapy manufacturing systems will not only reduce human intervention and ensure sterile processes within isolator-like platforms to minimize contamination risks, but also provide customized production processes with enhanced scalability and efficiency.
Collapse
Affiliation(s)
- Eltahir Abdelrazig Mohamed Ali
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1260, Regenerative NanoMedicine (RNM), 1 Rue Eugène Boeckel, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
| | - Rana Smaida
- Lamina Therapeutics, 1 Rue Eugène Boeckel, 67000, Strasbourg, France
| | - Morgane Meyer
- Université de Strasbourg, 67000, Strasbourg, France
- Lamina Therapeutics, 1 Rue Eugène Boeckel, 67000, Strasbourg, France
| | - Wenxin Ou
- Université de Strasbourg, 67000, Strasbourg, France
- Centre National de Référence des Maladies Auto-Immunes et Systémiques Rares, Est/Sud-Ouest (RESO), Service de Rhumatologie, Centre Hospitalier Universitaire de Strasbourg, 67000, Strasbourg, France
- Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, 300071, China
| | - Zhongchao Han
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co, Beijing, 100176, China
| | - Nadia Benkirane-Jessel
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1260, Regenerative NanoMedicine (RNM), 1 Rue Eugène Boeckel, 67000, Strasbourg, France.
- Université de Strasbourg, 67000, Strasbourg, France.
- Lamina Therapeutics, 1 Rue Eugène Boeckel, 67000, Strasbourg, France.
| | - Jacques Eric Gottenberg
- Université de Strasbourg, 67000, Strasbourg, France.
- Centre National de Référence des Maladies Auto-Immunes et Systémiques Rares, Est/Sud-Ouest (RESO), Service de Rhumatologie, Centre Hospitalier Universitaire de Strasbourg, 67000, Strasbourg, France.
| | - Guoqiang Hua
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1260, Regenerative NanoMedicine (RNM), 1 Rue Eugène Boeckel, 67000, Strasbourg, France.
- Université de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
9
|
Zhang C, Wang Q, Li K, Fu M, Gao K, Lv C. Rosuvastatin: A Potential Therapeutic Agent for Inhibition of Mechanical Pressure-Induced Intervertebral Disc Degeneration. J Inflamm Res 2024; 17:3825-3838. [PMID: 38903877 PMCID: PMC11189312 DOI: 10.2147/jir.s461348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) underlies the pathogenesis of degenerative diseases of the spine; however, its exact molecular mechanism is unclear. Purpose To explore the molecular mechanism of mechanical pressure (MP)-induced IDD and to assess the role and mechanism of Rosuvastatin (RSV) inhibits MP-induced IDD. Methods SD rat nucleus pulposus cells (NPCs) were cultured in vitro and an apoptosis model of NPCs was constructed using MP. Proliferative activity, reactive oxygen species content, apoptosis, and wound healing were detected in each group of NPCs, respectively. The expression of relevant proteins was detected by qPCR and Western Blot techniques. 18 SD rats were randomly divided into control, pressure and RSV groups. Elisa, qPCR, Western Blot and immunohistochemical staining techniques were used to detect changes in the content of related proteins in the intervertebral discs of each group. HE staining and Modified Saffron-O and Fast Green Stain Kit were used to assess IDD in each group. Results MP treatment at 1.0 MPa could significantly induce apoptosis of NPCs after 24 h. MP could significantly inhibit the proliferative activity and wound healing ability of NPCs, and increase the intracellular reactive oxygen species content and apoptosis rate; pretreatment with RSV could significantly activate the Nrf2/HO-1 signaling pathway and reverse the cellular damage caused by MP; when inhibit the Nrf2/HO-1 signaling pathway activation, the protective effect of RSV was reversed. In vivo MP could significantly increase the content of inflammatory factors within the IVD and promote the degradation of extracellular matrix, leading to IDD. When the intervention of RSV was employed, it could significantly activate the Nrf2/HO-1 signaling pathway and improve the above results. Conclusion RSV may inhibit MP-induced NPCs damage and IDD by activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Cunxin Zhang
- Department of Spine Surgery, Jining No. 1 People’s Hospital, Jining, 272011, People’s Republic of China
| | - Qian Wang
- Department of Spine Surgery, Jining No. 1 People’s Hospital, Jining, 272011, People’s Republic of China
| | - Kang Li
- Department of Spine Surgery, Jining No. 1 People’s Hospital, Jining, 272011, People’s Republic of China
| | - Maoqing Fu
- Department of Spine Surgery, Jining No. 1 People’s Hospital, Jining, 272011, People’s Republic of China
| | - Kai Gao
- Department of Orthopaedics, Jining No. 1 People’s Hospital, Jining, 272011, People’s Republic of China
| | - Chaoliang Lv
- Department of Spine Surgery, Jining No. 1 People’s Hospital, Jining, 272011, People’s Republic of China
| |
Collapse
|
10
|
Jiang Y, Lv H, Shen F, Fan L, Zhang H, Huang Y, Liu J, Wang D, Pan H, Yang J. Strategies in product engineering of mesenchymal stem cell-derived exosomes: unveiling the mechanisms underpinning the promotive effects of mesenchymal stem cell-derived exosomes. Front Bioeng Biotechnol 2024; 12:1363780. [PMID: 38756412 PMCID: PMC11096451 DOI: 10.3389/fbioe.2024.1363780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Articular cartilage injuries present a significant global challenge, particularly in the aging population. These injuries not only restrict movement due to primary damage but also exacerbate elderly degenerative lesions, leading to secondary cartilage injury and osteoarthritis. Addressing osteoarthritis and cartilage damage involves overcoming several technical challenges in biological treatment. The use of induced mesenchymal stem cells (iMSCs) with functional gene modifications emerges as a solution, providing a more stable and controllable source of Mesenchymal Stem Cells (MSCs) with reduced heterogeneity. Furthermore, In addition, this review encompasses strategies aimed at enhancing exosome efficacy, comprising the cultivation of MSCs in three-dimensional matrices, augmentation of functional constituents within MSC-derived exosomes, and modification of their surface characteristics. Finally, we delve into the mechanisms through which MSC-exosomes, sourced from diverse tissues, thwart osteoarthritis (OA) progression and facilitate cartilage repair. This review lays a foundational framework for engineering iMSC-exosomes treatment of patients suffering from osteoarthritis and articular cartilage injuries, highlighting cutting-edge research and potential therapeutic pathways.
Collapse
Affiliation(s)
- Yudong Jiang
- Orthopedics Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanning Lv
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuguo Shen
- Orthopedics Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Lei Fan
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Hongjun Zhang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Yong Huang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Jia Liu
- Central Laboratory, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Dong Wang
- The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - Haile Pan
- Orthopedics Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianhua Yang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
11
|
Jia S, Yang T, Gao S, Bai L, Zhu Z, Zhao S, Wang Y, Liang X, Li Y, Gao L, Zhang Z, Gao X, Li D, Chen S, Zhang B, Meng C. Exosomes from umbilical cord mesenchymal stem cells ameliorate intervertebral disc degeneration via repairing mitochondrial dysfunction. J Orthop Translat 2024; 46:103-115. [PMID: 38841339 PMCID: PMC11150913 DOI: 10.1016/j.jot.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 06/07/2024] Open
Abstract
Background Reactive oxygen species (ROS), predominantly generated by mitochondria, play a crucial role in the pathogenesis of intervertebral disc degeneration (IVDD). Reduction of ROS levels may be an effective strategy to delay IVDD. In this study, we assessed whether umbilical cord mesenchymal stem cell-exosomes (UCMSC-exos) can be used to treat IVDD by suppressing ROS production caused by mitochondrial dysfunction. Materials and methods Human UCMSC-exos were isolated and identified. Nucleus pulposus cells (NPCs) were stimulated with H2O2 in the presence or absence of exosomes. Then, 4D label free quantitative (4D-LFQ) proteomics were used to analyze the differentially expressed (DE) proteins. Mitochondrial membrane potential (MMP), mitochondrial ROS and protein levels were determined via immunofluorescence staining, flow cytometry and western blotting respectively. Additionally, high-throughput sequencing was performed to identify the DE miRNAs in NPCs. Finally, therapeutic effects of UCMSC-exos were investigated in a puncture-induced IVDD rat model. Degenerative grades of rat IVDs were assessed using magnetic resonance imaging and histochemical staining. Results UCMSC-exos effectively improved the viability of NPCs and restored the expression of the extracellular matrix (ECM) proteins, collagen type II alpha-1 (COL2A1) and matrix metalloproteinase-13 induced by H2O2. Additionally, UCMSC-exos not only reduced the total intracellular ROS and mitochondrial superoxide levels, but also increased MMP in pathological NPCs. 4D-LFQ proteomics and western blotting further revealed that UCMSC-exos up-regulated the levels of the mitochondrial protein, mitochondrial transcription factor A (TFAM), in H2O2-induced NPCs. High-throughput sequencing and qRT-PCR uncovered that UCMSC-exos down-regulated the levels of miR-194-5p, a potential negative regulator of TFAM, induced by H2O2. Finally, in vivo results showed that UCMSC-exos injection improved the histopathological structure and enhanced the expression levels of COL2A1 and TFAM in the rat IVDD model. Conclusions Our findings suggest that UCMSC-exos promote ECM synthesis, relieve mitochondrial oxidative stress, and attenuate mitochondrial dysfunction in vitro and in vivo, thereby effectively treating IVDD. The translational potential of this article This study provides solid experimental data support for the therapeutic effects of UCMSC-exos on IVDD, suggesting that UCMSC-exos will be a promising nanotherapy for IVDD.
Collapse
Affiliation(s)
- Shu Jia
- Clinical Research Team of Spine & Spinal Cord Diseases, Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong Province, 250355, China
| | - Tao Yang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Sheng Gao
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Luyue Bai
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Zhiguo Zhu
- Clinical Research Team of Spine & Spinal Cord Diseases, Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong Province, 250355, China
| | - Siqi Zhao
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Yexin Wang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Xiao Liang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Yanpeng Li
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Longfei Gao
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Zifang Zhang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Xu Gao
- Department of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, Shandong Province, 266021, China
| | - Dongru Li
- Department of Clinical Medical College, Jining Medical University, 45 Jianshe Road, Jining, Shandong Province, 272000, China
| | - Shang Chen
- Clinical Research Team of Spine & Spinal Cord Diseases, Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Chunyang Meng
- Clinical Research Team of Spine & Spinal Cord Diseases, Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| |
Collapse
|
12
|
Yao Q, He T, Liao JY, Liao R, Wu X, Lin L, Xiao G. Noncoding RNAs in skeletal development and disorders. Biol Res 2024; 57:16. [PMID: 38644509 PMCID: PMC11034114 DOI: 10.1186/s40659-024-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
Protein-encoding genes only constitute less than 2% of total human genomic sequences, and 98% of genetic information was previously referred to as "junk DNA". Meanwhile, non-coding RNAs (ncRNAs) consist of approximately 60% of the transcriptional output of human cells. Thousands of ncRNAs have been identified in recent decades, and their essential roles in the regulation of gene expression in diverse cellular pathways associated with fundamental cell processes, including proliferation, differentiation, apoptosis, and metabolism, have been extensively investigated. Furthermore, the gene regulation networks they form modulate gene expression in normal development and under pathological conditions. In this review, we integrate current information about the classification, biogenesis, and function of ncRNAs and how these ncRNAs support skeletal development through their regulation of critical genes and signaling pathways in vivo. We also summarize the updated knowledge of ncRNAs involved in common skeletal diseases and disorders, including but not limited to osteoporosis, osteoarthritis, rheumatoid arthritis, scoliosis, and intervertebral disc degeneration, by highlighting their roles established from in vivo, in vitro, and ex vivo studies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Rongdong Liao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lijun Lin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Genedy HH, Humbert P, Laoulaou B, Le Moal B, Fusellier M, Passirani C, Le Visage C, Guicheux J, Lepeltier É, Clouet J. MicroRNA-targeting nanomedicines for the treatment of intervertebral disc degeneration. Adv Drug Deliv Rev 2024; 207:115214. [PMID: 38395361 DOI: 10.1016/j.addr.2024.115214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Low back pain stands as a pervasive global health concern, afflicting almost 80% of adults at some point in their lives with nearly 40% attributable to intervertebral disc degeneration (IVDD). As only symptomatic relief can be offered to patients there is a dire need for innovative treatments.Given the accumulating evidence that multiple microRNAs (miRs) are dysregulated during IVDD, they could have a huge potential against this debilitating condition. The way miRs can profoundly modulate signaling pathways and influence several cellular processes at once is particularly exciting to tackle this multifaceted disorder. However, miR delivery encounters extracellular and intracellular biological barriers. A promising technology to address this challenge is the vectorization of miRs within nanoparticles, providing both protection and enhancing their uptake within the scarce target cells of the degenerated IVD. This comprehensive review presents the diverse spectrum of miRs' connection with IVDD and demonstrates their therapeutic potential when vectorized in nanomedicines.
Collapse
Affiliation(s)
- Hussein H Genedy
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Paul Humbert
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| | - Bilel Laoulaou
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Brian Le Moal
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Marion Fusellier
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Department of Diagnostic Imaging, CRIP, ONIRIS, College of Veterinary Medicine, Food Science and Engineering, Nantes F-44307, France
| | | | - Catherine Le Visage
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| | - Jérôme Guicheux
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| | - Élise Lepeltier
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Institut Universitaire de France (IUF), France.
| | - Johann Clouet
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| |
Collapse
|
14
|
Hu Y, Yang R, Liu S, Song Z, Wang H. The Emerging Roles of Nanocarrier Drug Delivery System in Treatment of Intervertebral Disc Degeneration-Current Knowledge, Hot Spots, Challenges and Future Perspectives. Drug Des Devel Ther 2024; 18:1007-1022. [PMID: 38567254 PMCID: PMC10986407 DOI: 10.2147/dddt.s448807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Low back pain (LBP) is a common condition that has substantial consequences on individuals and society, both socially and economically. The primary contributor to LBP is often identified as intervertebral disc degeneration (IVDD), which worsens and leads to significant spinal problems. The conventional treatment approach for IVDD involves physiotherapy, drug therapy for pain management, and, in severe cases, surgery. However, none of these treatments address the underlying cause of the condition, meaning that they cannot fundamentally reverse IVDD or restore the mechanical function of the spine. Nanotechnology and regenerative medicine have made significant advancements in the field of healthcare, particularly in the area of nanodrug delivery systems (NDDSs). These approaches have demonstrated significant potential in enhancing the efficacy of IVDD treatments by providing benefits such as high biocompatibility, biodegradability, precise drug delivery to targeted areas, prolonged drug release, and improved therapeutic results. The advancements in different NDDSs designed for delivering various genes, cells, proteins and therapeutic drugs have opened up new opportunities for effectively addressing IVDD. This comprehensive review provides a consolidated overview of the recent advancements in the use of NDDSs for the treatment of IVDD. It emphasizes the potential of these systems in overcoming the challenges associated with this condition. Meanwhile, the insights and ideas presented in this review aim to contribute to the advancement of precise IVDD treatment using NDDSs.
Collapse
Affiliation(s)
- Yunxiang Hu
- Department of Orthopedics, Central Hospital of Dalian University of Technology, Dalian City, Liaoning Province, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
| | - Rui Yang
- Department of Orthopedics, Central Hospital of Dalian University of Technology, Dalian City, Liaoning Province, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
| | - Sanmao Liu
- Department of Orthopedics, Central Hospital of Dalian University of Technology, Dalian City, Liaoning Province, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
| | - Zefeng Song
- School of Graduates, Dalian University of Technology, Dalian City, Liaoning Province, People’s Republic of China
| | - Hong Wang
- Department of Orthopedics, Central Hospital of Dalian University of Technology, Dalian City, Liaoning Province, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
| |
Collapse
|
15
|
Shen J, Lan Y, Ji Z, Liu H. Sirtuins in intervertebral disc degeneration: current understanding. Mol Med 2024; 30:44. [PMID: 38553713 PMCID: PMC10981339 DOI: 10.1186/s10020-024-00811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is one of the etiologic factors of degenerative spinal diseases, which can lead to a variety of pathological spinal conditions such as disc herniation, spinal stenosis, and scoliosis. IVDD is a leading cause of lower back pain, the prevalence of which increases with age. Recently, Sirtuins/SIRTs and their related activators have received attention for their activity in the treatment of IVDD. In this paper, a comprehensive systematic review of the literature on the role of SIRTs and their activators on IVDD in recent years is presented. The molecular pathways involved in the regulation of IVDD by SIRTs are summarized, and the effects of SIRTs on senescence, inflammatory responses, oxidative stress, and mitochondrial dysfunction in myeloid cells are discussed with a view to suggesting possible solutions for the current treatment of IVDD. PURPOSE This paper focuses on the molecular mechanisms by which SIRTs and their activators act on IVDD. METHODS A literature search was conducted in Pubmed and Web of Science databases over a 13-year period from 2011 to 2024 for the terms "SIRT", "Sirtuin", "IVDD", "IDD", "IVD", "NP", "Intervertebral disc degeneration", "Intervertebral disc" and "Nucleus pulposus". RESULTS According to the results, SIRTs and a large number of activators showed positive effects against IVDD.SIRTs modulate autophagy, myeloid apoptosis, oxidative stress and extracellular matrix degradation. In addition, they attenuate inflammatory factor-induced disc damage and maintain homeostasis during disc degeneration. Several clinical studies have reported the protective effects of some SIRTs activators (e.g., resveratrol, melatonin, honokiol, and 1,4-dihydropyridine) against IVDD. CONCLUSION The fact that SIRTs and their activators play a hundred different roles in IVDD helps to better understand their potential to develop further treatments for IVDD. NOVELTY This review summarizes current information on the mechanisms of action of SIRTs in IVDD and the challenges and limitations of translating their basic research into therapy.
Collapse
Affiliation(s)
- Jianlin Shen
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China
- Central Laboratory, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China
| | - Yujian Lan
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ziyu Ji
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Huan Liu
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- The Third People's Hospital of Longmatan District, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
16
|
Zhao Y, Dong H, Xia Q, Wang Y, Zhu L, Hu Z, Xia J, Mao Q, Weng Z, Yi J, Feng S, Jiang Y, Liao W, Xin Z. A new strategy for intervertebral disc regeneration: The synergistic potential of mesenchymal stem cells and their extracellular vesicles with hydrogel scaffolds. Biomed Pharmacother 2024; 172:116238. [PMID: 38308965 DOI: 10.1016/j.biopha.2024.116238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a disease that severely affects spinal health and is prevalent worldwide. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have regenerative potential and have emerged as promising therapeutic tools for treating degenerative discs. However, challenges such as the harsh microenvironment of degenerated intervertebral discs and EVs' limited stability and efficacy have hindered their clinical application. In recent years, hydrogels have attracted much attention in the field of IDD therapy because they can mimic the physiologic microenvironment of the disc and provide a potential solution by providing a suitable growth environment for MSCs and EVs. This review introduced the biological properties of MSCs and their derived EVs, summarized the research on the application of MSCs and EVs in IDD, summarized the current clinical trial studies of MSCs and EVs, and also explored the mechanism of action of MSCs and EVs in intervertebral discs. In addition, plenty of research elaborated on the mechanism of action of different classified hydrogels in tissue engineering, the synergistic effect of MSCs and EVs in promoting intervertebral disc regeneration, and their wide application in treating IDD. Finally, the challenges and problems still faced by hydrogel-loaded MSCs and EVs in the treatment of IDD are summarized, and potential solutions are proposed. This paper outlines the synergistic effects of MSCs and EVs in treating IDD in combination with hydrogels and aims to provide theoretical references for future related studies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yanyang Wang
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zongyue Hu
- Department of Pain Rehabilitation, Affiliated Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443003, Hubei, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiangbi Yi
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Shuai Feng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Youhong Jiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China; Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
17
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
18
|
Li QW, Guo RC, Wu ZM, Shen CL. Potential Use of Extracellular Vesicles in the Treatment of Intervertebral Disc Degeneration. Tissue Eng Part C Methods 2024; 30:73-84. [PMID: 37930732 DOI: 10.1089/ten.tec.2023.0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a major cause of low back pain, and several studies have evaluated the efficacy of extracellular vesicles (EVs) in the treatment of IVDD. The databases PubMed, Embase, and Cochrane Library were systematically searched from inception to the end of 2022 to identify studies investigating the therapeutic potential of cell-derived EVs for IVDD treatment. The following outcome measures were utilized: magnetic resonance imaging (MRI) Pfirrmann grading system, disc height index (DHI), histological grading, and apoptosis rate. A comprehensive meta-analysis was conducted, including a total of 13 articles comprising 19 studies involving 218 experimental animals. Comparative analysis between normal cell-derived EVs and placebo revealed significant reductions in MRI grade, increased DHI values, decreased nucleus pulposus cell apoptosis rates, and improved tissue grades. These findings collectively demonstrate the effective inhibition of IVDD through the application of EVs derived from cells. In conclusion, this study provides an updated synthesis of evidence supporting the efficacy of EVs as a promising therapeutic approach for IVDD treatment.
Collapse
Affiliation(s)
- Qiu-Wei Li
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ruo-Cheng Guo
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zuo-Meng Wu
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Cai-Liang Shen
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
19
|
Peng YW, Tang R, Xu QY, Mei SY, Zhou Y, Feng JH, Zhang SY, He ZY. Worldwide productivity and research trend of publications concerning extracellular vesicles role in fibrosis: A bibliometric study from 2013 to 2022. Heliyon 2024; 10:e24357. [PMID: 38293443 PMCID: PMC10826165 DOI: 10.1016/j.heliyon.2024.e24357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Background Fibrosis is a heavy burden on the global healthcare system. Recently, an increasing number of studies have demonstrated that Extracellular vesicles play an important role in intercellular communication under both physiological and pathological conditions. This study aimed to explore the role of extracellular vesicles' in fibrosis using bibliometric methods. Methods Original articles and reviews related to extracellular vesicles and fibrosis were obtained from the Web of Science Core Collection database on November 9, 2022. VOSviewer was used to obtain general information, including co-institution, co-authorship, and co-occurrence visualization maps. The CiteSpace software was used to analyze citation bursts of keywords and references, a timeline view of the top clusters of keywords and cited articles, and the dual map. R package "bibliometrix" was used to analyze annual production, citation per year, collaboration network between countries/regions, thematic evolution map, and historiography network. Results In total, 3376 articles related to extracellular vesicles and fibrosis published from 2013 to 2022 were included in this study, with China and the United States being the top contributors. Shanghai Jiao Tong University has the highest number of publications. The main collaborators were Giovanni Camussi, Stefania Bruno, Marta Tepparo, and Cristina Grange. Journals related to molecular, biology, genetics, health, immunology, and medicine tended to publish literature on extracellular vesicles and fibrosis. "Recovery," "heterogeneity," "degradation," "inflammation," and "mesenchymal stem cells" are the keywords in this research field. Literature on extracellular vesicles and fibrosis associated with several diseases, including "kidney disease," "rheumatoid arthritis," and "skin regeneration" may be the latest hot research field. Conclusions This study provides a comprehensive perspective on extracellular vesicles and fibrosis through a bibliometric analysis of articles published between 2013 and 2022. We identified the most influential countries, institutions, authors, and journals. We provide information on recent research frontiers and trends for scholars interested in the field of extracellular vesicles and fibrosis. Their role in biological processes has great potential to initiate a new upsurge in future research.
Collapse
Affiliation(s)
| | | | - Qiao-Yi Xu
- Department of Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shu-Ya Mei
- Department of Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yang Zhou
- Department of Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jin-Hua Feng
- Department of Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shu-Yi Zhang
- Department of Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zheng-Yu He
- Department of Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
20
|
Rather HA, Almousa S, Craft S, Deep G. Therapeutic efficacy and promise of stem cell-derived extracellular vesicles in Alzheimer's disease and other aging-related disorders. Ageing Res Rev 2023; 92:102088. [PMID: 37827304 PMCID: PMC10842260 DOI: 10.1016/j.arr.2023.102088] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The term extracellular vesicles (EVs) refers to a variety of heterogeneous nanovesicles secreted by almost all cell types, primarily for intercellular communication and maintaining cellular homeostasis. The role of EVs has been widely reported in the genesis and progression of multiple pathological conditions, and these vesicles are suggested to serve as 'liquid biopsies'. In addition to their use as biomarkers, EVs secreted by specific cell types, especially with stem cell properties, have shown promise as cell-free nanotherapeutics. Stem cell-derived EVs (SC-EVs) have been increasingly used as an attractive alternative to stem cell therapies and have been reported to promote regeneration of aging-associated tissue loss and function. SC-EVs treatment ameliorates brain and peripheral aging, reproductive dysfunctions and inhibits cellular senescence, thereby reversing several aging-related disorders and dysfunctions. The anti-aging therapeutic potential of SC-EVs depends on multiple factors, including the type of stem cells, the age of the source stem cells, and their physiological state. In this review, we briefly describe studies related to the promising effects of SC-EVs against various aging-related pathologies, and then we focus in-depth on the therapeutic benefits of SC-EVs against Alzheimer's disease, one of the most devastating neurodegenerative diseases in elderly individuals. Numerous studies in transgenic mouse models have reported the usefulness of SC-EVs in targeting the pathological hallmarks of Alzheimer's disease, including amyloid plaques, neurofibrillary tangles, and neuroinflammation, leading to improved neuronal protection, synaptic plasticity, and cognitive measures. Cell culture studies have further identified the underlying molecular mechanisms through which SC-EVs reduce amyloid beta (Aβ) levels or shift microglia phenotype from pro-inflammatory to anti-inflammatory state. Interestingly, multiple routes of administration, including nasal delivery, have confirmed that SC-EVs could cross the blood-brain barrier. Due to this, SC-EVs have also been tested to deliver specific therapeutic cargo molecule/s (e.g., neprilysin) to the brain. Despite these promises, several challenges related to quality control, scalability, and biodistribution remain, hindering the realization of the vast clinical promise of SC-EVs.
Collapse
Affiliation(s)
- Hilal Ahmad Rather
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Sameh Almousa
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Suzanne Craft
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Atirum Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
21
|
Zhu S, Wang J, Suo M, Huang H, Liu X, Wang J, Li Z. Can extracellular vesicles be considered as a potential frontier in the treatment of intervertebral disc disease? Ageing Res Rev 2023; 92:102094. [PMID: 37863436 DOI: 10.1016/j.arr.2023.102094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
As a global public health problem, low back pain (LBP) caused by intervertebral disc degeneration (IDD) seriously affects patients' quality of life. In addition, the prevalence of IDD tends to be younger, which brings a huge burden to individuals and society economically. Current treatments do not delay or reverse the progression of IDD. The emergence of biologic therapies has brought new hope for the treatment of IDD. Among them, extracellular vesicles (EVs), as nanoscale bioactive substances that mediate cellular communication, have now produced many surprising results in the research of the treatment of IDD. This article reviews the mechanisms and roles of EVs in delaying IDD and describes the prospects and challenges of EVs.
Collapse
Affiliation(s)
- Shengxu Zhu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Junlin Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China.
| |
Collapse
|
22
|
Zhang QX, Cui M. How to enhance the ability of mesenchymal stem cells to alleviate intervertebral disc degeneration. World J Stem Cells 2023; 15:989-998. [PMID: 38058958 PMCID: PMC10696189 DOI: 10.4252/wjsc.v15.i11.989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023] Open
Abstract
Intervertebral disc (ID) degeneration (IDD) is one of the main causes of chronic low back pain, and degenerative lesions are usually caused by an imbalance between catabolic and anabolic processes in the ID. The environment in which the ID is located is harsh, with almost no vascular distribution within the disc, and the nutrient supply relies mainly on the diffusion of oxygen and nutrients from the blood vessels located under the endplate. The stability of its internal environment also plays an important role in preventing IDD. The main feature of disc degeneration is a decrease in the number of cells. Mesenchymal stem cells have been used in the treatment of disc lesions due to their ability to differentiate into nucleus pulposus cells in a nonspecific anti-inflammatory manner. The main purpose is to promote their regeneration. The current aim of stem cell therapy is to replace the aged and metamorphosed cells in the ID and to increase the content of the extracellular matrix. The treatment of disc degeneration with stem cells has achieved good efficacy, and the current challenge is how to improve this efficacy. Here, we reviewed current treatments for disc degeneration and summarize studies on stem cell vesicles, enhancement of therapeutic effects when stem cells are mixed with related substances, and improvements in the efficacy of stem cell therapy by adjuvants under adverse conditions. We reviewed the new approaches and ideas for stem cell treatment of disc degeneration in order to contribute to the development of new therapeutic approaches to meet current challenges.
Collapse
Affiliation(s)
- Qing-Xiang Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
- Department of Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430048, Hubei Province, China
| | - Min Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
23
|
Jia Z, Zhang S, Li W. Harnessing Stem Cell-Derived Extracellular Vesicles for the Regeneration of Degenerative Bone Conditions. Int J Nanomedicine 2023; 18:5561-5578. [PMID: 37795043 PMCID: PMC10546935 DOI: 10.2147/ijn.s424731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023] Open
Abstract
Degenerative bone disorders such as intervertebral disc degeneration (IVDD), osteoarthritis (OA), and osteoporosis (OP) pose significant health challenges for aging populations and lack effective treatment options. The field of regenerative medicine holds promise in addressing these disorders, with a focus on utilizing extracellular vesicles (EVs) derived from stem cells as an innovative therapeutic approach. EVs have shown great potential in stimulating biological responses, making them an attractive candidate for rejuvenating degenerative bone disorders. However, a comprehensive review summarizing the current state of this field and providing a clear assessment of EV-based therapies in degenerative bone disorders is currently deficient. In this review, we aim to fill the existing gap by outlining the current knowledge on the role of EVs derived from different types of stem cells, such as mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells, in bone regeneration. Furthermore, we discuss the therapeutic potential of EV-based treatments for IVDD, OA, and OP. By substantiating the use of stem cell-derived EVs, we highlight their promising potential as a cell-free strategy to improve degenerative bone disorders.
Collapse
Affiliation(s)
- Zhiwei Jia
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 101100, People’s Republic of China
| | - Shunxin Zhang
- Department of Ultrasound, 2nd Medical Center of PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Wei Li
- Department of Sports Medicine, Fourth Medical Center of PLA General Hospital, Beijing, 100048, People’s Republic of China
| |
Collapse
|
24
|
Dias IX, Cordeiro A, Guimarães JAM, Silva KR. Potential and Limitations of Induced Pluripotent Stem Cells-Derived Mesenchymal Stem Cells in Musculoskeletal Disorders Treatment. Biomolecules 2023; 13:1342. [PMID: 37759742 PMCID: PMC10526864 DOI: 10.3390/biom13091342] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 09/29/2023] Open
Abstract
The burden of musculoskeletal disorders (MSK) is increasing worldwide. It affects millions of people worldwide, decreases their quality of life, and can cause mortality. The treatment of such conditions is challenging and often requires surgery. Thus, it is necessary to discuss new strategies. The therapeutic potential of mesenchymal stem cells (MSC) in several diseases has been investigated with relative success. However, this potential is hindered by their limited stemness and expansion ability in vitro and their high donor variability. MSC derived from induced pluripotent stem cells (iPSC) have emerged as an alternative treatment for MSK diseases. These cells present distinct features, such as a juvenile phenotype, in addition to higher stemness, proliferation, and differentiation potential than those of MSC. Here, we review the opportunities, challenges, and applications of iPSC as relevant clinical therapeutic cell sources for MSK disorders. We discuss iPSC sources from which to derive iMSC and the advantages and disadvantages of iMSC over MSC as a therapeutic approach. We further summarize the main preclinical and clinical studies exploring the therapeutic potential of iMSC in MSK disorders.
Collapse
Affiliation(s)
- Isabelle Xavier Dias
- Teaching and Research Division, National Institute of Traumatology and Orthopaedics, Rio de Janeiro 20940-070, Brazil; (A.C.); (J.A.M.G.)
| | - Aline Cordeiro
- Teaching and Research Division, National Institute of Traumatology and Orthopaedics, Rio de Janeiro 20940-070, Brazil; (A.C.); (J.A.M.G.)
| | - João Antonio Matheus Guimarães
- Teaching and Research Division, National Institute of Traumatology and Orthopaedics, Rio de Janeiro 20940-070, Brazil; (A.C.); (J.A.M.G.)
| | - Karina Ribeiro Silva
- Teaching and Research Division, National Institute of Traumatology and Orthopaedics, Rio de Janeiro 20940-070, Brazil; (A.C.); (J.A.M.G.)
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| |
Collapse
|
25
|
Fan C, Chu G, Yu Z, Ji Z, Kong F, Yao L, Wang J, Geng D, Wu X, Mao H. The role of ferroptosis in intervertebral disc degeneration. Front Cell Dev Biol 2023; 11:1219840. [PMID: 37576601 PMCID: PMC10413580 DOI: 10.3389/fcell.2023.1219840] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Nucleus pulposus, annulus fibrosus, and cartilage endplate constitute an avascular intervertebral disc (IVD), which is crucial for spinal and intervertebral joint mobility. As one of the most widespread health issues worldwide, intervertebral disc degeneration (IVDD) is recognized as a key contributor to back and neck discomfort. A number of degenerative disorders have a strong correlation with ferroptosis, a recently identified novel regulated cell death (RCD) characterized by an iron-dependent mechanism and a buildup of lipid reactive oxygen species (ROS). There is growing interest in the part ferroptosis plays in IVDD pathophysiology. Inhibiting ferroptosis has been shown to control IVDD development. Several studies have demonstrated that in TBHP-induced oxidative stress models, changes in ferroptosis marker protein levels and increased lipid peroxidation lead to the degeneration of intervertebral disc cells, which subsequently aggravates IVDD. Similarly, IVDD is significantly relieved with the use of ferroptosis inhibitors. The purpose of this review was threefold: 1) to discuss the occurrence of ferroptosis in IVDD; 2) to understand the mechanism of ferroptosis and its role in IVDD pathophysiology; and 3) to investigate the feasibility and prospect of ferroptosis in IVDD treatment.
Collapse
Affiliation(s)
- Chunyang Fan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zilin Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhongwei Ji
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Pain Management, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fanchen Kong
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lingye Yao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiale Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xiexing Wu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Haiqing Mao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
26
|
Yin P, Jiang Y, Fang X, Wang D, Li Y, Chen M, Deng H, Tang P, Zhang L. Cell-Based Therapies for Degenerative Musculoskeletal Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207050. [PMID: 37199688 PMCID: PMC10375105 DOI: 10.1002/advs.202207050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/29/2023] [Indexed: 05/19/2023]
Abstract
Degenerative musculoskeletal diseases (DMDs), including osteoporosis, osteoarthritis, degenerative disc disease, and sarcopenia, present major challenges in the aging population. Patients with DMDs present with pain, functional decline, and reduced exercise tolerance, which result in long-term or permanent deficits in their ability to perform daily activities. Current strategies for dealing with this cluster of diseases focus on relieving pain, but they have a limited capacity to repair function or regenerate tissue. Cell-based therapies have attracted considerable attention in recent years owing to their unique mechanisms of action and remarkable effects on regeneration. In this review, current experimental attempts to use cell-based therapies for DMDs are highlighted, and the modes of action of different cell types and their derivatives, such as exosomes, are generalized. In addition, the latest findings from state-of-the-art clinical trials are reviewed, approaches to improve the efficiency of cell-based therapies are summarized, and unresolved questions and potential future research directions for the translation of cell-based therapies are identified.
Collapse
Affiliation(s)
- Pengbin Yin
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Yuheng Jiang
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
- Department of OrthopedicsGeneral Hospital of Southern Theater Command of PLANo. 111, Liuhua AvenueGuangzhou510010China
| | - Xuan Fang
- Department of Anatomy, Histology and EmbryologySchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Daofeng Wang
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Yi Li
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Ming Chen
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Hao Deng
- Department of OrthopedicsThird Affiliated Hospital of Jinzhou Medical UniversityJinzhouLiaoning Province121000China
| | - Peifu Tang
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Licheng Zhang
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| |
Collapse
|
27
|
Matos BMD, Stimamiglio MA, Correa A, Robert AW. Human pluripotent stem cell-derived extracellular vesicles: From now to the future. World J Stem Cells 2023; 15:453-465. [PMID: 37342215 PMCID: PMC10277970 DOI: 10.4252/wjsc.v15.i5.453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023] Open
Abstract
Extracellular vesicles (EVs) are nanometric particles that enclose cell-derived bioactive molecules in a lipid bilayer and serve as intercellular communication tools. Accordingly, in various biological contexts, EVs are reported to engage in immune modulation, senescence, and cell proliferation and differentiation. Therefore, EVs could be key elements for potential off-the-shelf cell-free therapy. Little has been studied regarding EVs derived from human pluripotent stem cells (hPSC-EVs), even though hPSCs offer good opportunities for induction of tissue regeneration and unlimited proliferative ability. In this review article, we provide an overview of studies using hPSC-EVs, focusing on identifying the conditions in which the cells are cultivated for the isolation of EVs, how they are characterized, and applications already demonstrated. The topics reported in this article highlight the incipient status of the studies in the field and the significance of hPSC-EVs’ prospective applications as PSC-derived cell-free therapy products.
Collapse
Affiliation(s)
- Bruno Moises de Matos
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Curitiba 81350010, Paraná, Brazil
| | | | - Alejandro Correa
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Curitiba 81350010, Paraná, Brazil
| | - Anny Waloski Robert
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Curitiba 81350010, Paraná, Brazil
| |
Collapse
|
28
|
Yu Y, Li W, Xian T, Tu M, Wu H, Zhang J. Human Embryonic Stem-Cell-Derived Exosomes Repress NLRP3 Inflammasome to Alleviate Pyroptosis in Nucleus Pulposus Cells by Transmitting miR-302c. Int J Mol Sci 2023; 24:ijms24087664. [PMID: 37108824 PMCID: PMC10141109 DOI: 10.3390/ijms24087664] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Recent studies have shown that the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is extensively activated in the process of intervertebral disc degeneration (IVDD), leading to the pyroptosis of nucleus pulposus cells (NPCs) and the exacerbation of the pathological development of the intervertebral disc (IVD). Exosomes derived from human embryonic stem cells (hESCs-exo) have shown great therapeutic potential in degenerative diseases. We hypothesized that hESCs-exo could alleviate IVDD by downregulating NLRP3. We measured the NLRP3 protein levels in different grades of IVDD and the effect of hESCs-exo on the H2O2-induced pyroptosis of NPCs. Our results indicate that the expression of NLRP3 was upregulated with the increase in IVD degeneration. hESCs-exo were able to reduce the H2O2-mediated pyroptosis of NPCs by downregulating the expression levels of NLRP3 inflammasome-related genes. Bioinformatics software predicted that miR-302c, an embryonic stem-cell-specific RNA, can inhibit NLRP3, thereby alleviating the pyroptosis of NPCs, and this was further verified by the overexpression of miR-302c in NPCs. In vivo experiments confirmed the above results in a rat caudal IVDD model. Our study demonstrates that hESCs-exo could inhibit excessive NPC pyroptosis by downregulating the NLRP3 inflammasome during IVDD, and miR-302c may play a key role in this process.
Collapse
Affiliation(s)
- Yawen Yu
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China
| | - Wenting Li
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China
| | - Tinghui Xian
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China
| | - Mei Tu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Hao Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Jiaqing Zhang
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China
| |
Collapse
|
29
|
Aldoghachi AF, Loh JK, Wang ML, Yang YP, Chien CS, Teh HX, Omar AH, Cheong SK, Yeap SK, Ho WY, Ong AHK. Current developments and therapeutic potentials of exosomes from induced pluripotent stem cells-derived mesenchymal stem cells. J Chin Med Assoc 2023; 86:356-365. [PMID: 36762931 DOI: 10.1097/jcma.0000000000000899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells derived from adult human tissues that have the ability to proliferate in vitro and maintain their multipotency, making them attractive cell sources for regenerative medicine. However, MSCs reportedly show limited proliferative capacity with inconsistent therapeutic outcomes due to their heterogeneous nature. On the other hand, induced pluripotent stem cells (iPSC) have emerged as an alternative source for the production of various specialized cell types via their ability to differentiate from all three primary germ layers, leading to applications in regenerative medicine, disease modeling, and drug therapy. Notably, iPSCs can differentiate into MSCs in monolayer, commonly referred to as induced mesenchymal stem cells (iMSCs). These cells show superior therapeutic qualities compared with adult MSCs as the applications of the latter are restricted by passage number and autoimmune rejection when applied in tissue regeneration trials. Furthermore, increasing evidence shows that the therapeutic properties of stem cells are a consequence of the paracrine effects mediated by their secretome such as from exosomes, a type of extracellular vesicle secreted by most cell types. Several studies that investigated the potential of exosomes in regenerative medicine and therapy have revealed promising results. Therefore, this review focuses on the recent findings of exosomes secreted from iMSCs as a potential noncell-based therapy.
Collapse
Affiliation(s)
- Ahmed Faris Aldoghachi
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Jit-Kai Loh
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Mong-Lien Wang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chian-Shiu Chien
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hui Xin Teh
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Alfaqih Hussain Omar
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, Malaysia
| | - Soon-Keng Cheong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
- National Cancer Council (MAKNA), Kuala Lumpur, Malaysia
| | - Swee Keong Yeap
- Marine Biotechnology, China-ASEAN College of Marine Sciences, Xiamen University Malaysia Campus, Jalan Sunsuria, Bandar Sunsuria, Sepang, Selangor, Malaysia
| | - Wan Yong Ho
- Faculty of Sciences and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Alan Han-Kiat Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| |
Collapse
|
30
|
miR-4478 Accelerates Nucleus Pulposus Cells Apoptosis Induced by Oxidative Stress by Targeting MTH1. Spine (Phila Pa 1976) 2023; 48:E54-E69. [PMID: 36130054 PMCID: PMC9897280 DOI: 10.1097/brs.0000000000004486] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/31/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Low back pain is the leading cause of disability in the elderly population and is strongly associated with intervertebral disk degeneration (IVDD). However, the precise molecular mechanisms regulating IVDD remain elusive. This study aimed to investigate the role of differentially expressed miRNAs in the pathogenesis of IVDD. MATERIALS AND METHODS We analyzed miRNA microarray datasets to identify differentially expressed miRNAs in IVDD progression and conducted quantitative real-time polymerase chain reaction and fluorescence in situ hybridization analysis to further confirm the differential expression of miR-4478 in nucleus pulposus (NP) tissues of patients diagnosed with IVDD. Using public databases of miRNA-mRNA interactions, we predicted the target genes of miR-4478, and subsequent flow cytometry and western blot analyses demonstrated the effect of MTH1 in H 2 O 2 -induced nucleus pulposus cells (NPCs) apoptosis. Finally, miR-4478 inhibitor was injected into NP tissues of the IVDD mouse model to explore the effect of miR-4478 in vivo. RESULTS miR-4478 was upregulated in NP tissues from IVDD patients. Silencing of miR-4478 inhibits H 2 O 2 -induced NPCs apoptosis. MTH1 was identified as a target gene for miR-4478, and miR-4478 regulates H 2 O 2 -induced NPCs apoptosis by modulating MTH1. In addition, downregulation of miR-4478 alleviated IVDD in a mouse model. CONCLUSIONS In summary, our study provides evidence that miR-4478 may aggravate IVDD through its target gene MTH1 by accelerating oxidative stress in NPCs and demonstrates that miR-4478 has therapeutic potential in IVDD treatment.
Collapse
|
31
|
Conditioned Medium - Is it an Undervalued Lab Waste with the Potential for Osteoarthritis Management? Stem Cell Rev Rep 2023:10.1007/s12015-023-10517-1. [PMID: 36790694 PMCID: PMC10366316 DOI: 10.1007/s12015-023-10517-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND The approaches currently used in osteoarthritis (OA) are mainly short-term solutions with unsatisfactory outcomes. Cell-based therapies are still controversial (in terms of the sources of cells and the results) and require strict culture protocol, quality control, and may have side-effects. A distinct population of stromal cells has an interesting secretome composition that is underrated and commonly ends up as biological waste. Their unique properties could be used to improve the existing techniques due to protective and anti-ageing properties. SCOPE OF REVIEW In this review, we seek to outline the advantages of the use of conditioned media (CM) and exosomes, which render them superior to other cell-based methods, and to summarise current information on the composition of CM and their effect on chondrocytes. MAJOR CONCLUSIONS CM are obtainable from a variety of mesenchymal stromal cell (MSC) sources, such as adipose tissue, bone marrow and umbilical cord, which is significant to their composition. The components present in CMs include proteins, cytokines, growth factors, chemokines, lipids and ncRNA with a variety of functions. In most in vitro and in vivo studies CM from MSCs had a beneficial effect in enhance processes associated with chondrocyte OA pathomechanism. GENERAL SIGNIFICANCE This review summarises the information available in the literature on the function of components most commonly detected in MSC-conditioned media, as well as the effect of CM on OA chondrocytes in in vitro culture. It also highlights the need to standardise protocols for obtaining CM, and to conduct clinical trials to transfer the effects obtained in vitro to human subjects.
Collapse
|
32
|
Romero-García N, Huete-Acevedo J, Mas-Bargues C, Sanz-Ros J, Dromant M, Borrás C. The Double-Edged Role of Extracellular Vesicles in the Hallmarks of Aging. Biomolecules 2023; 13:165. [PMID: 36671550 PMCID: PMC9855573 DOI: 10.3390/biom13010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
The exponential growth in the elderly population and their associated socioeconomic burden have recently brought aging research into the spotlight. To integrate current knowledge and guide potential interventions, nine biochemical pathways are summarized under the term hallmarks of aging. These hallmarks are deeply inter-related and act together to drive the aging process. Altered intercellular communication is particularly relevant since it explains how damage at the cellular level translates into age-related loss of function at the organismal level. As the main effectors of intercellular communication, extracellular vesicles (EVs) might play a key role in the aggravation or mitigation of the hallmarks of aging. This review aims to summarize this role and to provide context for the multiple emerging EV-based gerotherapeutic strategies that are currently under study.
Collapse
Affiliation(s)
- Nekane Romero-García
- Department of Anesthesiology and Surgical Trauma Intensive Care, Hospital Clinic Universitari Valencia, University of Valencia, 46010 Valencia, Spain
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Cardiology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
33
|
Alberti G, Russo E, Corrao S, Anzalone R, Kruzliak P, Miceli V, Conaldi PG, Di Gaudio F, La Rocca G. Current Perspectives on Adult Mesenchymal Stromal Cell-Derived Extracellular Vesicles: Biological Features and Clinical Indications. Biomedicines 2022; 10:2822. [PMID: 36359342 PMCID: PMC9687875 DOI: 10.3390/biomedicines10112822] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 08/10/2023] Open
Abstract
Extracellular vesicles (EVs) constitute one of the main mechanisms by which cells communicate with the surrounding tissue or at distance. Vesicle secretion is featured by most cell types, and adult mesenchymal stromal cells (MSCs) of different tissue origins have shown the ability to produce them. In recent years, several reports disclosed the molecular composition and suggested clinical indications for EVs derived from adult MSCs. The parental cells were already known for their roles in different disease settings in regulating inflammation, immune modulation, or transdifferentiation to promote cell repopulation. Interestingly, most reports also suggested that part of the properties of parental cells were maintained by isolated EV populations. This review analyzes the recent development in the field of cell-free therapies, focusing on several adult tissues as a source of MSC-derived EVs and the available clinical data from in vivo models.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Eleonora Russo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Simona Corrao
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Rita Anzalone
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Peter Kruzliak
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | | | - Giampiero La Rocca
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
34
|
Xia Y, Yang R, Hou Y, Wang H, Li Y, Zhu J, Fu C. Application of mesenchymal stem cell-derived exosomes from different sources in intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:1019437. [PMID: 36277386 PMCID: PMC9585200 DOI: 10.3389/fbioe.2022.1019437] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a main cause of lower back pain, leading to psychological and economic burdens to patients. Physical therapy only delays pain in patients but cannot eliminate the cause of IVDD. Surgery is required when the patient cannot tolerate pain or has severe neurological symptoms. Although surgical resection of IVD or decompression of the laminae eliminates the diseased segment, it damages adjacent normal IVD. There is also a risk of re-protrusion after IVD removal. Cell therapy has played a crucial role in the development of regenerative medicine. Cell transplantation promotes regeneration of degenerative tissue. However, owing to the lack of vascular structure in IVD, sufficient nutrients cannot be provided for transplanted mesenchymal stem cells (MSCs). In addition, dead cells release harmful substances that aggravate IVDD. Extracellular vesicles (EVs) have been extensively studied as an emerging therapeutic approach. EVs generated by paracrine MSCs retain the potential of MSCs and serve as carriers to deliver their contents to target cells to regulate target cell activity. Owing to their double-layered membrane structure, EVs have a low immunogenicity and no immune rejection. Therefore, EVs are considered an emerging therapeutic modality in IVDD. However, they are limited by mass production and low loading rates. In this review, the structure of IVD and advantages of EVs are introduced, and the application of MSC-EVs in IVDD is discussed. The current limitations of EVs and future applications are described.
Collapse
Affiliation(s)
- Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ruohan Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yulin Hou
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Changfeng Fu,
| |
Collapse
|
35
|
Recent Advances in Extracellular Vesicle-Based Therapies Using Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells. Biomedicines 2022; 10:biomedicines10092281. [PMID: 36140386 PMCID: PMC9496279 DOI: 10.3390/biomedicines10092281] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/26/2022] Open
Abstract
Extracellular vesicles (EVs) are being widely investigated as acellular therapeutics in regenerative medicine applications. EVs isolated from mesenchymal stromal cells (MSCs) are by far the most frequently used in preclinical models for diverse therapeutic applications, including inflammatory, degenerative, or acute diseases. Although they represent promising tools as cell-free therapeutic agents, one limitation to their use is related to the batch-to-batch unreliability that may arise from the heterogeneity between MSC donors. Isolating EVs from MSCs derived from induced pluripotent stem cells (iMSCs) might allow unlimited access to cells with a more stable phenotype and function. In the present review, we first present the latest findings regarding the functional aspects of EVs isolated from iMSCs and their interest in regenerative medicine for the treatment of various diseases. We will then discuss future directions for their translation to clinics with good manufacturing practice implementation.
Collapse
|
36
|
Li Z, Wu Y, Tan G, Xu Z, Xue H. Exosomes and exosomal miRNAs: A new therapy for intervertebral disc degeneration. Front Pharmacol 2022; 13:992476. [PMID: 36160436 PMCID: PMC9492865 DOI: 10.3389/fphar.2022.992476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Low back pain has been found as a major cause of global disease burden and disability. Intervertebral disc degeneration is recognized as the vital factor causing low back pain. Intervertebral disc degeneration has a complex mechanism and cannot be avoided. Traditional strategies for the treatment of intervertebral disc degeneration cannot meet the needs of intervertebral disc regeneration, so novel treatment methods are urgently required. Exosomes refer to extracellular vesicles that can be released by most cells, and play major roles in intercellular material transport and information transmission. MicroRNAs have been identified as essential components in exosomes, which can be selectively ingested by exosomes and delivered to receptor cells for the regulation of the physiological activities and functions of receptor cells. Existing studies have progressively focused on the role of exosomes and exosomal microRNAs in the treatment of intervertebral disc degeneration. The focus on this paper is placed on the changes of microenvironment during intervertebral disc degeneration and the biogenesis and mechanism of action of exosomes and exosomal microRNAs. The research results and deficiencies of exosomes and exosomal microRNAs in the regulation of apoptosis, extracellular matrix homeostasis, inflammatory response, oxidative stress, and angiogenesis in intervertebral disc degeneration are primarily investigated. The aim of this paper is to identify the latest research results, potential applications and challenges of this emerging treatment strategy.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Wu
- Department of Orthopedics, The First Affiliated Hospital of Shandong First Medcial Unversity, Jinan, China
| | - Guoqing Tan
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanwang Xu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Xue
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Haipeng Xue,
| |
Collapse
|
37
|
Bhujel B, Shin HE, Choi DJ, Han I. Mesenchymal Stem Cell-Derived Exosomes and Intervertebral Disc Regeneration: Review. Int J Mol Sci 2022; 23:7306. [PMID: 35806304 PMCID: PMC9267028 DOI: 10.3390/ijms23137306] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a common cause of lower back pain (LBP), which burdens individuals and society as a whole. IVDD occurs as a result of aging, mechanical trauma, lifestyle factors, and certain genetic abnormalities, leads to loss of nucleus pulposus, alteration in the composition of the extracellular matrix, excessive oxidative stress, and inflammation in the intervertebral disc. Pharmacological and surgical interventions are considered a boon for the treatment of IVDD, but the effectiveness of those strategies is limited. Mesenchymal stem cells (MSCs) have recently emerged as a possible promising regenerative therapy for IVDD due to their paracrine effect, restoration of the degenerated cells, and capacity for differentiation into disc cells. Recent investigations have shown that the pleiotropic effect of MSCs is not related to differentiation capacity but is mediated by the secretion of soluble paracrine factors. Early studies have demonstrated that MSC-derived exosomes have therapeutic potential for treating IVDD by promoting cell proliferation, tissue regeneration, modulation of the inflammatory response, and reduced apoptosis. This paper highlights the current state of MSC-derived exosomes in the field of treatment of IVDD with further possible future developments, applications, and challenges.
Collapse
Affiliation(s)
- Basanta Bhujel
- Department of Biomedical Science, College of Life Sciences, CHA University, Seongnam-si 13496, Korea; (B.B.); (H.-E.S.)
| | - Hae-Eun Shin
- Department of Biomedical Science, College of Life Sciences, CHA University, Seongnam-si 13496, Korea; (B.B.); (H.-E.S.)
| | - Dong-Jun Choi
- Department of Medicine, CHA Univerity School of Medicine, Seongnam-si 13496, Korea;
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| |
Collapse
|
38
|
circ_0072464 Shuttled by Bone Mesenchymal Stem Cell-Secreted Extracellular Vesicles Inhibits Nucleus Pulposus Cell Ferroptosis to Relieve Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2948090. [PMID: 35814268 PMCID: PMC9259290 DOI: 10.1155/2022/2948090] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022]
Abstract
Ferroptosis, as an iron-dependent form of necrotic cell death, has been reported to affect activities of nucleus pulposus cells (NPCs). However, its role in the pathogenesis of intervertebral disc degeneration (IDD) is largely unknown. Notably, our bioinformatics analysis predicted that circ_0072464 was downregulated in nucleus pulposus of IDD mice. Therefore, this study is aimed at clarifying the mechanisms of extracellular vesicle- (EV-) encapsulated circ_0072464 derived from bone marrow mesenchymal stem cells (BMSCs) in NPC ferroptosis in IDD. EVs were extracted from mouse BMSCs (BMSC-EVs) and then cocultured with IL-1β-induced NPCs, followed by detection of matrix synthesis, proliferation, and ferroptosis of NPCs based on gain- or loss-of-function experiments. It was found that the uptake of BMSC-EVs by NPCs alleviated IDD. circ_0072464 and NRF2 were downregulated, and miR-431 was upregulated in IDD. Mechanistically, circ_0072464 competitively bound to miR-431, which targeted and inhibited NRF2 expression. BMSC-derived EVs carrying circ_0072464 inhibited NPC ferroptosis to promote matrix synthesis and proliferation of NPCs by inhibiting miR-431 and upregulating NRF2. Besides, in vivo experiments also confirmed that BMSC-EVs alleviated intervertebral disc lesions in mice with IDD through the circ_0072464/miR-431/NRF2 axis. Collectively, BMSC-EV-loaded circ_0072464 inhibited NPC ferroptosis to relieve IDD via upregulation of miR-431-mediated NRF2, therefore providing a potential therapeutic target against IDD.
Collapse
|
39
|
Wang DK, Zheng HL, Zhou WS, Duan ZW, Jiang SD, Li B, Zheng XF, Jiang LS. Mitochondrial Dysfunction in Oxidative Stress-Mediated Intervertebral Disc Degeneration. Orthop Surg 2022; 14:1569-1582. [PMID: 35673928 PMCID: PMC9363752 DOI: 10.1111/os.13302] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is the most common contributor to low back pain (LBP). Recent studies have found that oxidative stress and reactive oxygen species (ROS) play an important role in IVDD. As a by‐product of aerobic respiration, ROS is mainly produced in the mitochondria by the electron transport chain and other mitochondrial located proteins. With the excessive accumulation of ROS, mitochondria are also the primary target of ROS attack in disc cells. A disrupted balance between intracellular ROS production and antioxidant capacity will lead to oxidative stress, which is the key contributor to cell apoptosis, cell senescence, excessive autophagy, and mitochondrial dysfunction. As the pivotal ingredient of oxidative stress, mitochondrial dysfunction manifests as imbalanced mitochondrial dynamics and dysregulated mitophagy. Mitochondria can alter their own dynamics through the process of fusion and fission, so that disabled mitochondria can be separated from the mitochondrial pool. Moreover, mitophagy participates by clearing these dysfunctional mitochondria. Abnormality in any of these processes either increases the production or decreases the clearance of ROS, leading to a vicious cycle that results in the death of intervertebral disc cells in large quantities, combined with degradation of the extracellular matrix and overproduction of matrix metalloproteinase. In this review, we explain the changes in mitochondrial morphology and function during oxidative stress‐mediated IVDD and highlight the important role of mitochondria in this process. Eventually, we summarize the IVDD therapeutic strategies targeting mitochondrial dysfunction based on current understanding of the role of oxidative stress in IVDD.
Collapse
Affiliation(s)
- Dian-Kai Wang
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huo-Liang Zheng
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Sheng Zhou
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Wei Duan
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Dan Jiang
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Li
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Feng Zheng
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei-Sheng Jiang
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Application of stem cells in the repair of intervertebral disc degeneration. Stem Cell Res Ther 2022; 13:70. [PMID: 35148808 PMCID: PMC8832693 DOI: 10.1186/s13287-022-02745-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/25/2022] [Indexed: 12/16/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is a common disease that increases with age, and its occurrence is stressful both psychologically and financially. Stem cell therapy for IDD is emerging. For this therapy, stem cells from different sources have been proven in vitro, in vivo, and in clinical trials to relieve pain and symptoms, reverse the degeneration cascade, delay the aging process, maintain the spine shape, and retain mechanical function. However, further research is needed to explain how stem cells play these roles and what effects they produce in IDD treatment. This review aims to summarize and objectively analyse the current evidence on stem cell therapy for IDD.
Collapse
|
41
|
Yang X, Sun Y, Li X, Zhang W. Rac1 regulates nucleus pulposus cells degeneration and promotes the progression of intervertebral disc degeneration. Am J Physiol Cell Physiol 2022; 322:C496-C507. [PMID: 35108117 DOI: 10.1152/ajpcell.00355.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleus Pulposus Cells (NPCs) dysfunction is considered as an important event related to intervertebral disc degeneration (IVDD). In the present study, tandem mass spectrometry (TMT) was used to detect total protein expression of NP in patients with IVDD and healthy controls. Bioinformatic analysis was performed to identify differentially expressed proteins that may be involved in the degeneration of NP. The results show that Rac1 may be a key protein involved in the degeneration of NP via Wnt/β-catenin pathway activation. We investigated the influence of Rac1 on IVDD degeneration and associated mechanisms. This study has the potential to advance understanding of the mechanism of occurrence of degenerative NP tissues and provide novel strategies for slowing IVDD progression.
Collapse
Affiliation(s)
- Xiaoxu Yang
- Spine center, Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yongjin Sun
- Spine center, Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xu Li
- Spine center, Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wenzhi Zhang
- Spine center, Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
42
|
Wu X, Sun W. Extracellular Vesicles Derived From Stem Cells in Intervertebral Disc Degeneration. Front Cell Dev Biol 2022; 9:793363. [PMID: 35096823 PMCID: PMC8793284 DOI: 10.3389/fcell.2021.793363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is the leading cause of low back pain related to degradation of cartilaginous tissues, mainly resulting from oxidative stress, cell apoptosis, and extracellular matrix degradation. Extracellular vesicles (EVs) exist in all bodily fluids and can be produced by all types of cells. Stem cell-derived EVs (SC-EVs), which are the main paracrine components of stem cells, have gained significant attention in the field of regenerative medicine. Over the past years, accumulating evidence indicates the therapeutic and diagnostic potentials of EVs in IVDD. The main mechanisms involve the induction of regenerative phenotypes, apoptosis alleviation, and immune modulation. In addition, the efficiency of SC-EVs can be enhanced by choosing appropriate donor cells and cell phenotypes, optimizing cell culture conditions, or engineering EVs to deliver drugs and targeting molecules. Given the importance and novelty of SC-EVs, we give an overview of SC-EVs and discuss the roles of SC-EVs in IVDD.
Collapse
Affiliation(s)
- Xinjie Wu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Orthopedic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Wei Sun
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Orthopedic Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
43
|
Zhao B, Chen Q, Zhao L, Mao J, Huang W, Han X, Liu Y. Periodontal Ligament Stem Cell-Derived Small Extracellular Vesicles Embedded in Matrigel Enhance Bone Repair Through the Adenosine Receptor Signaling Pathway. Int J Nanomedicine 2022; 17:519-536. [PMID: 35140462 PMCID: PMC8819539 DOI: 10.2147/ijn.s346755] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose Small extracellular vesicles (sEVs) are natural biocarriers for biomolecule transfer between cells and promising therapeutic strategies for bone defect repair. In this study, human periodontal ligament stem cell (PDLSC)-derived sEVs (P-EVs) were immobilized in Matrigel to establish a topical cell-free transplantation strategy for bone repair. Methods PDLSCs were cultured and P-EVs were isolated from the culture supernatant. In a rat bilateral calvarial defect model, P-EV/Matrigel was plugged into one defect and PBS/Matrigel was applied to the other. Bone repair in vivo was assessed by micro-computed tomography, histomorphometry, and immunohistochemical staining. In vitro, we investigated the effects of P-EVs on the proliferation and migration capabilities of bone marrow mesenchymal stem cells (BMMSCs) and explored the potential mechanism of action. Results The in vivo study showed that P-EV/Matrigel accelerated bone tissue repair by increasing cell infiltration when compared with the control. In vitro, P-EVs enhanced proliferation and migration of BMMSCs via increased phosphorylation of AKT and extracellular signal-regulated kinase 1/2 (ERK1/2). The role of P-EV-induced adenosine receptor signaling in AKT and ERK1/2 phosphorylation was a key mediator during enhanced BMMSC migration. Conclusion These results are the first to demonstrate that P-EVs accelerated the repair of bone defects, partially through promoting cell proliferation and migration. P-EV/Matrigel, which combines topical EV-implantation and extracellular matrix scaffolds, provides a new cell-free strategy for bone tissue repair.
Collapse
Affiliation(s)
- Bingjiao Zhao
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People’s Republic of China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, People’s Republic of China
| | - Qingqing Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, People’s Republic of China
| | - Liru Zhao
- Department of Orthodontics, School of Stomatology, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Jiaqi Mao
- Department of Orthodontics, School of Stomatology, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Wei Huang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, People’s Republic of China
| | - Xinxin Han
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, People’s Republic of China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People’s Republic of China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, People’s Republic of China
- Correspondence: Yuehua Liu, Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, 356 East Beijing Road, Shanghai, 200001, People’s Republic of China, Tel +86-63298475, Fax +86-63614515, Email
| |
Collapse
|
44
|
Lu L, Xu A, Gao F, Tian C, Wang H, Zhang J, Xie Y, Liu P, Liu S, Yang C, Ye Z, Wu X. Mesenchymal Stem Cell-Derived Exosomes as a Novel Strategy for the Treatment of Intervertebral Disc Degeneration. Front Cell Dev Biol 2022; 9:770510. [PMID: 35141231 PMCID: PMC8818990 DOI: 10.3389/fcell.2021.770510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) has been reported to be the most prevalent contributor to low back pain, posing a significant strain on the healthcare systems on a global scale. Currently, there are no approved therapies available for the prevention of the progressive degeneration of intervertebral disc (IVD); however, emerging regenerative strategies that aim to restore the normal structure of the disc have been fundamentally promising. In the last decade, mesenchymal stem cells (MSCs) have received a significant deal of interest for the treatment of IVDD due to their differentiation potential, immunoregulatory capabilities, and capability to be cultured and regulated in a favorable environment. Recent investigations show that the pleiotropic impacts of MSCs are regulated by the production of soluble paracrine factors. Exosomes play an important role in regulating such effects. In this review, we have summarized the current treatments for disc degenerative diseases and their limitations and highlighted the therapeutic role and its underlying mechanism of MSC-derived exosomes in IVDD, as well as the possible future developments for exosomes.
Collapse
Affiliation(s)
- Lin Lu
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aoshuang Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Gao
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenjun Tian
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Honglin Wang
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayao Zhang
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xie
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengran Liu
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songxiang Liu
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhewei Ye
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhewei Ye, ; Xinghuo Wu,
| | - Xinghuo Wu
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhewei Ye, ; Xinghuo Wu,
| |
Collapse
|
45
|
Krut Z, Pelled G, Gazit D, Gazit Z. Stem Cells and Exosomes: New Therapies for Intervertebral Disc Degeneration. Cells 2021; 10:cells10092241. [PMID: 34571890 PMCID: PMC8471333 DOI: 10.3390/cells10092241] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) occurs as a result of an imbalance of the anabolic and catabolic processes in the intervertebral disc, leading to an alteration in the composition of the extracellular matrix (ECM), loss of nucleus pulposus (NP) cells, excessive oxidative stress and inflammation. Degeneration of the IVD occurs naturally with age, but mechanical trauma, lifestyle factors and certain genetic abnormalities can increase the likelihood of symptomatic disease progression. IVDD, often referred to as degenerative disc disease (DDD), poses an increasingly substantial financial burden due to the aging population and increasing incidence of obesity in the United States. Current treatments for IVDD include pharmacological and surgical interventions, but these lack the ability to stop the progression of disease and restore the functionality of the IVD. Biological therapies have been evaluated but show varying degrees of efficacy in reversing disc degeneration long-term. Stem cell-based therapies have shown promising results in the regeneration of the IVD, but face both biological and ethical limitations. Exosomes play an important role in intercellular communication, and stem cell-derived exosomes have been shown to maintain the therapeutic benefit of their origin cells without the associated risks. This review highlights the current state of research on the use of stem-cell derived exosomes in the treatment of IVDD.
Collapse
Affiliation(s)
- Zoe Krut
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Z.K.); (G.P.); (D.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gadi Pelled
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Z.K.); (G.P.); (D.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dan Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Z.K.); (G.P.); (D.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Zulma Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Z.K.); (G.P.); (D.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence:
| |
Collapse
|