1
|
Ghasemi Gojani E, Rai S, Norouzkhani F, Shujat S, Wang B, Li D, Kovalchuk O, Kovalchuk I. Targeting β-Cell Plasticity: A Promising Approach for Diabetes Treatment. Curr Issues Mol Biol 2024; 46:7621-7667. [PMID: 39057094 PMCID: PMC11275945 DOI: 10.3390/cimb46070453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The β-cells within the pancreas play a pivotal role in insulin production and secretion, responding to fluctuations in blood glucose levels. However, factors like obesity, dietary habits, and prolonged insulin resistance can compromise β-cell function, contributing to the development of Type 2 Diabetes (T2D). A critical aspect of this dysfunction involves β-cell dedifferentiation and transdifferentiation, wherein these cells lose their specialized characteristics and adopt different identities, notably transitioning towards progenitor or other pancreatic cell types like α-cells. This process significantly contributes to β-cell malfunction and the progression of T2D, often surpassing the impact of outright β-cell loss. Alterations in the expressions of specific genes and transcription factors unique to β-cells, along with epigenetic modifications and environmental factors such as inflammation, oxidative stress, and mitochondrial dysfunction, underpin the occurrence of β-cell dedifferentiation and the onset of T2D. Recent research underscores the potential therapeutic value for targeting β-cell dedifferentiation to manage T2D effectively. In this review, we aim to dissect the intricate mechanisms governing β-cell dedifferentiation and explore the therapeutic avenues stemming from these insights.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| |
Collapse
|
2
|
Gao S, Dong Y, Yan C, Yu T, Cao H. The role of exosomes and exosomal microRNA in diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2024; 14:1327495. [PMID: 38283742 PMCID: PMC10811149 DOI: 10.3389/fendo.2023.1327495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Diabetic cardiomyopathy, a formidable cardiovascular complication linked to diabetes, is witnessing a relentless surge in its incidence. Despite extensive research efforts, the primary pathogenic mechanisms underlying this condition remain elusive. Consequently, a critical research imperative lies in identifying a sensitive and dependable marker for early diagnosis and treatment, thereby mitigating the onset and progression of diabetic cardiomyopathy (DCM). Exosomes (EXOs), minute vesicles enclosed within bilayer lipid membranes, have emerged as a fascinating frontier in this quest, capable of transporting a diverse cargo that mirrors the physiological and pathological states of their parent cells. These exosomes play an active role in the intercellular communication network of the cardiovascular system. Within the realm of exosomes, MicroRNA (miRNA) stands as a pivotal molecular player, revealing its profound influence on the progression of DCM. This comprehensive review aims to offer an introductory exploration of exosome structure and function, followed by a detailed examination of the intricate role played by exosome-associated miRNA in diabetic cardiomyopathy. Our ultimate objective is to bolster our comprehension of DCM diagnosis and treatment strategies, thereby facilitating timely intervention and improved outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Hongbo Cao
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Ding W, Zhang X, Xiao D, Chang W. Decreased in n-3 DHA enriched triacylglycerol in small extracellular vesicles of diabetic patients with cardiac dysfunction. J Diabetes 2023; 15:1070-1080. [PMID: 37593852 PMCID: PMC10755605 DOI: 10.1111/1753-0407.13457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023] Open
Abstract
PURPOSE Diabetic cardiomyopathy is the leading cause of death in diabetic patients, and the mechanism by which factors other than hyperglycemia contribute to the development of diabetic cardiomyopathy is unknown. Serum small extracellular vesicles (sEVs) carry bioactive proteins or nuclei, which enter into remote tissues and modulate cell functions. However, in diabetic conditions, the changes of lipids carried by sEVs has not been identified. Our study aims to explore the changes of lipids in sEVs in diabetic patients with cardiovascular disease, we hope to provide new ideas for understanding the role of lipid metabolism in the pathogenesis of diabetic cardiomyopathy. METHODS SEVs samples derived from serum of health controls (Ctrl), diabetic patients without cardiovascular diseases (DM), and diabetic patients with cardiovascular diseases (DM-CAD) were used for lipidomics analysis. Because AC16 cells are also treated with those sEVs to confirm the entrance of cells and effects on insulin sensitivity, a lipidomics analysis on cells was also performed. RESULTS AND CONCLUSIONS In this study, we found that docosahexaenoic acid (DHA)-triacylglycerides of sEVs from serums of DM-CAD patients decreased significantly, and those sEVs could enter into AC16 cells and diminish insulin sensitivity. In addition, DHA-triacylglycerides were also decreased in cells treated with sEVs from DM-CAD. Therefore, DHA-triacylglycerides carried by sEVs may mediate intercellular signaling and be associated with the incidence of diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Wei Ding
- Department of General Medicine, The Affiliated Hospital, College of MedicineQingdao UniversityQingdaoChina
| | - Xuejuan Zhang
- Department of General Medicine, The Affiliated Hospital, College of MedicineQingdao UniversityQingdaoChina
| | - Dandan Xiao
- School of Basic Medical Sciences, College of MedicineQingdao UniversityQingdaoChina
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
4
|
Guo C, Ma Y, Situ Y, Liu L, Luo G, Li H, Ma W, Sun L, Wang W, Weng Q, Wu L, Fan D. Mesenchymal stem cells therapy improves ovarian function in premature ovarian failure: a systematic review and meta-analysis based on preclinical studies. Front Endocrinol (Lausanne) 2023; 14:1165574. [PMID: 37484938 PMCID: PMC10361781 DOI: 10.3389/fendo.2023.1165574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Background Studies have revealed that the transplantation of mesenchymal stem cells (MSCs) might be a potential star candidate for premature ovarian failure (POF) in animal experiments. However, individual studies with a small sample size cannot be used to draw a clear conclusion. Therefore, we conducted a systematic review and meta-analysis to explore the potential of using MSCs in the treatment of POF in animals. Methods Seven databases were searched for studies exploring the effect of the transplantation of MSCs on POF in animal models. The PRISMA guideline was followed, and the methodological quality was ensured using SYRCLE's risk of bias tool. RevMan 5.4 and STATA 12.0 software was performed to meta-analysis. Results In total, 37 studies involving 1,079 animals were included. Significant associations were found for MSCs with the levels of E2 (SMD 2.69 [95% CI 1.97, 3.41]), FSH (-2.02, [-2.74, -1.30]), primary follicles (2.04, [1.17, 2.92]), secondary follicles (1.93, [1.05, 2.81]), and primordial follicles (2.38, [1.19, 3.57]. Other outcomes, such as AMH, LH, INHB, antral follicles, growing follicles, mature follicles, and early antral were also found to be significant. There was no difference in FSH/LH, corpus leteum, follicles, and estruc cycle. Conclusions Our meta-analysis result indicated that the transplantation of MSCs might exert therapeutic effects on animal models of POF, and these effects might be associated with improving the disorder of the sexual cycle, modulating serum hormone expressions to a better state, and restoring ovarian function.
Collapse
Affiliation(s)
- Congcong Guo
- Reproductive Medicine Center, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yanqiu Situ
- Reproductive Medicine Center, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Li Liu
- Department of Library, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guoqun Luo
- Reproductive Medicine Center, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Huan Li
- Reproductive Medicine Center, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Wenmin Ma
- Reproductive Medical Center, Zhaoqing Westriver Hospital, Zhaoqing, Guangdong, China
| | - Li Sun
- Department of Library, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Wen Wang
- Department of Obstetrics, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Qiuying Weng
- Reproductive Medicine Center, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Linlin Wu
- Department of Obstetrics, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Dazhi Fan
- Department of Obstetrics, Foshan Women and Children Hospital, Foshan, Guangdong, China
- Foshan Institute of Fetal Medicine, Foshan Women and Children Hospital, Foshan, Guangdong, China
| |
Collapse
|
5
|
Yang H, Zhang Y, Du Z, Wu T, Yang C. Hair follicle mesenchymal stem cell exosomal lncRNA H19 inhibited NLRP3 pyroptosis to promote diabetic mouse skin wound healing. Aging (Albany NY) 2023; 15:791-809. [PMID: 36787444 PMCID: PMC9970314 DOI: 10.18632/aging.204513] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Skin wounds caused by diabetes are a major medical problem. Mesenchymal stem cell-derived exosomes hold promise to quicken wound healing due to their ability to transfer certain molecules to target cells, including mRNAs, microRNAs, lncRNAs, and proteins. Nonetheless, the specific mechanisms underlying this impact are not elucidated. Therefore, this research aimed to investigate the effect of MSC-derived exosomes comprising long non-coding RNA (lncRNA) H19 on diabetic skin wound healing. Hair follicle mesenchymal stem cells (HF-MSCs) were effectively isolated and detected, and exosomes (Exo) were also isolated smoothly. Pretreatment with 30 mM glucose for 24 h (HG) could efficiently induce pyroptosis in HaCaT cells. Exosomal H19 enhanced HaCaT proliferation and migration and inhibited pyroptosis by reversing the stimulation of the NLRP3 inflammasome. Injection of exosomes overexpressing lncRNA H19 to diabetic skin wound promoted sustained skin wound healing, whereas sh-H19 exosomes did not have this effect. In conclusion, Exosomes overexpressing H19 promoted HaCaT proliferation, migration and suppressed pyroptosis both in vitro and in vivo. Therefore, HFMSC-derived exosomes that overexpress H19 may be included in strategies for healing diabetic skin wounds.
Collapse
Affiliation(s)
- Hongliang Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130031, China
| | - Yan Zhang
- School of Public Health, Beihua University, Jilin 132033, China
| | - Zhenwu Du
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130031, China
| | - Tengfei Wu
- Department of Laboratory Animal Science, China Medical University, Shenyang 110122, China
| | - Chun Yang
- College of Basic Medicine, Beihua University, Jilin 132033, China
| |
Collapse
|
6
|
Ghaffari M, Razi S, Zalpoor H, Nabi-Afjadi M, Mohebichamkhorami F, Zali H. Association of MicroRNA-146a with Type 1 and 2 Diabetes and their Related Complications. J Diabetes Res 2023; 2023:2587104. [PMID: 36911496 PMCID: PMC10005876 DOI: 10.1155/2023/2587104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 03/06/2023] Open
Abstract
Most medical investigations have found a reduced blood level of miR-146a in type 2 diabetes (T2D) patients, suggesting an important role for miR-146a (microRNA-146a) in the etiology of diabetes mellitus (DM) and its consequences. Furthermore, injection of miR-146a mimic has been confirmed to alleviate diabetes mellitus in diabetic animal models. In this line, deregulation of miR-146a expression has been linked to the progression of nephropathy, neuropathy, wound healing, olfactory dysfunction, cardiovascular disorders, and retinopathy in diabetic patients. In this review, besides a comprehensive review of the function of miR-146a in DM, we discussed new findings on type 1 (T1MD) and type 2 (T2DM) diabetes mellitus, highlighting the discrepancies between clinical and preclinical investigations and elucidating the biological pathways regulated through miR-146a in DM-affected tissues.
Collapse
Affiliation(s)
- Mahyar Ghaffari
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Sara Razi
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehram, Iran
| |
Collapse
|
7
|
Wang J, Wang J, Wang Y, Ma R, Zhang S, Zheng J, Xue W, Ding X. Bone Marrow Mesenchymal Stem Cells-Derived miR-21-5p Protects Grafted Islets Against Apoptosis by Targeting PDCD4. Stem Cells 2022; 41:169-183. [PMID: 36512434 PMCID: PMC9982070 DOI: 10.1093/stmcls/sxac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
The apoptosis of grafted islets is an urgent problem due to the high rate of islet loss soon after transplantation. MicroRNA-21-5p (miR-21-5p) is an essential mediator of bone marrow mesenchymal stem cells-derived exosomes (BMSCs-Exo) during anti-apoptosis, but its effect and the underlying molecular mechanism in islet transplantation remain partially understood. Here, we found that miR-21-5p could be delivered to islet cells via BMSCs-Exo. Subsequently, we demonstrated that miR-21-5p overexpression reduced apoptosis in islets and INS-1 cells, whereas miR-21-5p inhibition enhanced apoptosis. A mechanistic analysis involving RNA sequencing and bioinformatic analysis was performed to determine the interaction between miR-21-5p and its target gene programmed cell death 4 (PDCD4), which was further verified by a dual luciferase assay. In vivo, the grafted islets overexpressing miR-21-5p showed a higher survival rate, better insulin secretion function, and a lower apoptosis rate. In conclusion, these results demonstrated that miR‑21‑5p from BMSCs-Exo protects against the apoptosis of grafted islets by inhibiting PDCD4 expression. Hence, miR-21-5p can be used as a cell-free therapeutic agent to minimize β-cell apoptosis at the early stage of islet transplantation.
Collapse
Affiliation(s)
| | | | - Ying Wang
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta Western Rd, Xi’an 710061, Shaanxi Province, People’s Republic of China
| | - Ruiyang Ma
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta Western Rd, Xi’an 710061, Shaanxi Province, People’s Republic of China
| | - Shucong Zhang
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta Western Rd, Xi’an 710061, Shaanxi Province, People’s Republic of China
| | - Jin Zheng
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta Western Rd, Xi’an 710061, Shaanxi Province, People’s Republic of China
| | - Wujun Xue
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta Western Rd, Xi’an 710061, Shaanxi Province, People’s Republic of China
| | - Xiaoming Ding
- Corresponding author: Xiaoming Ding, Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta Western Rd, Xi’an 710061, Shaanxi Province, People’s Republic of China. Tel: +8613991238632; E-mail:
| |
Collapse
|
8
|
Role of microRNA in Endocrine Disruptor-Induced Immunomodulation of Metabolic Health. Metabolites 2022; 12:metabo12111034. [DOI: 10.3390/metabo12111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
The prevalence of poor metabolic health is growing exponentially worldwide. This condition is associated with complex comorbidities that lead to a compromised quality of life. One of the contributing factors recently gaining attention is exposure to environmental chemicals, such as endocrine-disrupting chemicals (EDCs). Considerable evidence suggests that EDCs can alter the endocrine system through immunomodulation. More concerning, EDC exposure during the fetal development stage has prominent adverse effects later in life, which may pass on to subsequent generations. Although the mechanism of action for this phenomenon is mostly unexplored, recent reports implicate that non-coding RNAs, such as microRNAs (miRs), may play a vital role in this scenario. MiRs are significant contributors in post-transcriptional regulation of gene expression. Studies demonstrating the immunomodulation of EDCs via miRs in metabolic health or towards the Developmental Origins of Health and Disease (DOHaD) Hypothesis are still deficient. The aim of the current review was to focus on studies that demonstrate the impact of EDCs primarily on innate immunity and the potential role of miRs in metabolic health.
Collapse
|
9
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Potential Therapy for Diabetes Mellitus and Diabetic Complications. Pharmaceutics 2022; 14:pharmaceutics14102208. [PMID: 36297643 PMCID: PMC9607185 DOI: 10.3390/pharmaceutics14102208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 12/02/2022] Open
Abstract
As a novel cell-free strategy, mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) inherit the therapeutic potential of donor cells, and are widely used for the treatment of many diseases. Increasing studies have shown that MSC-EVs transfer various bioactive molecules to create a beneficial microenvironment, thus exerting protective roles in diabetic mellitus (DM) and diabetic complications. To overcome the limitations of natural MSC-EVs such as heterogeneity and insufficient function, several modification methods have been established for constructing engineered MSC-EVs with elevated repairing efficiency. In this review, the PubMed library was searched from inception to August 2022, using a combination of Medical Subject Headings (MeSH) and keywords related to MSC-EVs, DM, and diabetic complications. We provide an overview of the major characteristics of MSC-EVs and summarize the recent advances of MSC-EV-based therapy for hyperglycemia-induced tissue damage with an emphasis on MSC-EV-mediated delivery of functional components. Moreover, the potential applications of engineered MSC-EVs in DM-related diseases therapy are discussed by presenting examples, and the opportunities and challenges for the clinical translation of MSC-EVs, especially engineered MSC-EVs, are evaluated.
Collapse
|
10
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
11
|
Li D, Liu Y, Wu N. Application progress of nanotechnology in regenerative medicine of diabetes mellitus. Diabetes Res Clin Pract 2022; 190:109966. [PMID: 35718019 DOI: 10.1016/j.diabres.2022.109966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/20/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
In recent years, the development of diabetic regenerative medicine has led to new developments and progress for the clinical treatment of diabetes mellitus and its various complications. Besides, the emergence of nanotechnology has injected new vitality into diabetic regenerative medicine. Nano-stent provides an appropriate direction for the regeneration of islet β cells, retinal tissue, nerve tissue, and wound tissue cells. Conductive nanomaterials promote various tissues' growth. Many nanoparticles also promote wound healing and present other advantages that have solved many potential problems in the practical application of regenerative medicine. In this review, we will summarize the application of nanotechnology in diabetic regenerative medicine.
Collapse
Affiliation(s)
- Danyang Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Yuxin Liu
- Student Affairs Department, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; Clinical Skills Practice Teaching Center, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| |
Collapse
|
12
|
Liu Y, Cui DX, Pan Y, Yu SH, Zheng LW, Wan M. Metabolic-epigenetic nexus in regulation of stem cell fate. World J Stem Cells 2022; 14:490-502. [PMID: 36157525 PMCID: PMC9350619 DOI: 10.4252/wjsc.v14.i7.490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
Stem cell fate determination is one of the central questions in stem cell biology, and although its regulation has been studied at genomic and proteomic levels, a variety of biological activities in cells occur at the metabolic level. Metabolomics studies have established the metabolome during stem cell differentiation and have revealed the role of metabolites in stem cell fate determination. While metabolism is considered to play a biological regulatory role as an energy source, recent studies have suggested the nexus between metabolism and epigenetics because several metabolites function as cofactors and substrates in epigenetic mechanisms, including histone modification, DNA methylation, and microRNAs. Additionally, the epigenetic modification is sensitive to the dynamic metabolites and consequently leads to changes in transcription. The nexus between metabolism and epigenetics proposes a novel stem cell-based therapeutic strategy through manipulating metabolites. In the present review, we summarize the possible nexus between metabolic and epigenetic regulation in stem cell fate determination, and discuss the potential preventive and therapeutic strategies via targeting metabolites.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Di-Xin Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yue Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Si-Han Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Wei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
13
|
Wei T, Wei R, Hong T. Regeneration of β cells from cell phenotype conversion among the pancreatic endocrine cells. Chronic Dis Transl Med 2022; 8:1-4. [PMID: 35620156 PMCID: PMC9128562 DOI: 10.1002/cdt3.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/12/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tianjiao Wei
- Department of Endocrinology and Metabolism Peking University Third Hospital Beijing 100191 China
| | - Rui Wei
- Department of Endocrinology and Metabolism Peking University Third Hospital Beijing 100191 China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism Peking University Third Hospital Beijing 100191 China
| |
Collapse
|
14
|
Chang W, Li M, Song L, Miao S, Yu W, Wang J. Noncoding RNAs from tissue-derived small extracellular vesicles: Roles in diabetes and diabetic complications. Mol Metab 2022; 58:101453. [PMID: 35121168 PMCID: PMC8866070 DOI: 10.1016/j.molmet.2022.101453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 12/01/2022] Open
Abstract
Diabetes is a systemic disease, and its progression involves multiple organ dysfunction. However, the exact mechanisms underlying pathological progression remain unclear. Small extracellular vesicles (sEVs) mediate physiological and pathological signaling communication between organs and have been shown to have important regulatory roles in diabetes and its complications in recent years. In particular, the majority of studies in the diabetes-related research field have focused on the noncoding RNAs carried by sEVs. Researchers found that noncoding RNA sorting into sEVs is not random but selective. Both tissue origin differences and environmental variations affect the cargo of sEVs. In addition, the function of sEVs differs according to the tissue they derive from; for example, sEVs derived from adipose tissue regulate insulin sensitivity in the periphery, while sEVs derived from bone marrow promote β-cell regeneration. Therefore, understanding the roles of sEVs from different tissues is important for elucidating their molecular mechanisms and is necessary for the application of sEVs as therapeutic agents for diabetes treatment in the future. In this review, we summarized current studies on the mechanisms of noncoding RNA sorting into sEVs, as well as the research progress on the effects of sEVs from different tissue origins and noncoding RNAs in diabetes and diabetic complications. The knowledge of noncoding RNAs in sEVs will help us better understand the role of sEVs in the diabetes progression.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, Qingdao University, Qingdao, China.
| | - Mengyang Li
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Lin Song
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Suo Miao
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- College of Medicine, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Gao M, Yu Z, Yao D, Qian Y, Wang Q, Jia R. Mesenchymal stem cells therapy: A promising method for the treatment of uterine scars and premature ovarian failure. Tissue Cell 2021; 74:101676. [PMID: 34798583 DOI: 10.1016/j.tice.2021.101676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022]
Abstract
Both intrauterine adhesions (IUA) and premature ovarian failure (POF) have plagued women all over the world for a long time. It is well known that all invasive operations involving the uterus can disrupt its structural and functional integrity to a varying degree, which inevitably lead to abnormal scar formation, such as IUA, also known as Asherman's syndrome with symptoms like hypomenorrhea or infertility. Another reproductive disorder that causes infertility is primary ovarian insufficiency (POI) or POF, which is a degenerative phenomenon in the ovary among women under the age of 40. In recent years, various types of stem cells, especially mesenchymal stem cells (MSCs) have been widely used in reproductive medicine due to their properties, such as immunoregulation, anti-inflammation, angiogenesis, anti-apoptosis, and trophicity. However, the extensive clinical application of cell therapy is impeded by their safety, cost, and manufacturing. In this review, we sought to summarize the recent advances in using different types of MSCs in treating uterine scars and POF. We also describe several biological pathways and molecules involved in animal studies and clinical application; extracellular vesicles secreted by MSCs may be a promising attractive tool to ensure the treatment of infertility by restoring normal reproductive function.
Collapse
Affiliation(s)
- Mingming Gao
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Zhaoer Yu
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Dan Yao
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Yating Qian
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Qi Wang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Ruizhe Jia
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China.
| |
Collapse
|