1
|
Li Z, Du Y, Lu Y, Ma X, Li F, Zeng P, Zhang T, He Y, Luo P, Wu J. Hypericum perforatum-derived exosomes-like nanovesicles for adipose tissue photodynamic therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155854. [PMID: 39032276 DOI: 10.1016/j.phymed.2024.155854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Recent investigations underscore the capacity of photodynamic therapy (PDT) to induce adipocyte apoptosis, thereby mitigating obesity. Nonetheless, extant synthetic photosensitizers manifest limitations that hinder their clinical viability. PURPOSE In the current study, we used Hypericum perforatum-derived exosomes-like nanovesicles (HPExos) as a novel photosensitizer, and investigated its PDT effects in adipose tissue during obesity. METHOD HPExos-were administered to high fat diet mice via intraperitoneal injection, followed by targeted irradiation with specialized LED lights. Mass spectrometric analysis was analyzed in adipose tissues. CCK8 assay and Oil Red O staining were used to investigate lipid accumulation in 3T3-L1 cells to clarify adipocyte differentiation. The expression levels of related markers associated with adipogenesis and lipogenesis were assessed by RT-PCR. Apoptosis analysis was performed by TUNEL staining of and western blotting. RESULTS HPExos combined with PDT accumulated in visceral white adipose tissues results in a reduced body weight and improved insulin sensitivity. HPExos combined with PDT induced apoptosis by driving high levels of ROS. In addition, HPExos combined with PDT significantly downregulated the expression of transcription factors, PPARγ, C/EBPα, and SREBP and lipogenesis protein FABP4 both in vitro and in vivo, associated with a decreased FFA levels. CONCLUSION These findings suggest that HPExos could act as an effective photosensitizer in regulating glucose hemostasis by inhibiting adipocyte differentiation and lipogenesis, offering a promising approach for obesity treatment.
Collapse
Affiliation(s)
- Ziyu Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, Macau, China; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yu Du
- Department of Rheumatology and Immunology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Yu Lu
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoyu Ma
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Fei Li
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Peiyuan Zeng
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tao Zhang
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuqian He
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Pei Luo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, Macau, China
| | - Jianbo Wu
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
2
|
Huang X, Liu Y, Li Z, Lerman LO. Mesenchymal Stem/Stromal Cells Therapy for Metabolic Syndrome: Potential Clinical Application? Stem Cells 2023; 41:893-906. [PMID: 37407022 PMCID: PMC10560401 DOI: 10.1093/stmcls/sxad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs), a class of cells with proliferative, immunomodulatory, and reparative functions, have shown therapeutic potential in a variety of systemic diseases, including metabolic syndrome (MetS). The cluster of morbidities that constitute MetS might be particularly amenable for the application of MSCs, which employ an arsenal of reparative actions to target multiple pathogenic pathways simultaneously. Preclinical studies have shown that MSCs can reverse pathological changes in MetS mainly by inhibiting inflammation, improving insulin resistance, regulating glycolipid metabolism, and protecting organ function. However, several challenges remain to overcome before MSCs can be applied for treating MetS. For example, the merits of autologous versus allogeneic MSCs sources remain unclear, particularly with autologous MSCs obtained from the noxious MetS milieu. The distinct characteristics and relative efficacy of MSCs harvested from different tissue sources also require clarification. Moreover, to improve the therapeutic efficacy of MSCs, investigators have explored several approaches that improved therapeutic efficacy but may involve potential safety concerns. This review summarized the potentially useful MSCs strategy for treating MetS, as well as some hurdles that remain to be overcome. In particular, larger-scale studies are needed to determine the therapeutic efficacy and safety of MSCs for clinical application.
Collapse
Affiliation(s)
- Xiuyi Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Yunchong Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Zhang T, He Y, Shu X, Ma X, Wu J, Du Z, Xu J, Chen N, You J, Liu Y, Li T, Wu J. Photomodulation alleviates cellular senescence of aging adipose-derived stem cells. Cell Commun Signal 2023; 21:146. [PMID: 37337219 DOI: 10.1186/s12964-023-01152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/28/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) therapies are emerging as a promising approach to therapeutic regeneration. Therapeutic persistence and reduced functional stem cells following cell delivery remain critical hurdles for clinical investigation due to the senescence of freshly isolated cells and extensive in-vitro passage. METHODS Cultured adipose-derived stem cells (ASCs) were derived from subcutaneous white adipose tissue isolated from mice fed a normal diet. We performed senescence-associated-β-galactosidase (SA-β-gal) staining, real-time PCR, and Westernblot to evaluate the levels related to cellular senescence markers. RESULTS The mRNA expression levels of senescence markers were significantly increased in the later passage of ASCs. We show that light activation reduced the expression of senescent genes, and SA-β-Gal in all cells at passages. Moreover, the light-activated ASCs-derived exosomes decrease the expression of senescence, and SA-β-Gal in the later passage cells. We further investigated the photoreceptive effect of Opsin3 (Opn3) in light-activated ASCs. Deletion of Opn3 abolished the differences of light activation in reduced expression of senescent genes, increased Ca 2+ influx, and cAMP levels. CONCLUSIONS ASCs can undergo cellular senescence in-vitro passage. Photomodulation might be better preserved over senescence and Opn3-dependent activation in aged ASCs. Light-activated ASCs-derived exosomes could be served as e a new protective paradigm for cellular senescence in-vitro passage. Video Abstract.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pharmacology, School of Pharmacy Drug Discovery Research Center of Southwest Medical University, and Laboratory for Cardiovascular Pharmacology, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, 646000, Sichuan, China
| | - Yuqian He
- Department of Pharmacology, School of Pharmacy Drug Discovery Research Center of Southwest Medical University, and Laboratory for Cardiovascular Pharmacology, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, 646000, Sichuan, China
| | - Xin Shu
- Department of Pharmacology, School of Pharmacy Drug Discovery Research Center of Southwest Medical University, and Laboratory for Cardiovascular Pharmacology, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, 646000, Sichuan, China
| | - Xiaoyu Ma
- Department of Pharmacology, School of Pharmacy Drug Discovery Research Center of Southwest Medical University, and Laboratory for Cardiovascular Pharmacology, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, 646000, Sichuan, China
| | - Jiaqi Wu
- Department of Pharmacology, School of Pharmacy Drug Discovery Research Center of Southwest Medical University, and Laboratory for Cardiovascular Pharmacology, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, 646000, Sichuan, China
| | - Zuoqin Du
- Department of Pharmacology, School of Pharmacy Drug Discovery Research Center of Southwest Medical University, and Laboratory for Cardiovascular Pharmacology, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, 646000, Sichuan, China
| | - Jin Xu
- Department of Pharmacology, School of Pharmacy Drug Discovery Research Center of Southwest Medical University, and Laboratory for Cardiovascular Pharmacology, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, 646000, Sichuan, China
| | - Ni Chen
- Department of Pharmacology, School of Pharmacy Drug Discovery Research Center of Southwest Medical University, and Laboratory for Cardiovascular Pharmacology, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, 646000, Sichuan, China
| | - Jingcan You
- Department of Pharmacology, School of Pharmacy Drug Discovery Research Center of Southwest Medical University, and Laboratory for Cardiovascular Pharmacology, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, 646000, Sichuan, China
| | - Yaofang Liu
- Department of Reproductive Technology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tian Li
- Department of Pharmacology, School of Pharmacy Drug Discovery Research Center of Southwest Medical University, and Laboratory for Cardiovascular Pharmacology, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, 646000, Sichuan, China
| | - Jianbo Wu
- Department of Pharmacology, School of Pharmacy Drug Discovery Research Center of Southwest Medical University, and Laboratory for Cardiovascular Pharmacology, Southwest Medical University, Luzhou, Sichuan, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, 646000, Sichuan, China.
- Drug Discovery Research Center, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Duarte AC, Costa EC, Filipe HAL, Saraiva SM, Jacinto T, Miguel SP, Ribeiro MP, Coutinho P. Animal-derived products in science and current alternatives. BIOMATERIALS ADVANCES 2023; 151:213428. [PMID: 37146527 DOI: 10.1016/j.bioadv.2023.213428] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023]
Abstract
More than fifty years after the 3Rs definition and despite the continuous implementation of regulatory measures, animals continue to be widely used in basic research. Their use comprises not only in vivo experiments with animal models, but also the production of a variety of supplements and products of animal origin for cell and tissue culture, cell-based assays, and therapeutics. The animal-derived products most used in basic research are fetal bovine serum (FBS), extracellular matrix proteins such as Matrigel™, and antibodies. However, their production raises several ethical issues regarding animal welfare. Additionally, their biological origin is associated with a high risk of contamination, resulting, frequently, in poor scientific data for clinical translation. These issues support the search for new animal-free products able to replace FBS, Matrigel™, and antibodies in basic research. In addition, in silico methodologies play an important role in the reduction of animal use in research by refining the data previously to in vitro and in vivo experiments. In this review, we depicted the current available animal-free alternatives in in vitro research.
Collapse
Affiliation(s)
- Ana C Duarte
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal; CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisabete C Costa
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal
| | - Hugo A L Filipe
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal
| | - Sofia M Saraiva
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal
| | - Telma Jacinto
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal
| | - Sónia P Miguel
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal; CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Maximiano P Ribeiro
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal; CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal; CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
5
|
A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023; 86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The rapid increase in both the lifespan and proportion of older adults is accompanied by the unprecedented rise in age-associated chronic diseases, including sarcopenia and obesity. Aging is also manifested by increased susceptibility to multiple endogenous and exogenous stresses enabling such chronic conditions to develop. Among the main physiological regulators of cellular adaption to various stress stimuli, such as DNA damage, hypoxia, and oxidative stress, are sestrins (Sesns), a family of three evolutionarily conserved proteins, Sesn1, 2, and 3. Age-associated sarcopenia and obesity are characterized by two key processes: (i) accumulation of senescent cells in the skeletal muscle and adipose tissue and (ii) creation of a systemic, chronic, low-grade inflammation (SCLGI). Presumably, failed SCLGI resolution governs the development of these chronic conditions. Noteworthy, Sesns activate senolytics, which are agents that selectively eliminate senescent cells, as well as specialized pro-resolving mediators, which are factors that physiologically provide inflammation resolution. Sesns reveal clear beneficial effects in pre-clinical models of sarcopenia and obesity. Based on these observations, we propose a novel treatment strategy for age-associated sarcopenia and obesity, complementary to the conventional therapeutic modalities: Sesn activation, SCLGI resolution, and senescent cell elimination.
Collapse
|
6
|
Boland L, Bitterlich LM, Hogan AE, Ankrum JA, English K. Translating MSC Therapy in the Age of Obesity. Front Immunol 2022; 13:943333. [PMID: 35860241 PMCID: PMC9289617 DOI: 10.3389/fimmu.2022.943333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapy has seen increased attention as a possible option to treat a number of inflammatory conditions including COVID-19 acute respiratory distress syndrome (ARDS). As rates of obesity and metabolic disease continue to rise worldwide, increasing proportions of patients treated with MSC therapy will be living with obesity. The obese environment poses critical challenges for immunomodulatory therapies that should be accounted for during development and testing of MSCs. In this review, we look to cancer immunotherapy as a model for the challenges MSCs may face in obese environments. We then outline current evidence that obesity alters MSC immunomodulatory function, drastically modifies the host immune system, and therefore reshapes interactions between MSCs and immune cells. Finally, we argue that obese environments may alter essential features of allogeneic MSCs and offer potential strategies for licensing of MSCs to enhance their efficacy in the obese microenvironment. Our aim is to combine insights from basic research in MSC biology and clinical trials to inform new strategies to ensure MSC therapy is effective for a broad range of patients.
Collapse
Affiliation(s)
- Lauren Boland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Laura Melanie Bitterlich
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - Andrew E. Hogan
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- *Correspondence: James A. Ankrum, ; Karen English,
| | - Karen English
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
- *Correspondence: James A. Ankrum, ; Karen English,
| |
Collapse
|
7
|
Glycation of Tie-2 Inhibits Angiopoietin-1 Signaling Activation and Angiopoietin-1-Induced Angiogenesis. Int J Mol Sci 2022; 23:ijms23137137. [PMID: 35806141 PMCID: PMC9266685 DOI: 10.3390/ijms23137137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
The impairment of the angiopoietin-1 (Ang-1)/Tie-2 signaling pathway has been thought to play a critical role in diabetic complications. However, the underlying mechanisms remain unclear. The present study aims to investigate the effects of Tie-2 glycation on Ang-1 signaling activation and Ang-1-induced angiogenesis. We identified that Tie-2 was modified by advanced glycation end products (AGEs) in aortae derived from high fat diet (HFD)-fed mice and in methylglyoxal (MGO)-treated human umbilical vein endothelial cells (HUVECs). MGO-induced Tie-2 glycation significantly inhibited Ang-1-evoked Tie-2 and Akt phosphorylation and Ang-1-regulated endothelial cell migration and tube formation, whereas the blockade of AGE formation by aminoguanidine remarkably rescued Ang-1 signaling activation and Ang-1-induced angiogenesis in vitro. Furthermore, MGO treatment markedly increased AGE cross-linking of Tie-2 in cultured aortae ex vivo and MGO-induced Tie-2 glycation also significantly decreased Ang-1-induced vessel outgrow from aortic rings. Collectively, these data suggest that Tie-2 may be modified by AGEs in diabetes mellitus and that Tie-2 glycation inhibits Ang-1 signaling activation and Ang-1-induced angiogenesis. This may provide a novel mechanism for Ang-1/Tie-2 signal dysfunction and angiogenesis failure in diabetic ischaemic diseases.
Collapse
|
8
|
Wang K, Wang YY, Wu LL, Jiang LY, Hu Y, Xiao XH, Wang YD. Paracrine Regulation of Adipose Tissue Macrophages by Their Neighbors in the Microenvironment of Obese Adipose Tissue. Endocrinology 2022; 163:6583204. [PMID: 35536227 DOI: 10.1210/endocr/bqac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/19/2022]
Abstract
Obesity has recently been defined as a chronic low-grade inflammatory disease. Obesity-induced inflammation of adipose tissue (AT) is an essential trigger for insulin resistance (IR) and related metabolic diseases. Although the underlying molecular basis of this inflammation has not been fully identified, there is consensus that the recruited and activated macrophages in AT are the most important culprits of AT chronic inflammation. Adipose tissue macrophages (ATMs) are highly plastic and could be polarized from an anti-inflammatory M2 to proinflammatory M1 phenotypes on stimulation by microenvironmental signals from obese AT. Many efforts have been made to elucidate the molecular signaling pathways of macrophage polarization; however, the upstream drivers governing and activating macrophage polarization have rarely been summarized, particularly regulatory messages from the AT microenvironment. In addition to adipocytes, the AT bed also contains a variety of immune cells, stem cells, as well as vascular, neural, and lymphatic tissues throughout, which together orchestrate the AT microenvironment. Here, we summarize how the aforesaid neighbors of ATMs in the AT microenvironment send messages to ATMs and thus regulate its phenotype during obesity. Deciphering the biology and polarization of ATMs in the obese environment is expected to provide a precise immunotherapy for adipose inflammation and obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Kai Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yuan-Yuan Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Liang-Liang Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Li-Yan Jiang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yin Hu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ya-Di Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|