1
|
Fang X, Xu H, Fan Z, Yang H, Huang Y, Xu L, Rong Y, Ma W, Pei L, Liang H. Puerarin Promotes the Migration and Differentiation of Myoblasts by Activating the FAK and PI3K/AKT Signaling Pathways. BIOLOGY 2025; 14:102. [PMID: 39857332 PMCID: PMC11763015 DOI: 10.3390/biology14010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Puerarin, a flavonoid compound present in the roots of radix puerariae, contributes to the development of tissues such as bone and nerve, but its role in skeletal muscle regeneration remains unclear. In this study, we employed C2C12 myoblasts and barium chloride (BaCl2)-based muscle injury models to investigate the effects of puerarin on myogenesis. Our study showed that puerarin stimulated the migration and differentiation of myoblasts in vitro. For the mechanism study, we found that puerarin's influence on cell migration was associated with the activation of FAK signaling; additionally, puerarin induced myoblast differentiation by upregulating the PI3K/AKT pathway. We also found that puerarin treatment could improve muscle regeneration following muscle injury. Taken together, our data indicate that puerarin facilitated myogenesis by promoting migration and differentiation, which suggests puerarin as a new candidate drug for the treatment of muscle loss diseases.
Collapse
Affiliation(s)
- Xiaofeng Fang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (X.F.); (H.X.)
| | - Hangjia Xu
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (X.F.); (H.X.)
| | - Zhaoxin Fan
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (X.F.); (H.X.)
| | - Hongge Yang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (X.F.); (H.X.)
| | - Yan Huang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (X.F.); (H.X.)
| | - Lin Xu
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (X.F.); (H.X.)
| | - Yiwei Rong
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (X.F.); (H.X.)
| | - Wei Ma
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (X.F.); (H.X.)
| | - Liubao Pei
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hongsheng Liang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (X.F.); (H.X.)
| |
Collapse
|
2
|
Choi S, Lee MJ, Kim M, Bae Y, Park JU, Cho SW. Durable Muscle Extracellular Matrix Engineered with Adhesive Phenolic Moieties for Effective Skeletal Muscle Regeneration in Muscle Atrophy. Adv Healthc Mater 2024; 13:e2401826. [PMID: 39420690 DOI: 10.1002/adhm.202401826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Muscle atrophy detrimentally impacts health and exacerbates physical disability, leading to increased mortality. In particular, sarcopenia, aging-related degenerative muscle loss, necessitates urgent remedies. Current approaches for treating muscle atrophy include exercise and nutrition, while drug exploration remains in its early stages. Cell therapy, focusing on satellite cells, faces significant challenge due to poor engraftment, safety issue, and high cost. Cell-free approach using extracellular matrix (ECM) shows a regenerative potential, but a lack of mechanical and adhesive properties hinders prolonged efficacy of ECM therapy. Here, durable muscle ECM (MEM) hydrogels for muscle atrophy by fortifying MEM with adhesive phenolic moieties including catechol and pyrogallol are demonstrated. The resultant phenolic MEM hydrogels exhibit enhanced mechanical and adhesive properties and provide sustained muscle-like microenvironments to address muscle atrophy. No local and systemic toxicities are observed after phenolic MEM injection into tibialis anterior muscle. Notably, these engineered MEM hydrogels, devoid of cells or drugs, induce tissue rejuvenation by promoting muscle protein synthesis and facilitating functional muscle recovery in mouse models of disuse- and age-induced atrophy. This study introduces cell-free, ECM-based therapeutics with translational potential for muscle atrophy by reversing muscle loss and restoring function.
Collapse
Affiliation(s)
- Soojeong Choi
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- CellArtgen Inc., Seoul, 03722, Republic of Korea
| | - Mi Jeong Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Moohyun Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yunsu Bae
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- CellArtgen Inc., Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
| |
Collapse
|
3
|
Goh KY, Lee WX, Choy SM, Priyadarshini GK, Chua K, Tan QH, Low SY, Chin HS, Wong CS, Huang SY, Fu NY, Nishiyama J, Harmston N, Tang HW. FOXO-regulated DEAF1 controls muscle regeneration through autophagy. Autophagy 2024; 20:2632-2654. [PMID: 38963021 PMCID: PMC11587838 DOI: 10.1080/15548627.2024.2374693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
The commonality between various muscle diseases is the loss of muscle mass, function, and regeneration, which severely restricts mobility and impairs the quality of life. With muscle stem cells (MuSCs) playing a key role in facilitating muscle repair, targeting regulators of muscle regeneration has been shown to be a promising therapeutic approach to repair muscles. However, the underlying molecular mechanisms driving muscle regeneration are complex and poorly understood. Here, we identified a new regulator of muscle regeneration, Deaf1 (Deformed epidermal autoregulatory factor-1) - a transcriptional factor downstream of foxo signaling. We showed that Deaf1 is transcriptionally repressed by FOXOs and that DEAF1 targets to Pik3c3 and Atg16l1 promoter regions and suppresses their expression. Deaf1 depletion therefore induces macroautophagy/autophagy, which in turn blocks MuSC survival and differentiation. In contrast, Deaf1 overexpression inactivates autophagy in MuSCs, leading to increased protein aggregation and cell death. The fact that Deaf1 depletion and its overexpression both lead to defects in muscle regeneration highlights the importance of fine tuning DEAF1-regulated autophagy during muscle regeneration. We further showed that Deaf1 expression is altered in aging and cachectic MuSCs. Manipulation of Deaf1 expression can attenuate muscle atrophy and restore muscle regeneration in aged mice or mice with cachectic cancers. Together, our findings unveil an evolutionarily conserved role for DEAF1 in muscle regeneration, providing insights into the development of new therapeutic strategies against muscle atrophy.Abbreviations: DEAF1: Deformed epidermal autoregulatory factor-1; FOXO: Forkhead box O; MuSC: Muscle Stem Cell; PAX7: Paired box 7; PIK3C3: Phosphatidylinositol 3-kinase catalytic subunit type 3.
Collapse
Affiliation(s)
- Kah Yong Goh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Sze Mun Choy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | | | - Kenon Chua
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore, Singapore
- Programme in Musculoskeletal Sciences Academic Clinical Program, SingHealth/Duke-NUS, Singapore, Singapore
| | - Qian Hui Tan
- Division of Science, Yale-NUS College, Singapore, Singapore
| | - Shin Yi Low
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Hui San Chin
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Chee Seng Wong
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei City, Taiwan
| | - Nai Yang Fu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Jun Nishiyama
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Nathan Harmston
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Division of Science, Yale-NUS College, Singapore, Singapore
- Molecular Biosciences Division, Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Wang C, Liu X, Hu X, Wu T, Duan R. Therapeutic targeting of GDF11 in muscle atrophy: Insights and strategies. Int J Biol Macromol 2024; 279:135321. [PMID: 39236952 DOI: 10.1016/j.ijbiomac.2024.135321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/29/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The exploration of novel therapeutic avenues for skeletal muscle atrophy is imperative due to its significant health impact. Recent studies have spotlighted growth differentiation factor 11 (GDF11), a TGFβ superfamily member, for its rejuvenating role in reversing age-related tissue dysfunction. This review synthesizes current findings on GDF11, elucidating its distinct biological functions and the ongoing debates regarding its efficacy in muscle homeostasis. By addressing discrepancies in current research outcomes and its ambiguous role due to its homological identity to myostatin, a negative regulator of muscle mass, this review aims to clarify the role of GDF11 in muscle homeostasis and its potential as a therapeutic target for muscle atrophy. Through a thorough examination of GDF11's mechanisms and effects, this review provides insights that could pave the way for innovative treatments for muscle atrophy, emphasizing the need and strategies to boost endogenous GDF11 levels for therapeutic potential.
Collapse
Affiliation(s)
- Chuanzhi Wang
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Xiaocao Liu
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Xilong Hu
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Tao Wu
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
5
|
Najm A, Moldoveanu ET, Niculescu AG, Grumezescu AM, Beuran M, Gaspar BS. Advancements in Drug Delivery Systems for the Treatment of Sarcopenia: An Updated Overview. Int J Mol Sci 2024; 25:10766. [PMID: 39409095 PMCID: PMC11476378 DOI: 10.3390/ijms251910766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Since sarcopenia is a progressive condition that leads to decreased muscle mass and function, especially in elderly people, it is a public health problem that requires attention from researchers. This review aims to highlight drug delivery systems that have a high and efficient therapeutic potential for sarcopenia. Current as well as future research needs to consider the barriers encountered in the realization of delivery systems, such as the route of administration, the interaction of the systems with the aggressive environment of the human body, the efficient delivery and loading of the systems with therapeutic agents, and the targeted delivery of therapeutic agents into the muscle tissue without creating undesirable adverse effects. Thus, this paper sets the framework of existing drug delivery possibilities for the treatment of sarcopenia, serving as an inception point for future interdisciplinary studies.
Collapse
Affiliation(s)
- Alfred Najm
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Elena-Theodora Moldoveanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
- Romania Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
- Romania Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Mircea Beuran
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
6
|
Beaudry K, De Lisio M. Sex-Based Differences in Muscle Stem Cell Regulation Following Exercise. Exerc Sport Sci Rev 2024; 52:87-94. [PMID: 38445901 DOI: 10.1249/jes.0000000000000337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Sexual dimorphism, driven by the sex hormones testosterone and estrogen, influences body composition, muscle fiber type, and inflammation. Research related to muscle stem cell (MuSC) responses to exercise has mainly focused on males. We propose a novel hypothesis that there are sex-based differences in MuSC regulation following exercise, such that males have more MuSCs, whereas females demonstrate a greater capacity for regeneration.
Collapse
Affiliation(s)
- Kayleigh Beaudry
- School of Human Kinetics , Department of Cellular and Molecular Medicine, Regenerative Medicine Program, Centre on Neuromuscular Disease , University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
7
|
Budzynska K, Siemionow M, Stawarz K, Chambily L, Siemionow K. Chimeric Cell Therapies as a Novel Approach for Duchenne Muscular Dystrophy (DMD) and Muscle Regeneration. Biomolecules 2024; 14:575. [PMID: 38785982 PMCID: PMC11117592 DOI: 10.3390/biom14050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Chimerism-based strategies represent a pioneering concept which has led to groundbreaking advancements in regenerative medicine and transplantation. This new approach offers therapeutic potential for the treatment of various diseases, including inherited disorders. The ongoing studies on chimeric cells prompted the development of Dystrophin-Expressing Chimeric (DEC) cells which were introduced as a potential therapy for Duchenne Muscular Dystrophy (DMD). DMD is a genetic condition that leads to premature death in adolescent boys and remains incurable with current methods. DEC therapy, created via the fusion of human myoblasts derived from normal and DMD-affected donors, has proven to be safe and efficacious when tested in experimental models of DMD after systemic-intraosseous administration. These studies confirmed increased dystrophin expression, which correlated with functional and morphological improvements in DMD-affected muscles, including cardiac, respiratory, and skeletal muscles. Furthermore, the application of DEC therapy in a clinical study confirmed its long-term safety and efficacy in DMD patients. This review summarizes the development of chimeric cell technology tested in preclinical models and clinical studies, highlighting the potential of DEC therapy in muscle regeneration and repair, and introduces chimeric cell-based therapies as a promising, novel approach for muscle regeneration and the treatment of DMD and other neuromuscular disorders.
Collapse
Affiliation(s)
- Katarzyna Budzynska
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
- Chair and Department of Traumatology, Orthopaedics, and Surgery of the Hand, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| | - Katarzyna Stawarz
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Lucile Chambily
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Krzysztof Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| |
Collapse
|
8
|
Zeng Y, He X, Peng X, Zhao L, Yin C, Mao S. Combined Nutrition with Exercise: Fueling the Fight Against Sarcopenia Through a Bibliometric Analysis and Review. Int J Gen Med 2024; 17:1861-1876. [PMID: 38715745 PMCID: PMC11075762 DOI: 10.2147/ijgm.s462594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/21/2024] [Indexed: 05/24/2024] Open
Abstract
Objective This bibliometric analysis and review aimed to examine the current research status and trends in the combination of nutrition and exercise training for sarcopenia. Additionally, it sought to provide researchers with future research directions in this field. Methods Relevant publications were obtained from the Web of Science Core Collection (WoSCC) database, covering the period from January 1995 to October 2023. The collected publications were analyzed using CiteSpace, VOSviewer, Bibliometrix, and Review Manager. Results Out of the 2528 retrieved publications, the United States emerged as the leading contributor in terms of publication volume. The University of Texas System was identified as the most productive institution. Luc J C van Loon emerged as the most published author in this field. Analysis of keywords revealed recent hot topics and emerging areas of interest, such as "gut microbiota" and "mechanisms". Upon further evaluation, resistance training (RT) and protein supplementation were identified as the most commonly employed and effective methods. Conclusion RT and protein supplementation are widely recognized as effective strategies. Future research should focus on investigating the molecular aspects of sarcopenia. Moreover, the potential therapeutic role of gut microbiota in sarcopenia requires further comprehensive investigation in human subjects to establish its correlation.
Collapse
Affiliation(s)
- Yixian Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, People’s Republic of China
| | - Xingfei He
- Wuxi Huishan District Rehabilitation Hospital, Wuxi, 214001, People’s Republic of China
| | - Xinchun Peng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, People’s Republic of China
| | - Li Zhao
- School of Sports Science, Beijing Sport University, Beijing, 100084, People’s Republic of China
| | - Chengqian Yin
- Department of Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, People’s Republic of China
| | - Shanshan Mao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, People’s Republic of China
| |
Collapse
|
9
|
Najm A, Niculescu AG, Grumezescu AM, Beuran M. Emerging Therapeutic Strategies in Sarcopenia: An Updated Review on Pathogenesis and Treatment Advances. Int J Mol Sci 2024; 25:4300. [PMID: 38673885 PMCID: PMC11050002 DOI: 10.3390/ijms25084300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Sarcopenia is a prevalent degenerative skeletal muscle condition in the elderly population, posing a tremendous burden on diseased individuals and healthcare systems worldwide. Conventionally, sarcopenia is currently managed through nutritional interventions, physical therapy, and lifestyle modification, with no pharmaceutical agents being approved for specific use in this disease. As the pathogenesis of sarcopenia is still poorly understood and there is no treatment recognized as universally effective, recent research efforts have been directed at better comprehending this illness and diversifying treatment strategies. In this respect, this paper overviews the new advances in sarcopenia treatment in correlation with its underlying mechanisms. Specifically, this review creates an updated framework for sarcopenia, describing its etiology, pathogenesis, risk factors, and conventional treatments, further discussing emerging therapeutic approaches like new drug formulations, drug delivery systems, stem cell therapies, and tissue-engineered scaffolds in more detail.
Collapse
Affiliation(s)
- Alfred Najm
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floresca, Sector 1, 014461 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Mircea Beuran
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floresca, Sector 1, 014461 Bucharest, Romania
| |
Collapse
|
10
|
Bahat G, Ozkok S. The Current Landscape of Pharmacotherapies for Sarcopenia. Drugs Aging 2024; 41:83-112. [PMID: 38315328 DOI: 10.1007/s40266-023-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized decline in muscle mass and function. Although it is mostly known as an age-related disorder, it can also occur secondary to systemic diseases such as malignancy or organ failure. It has demonstrated a significant relationship with adverse outcomes, e.g., falls, disabilities, and even mortality. Several breakthroughs have been made to find a pharmaceutical therapy for sarcopenia over the years, and some have come up with promising findings. Yet still no drug has been approved for its treatment. The key factor that makes finding an effective pharmacotherapy so challenging is the general paradigm of standalone/single diseases, traditionally adopted in medicine. Today, it is well known that sarcopenia is a complex disorder caused by multiple factors, e.g., imbalance in protein turnover, satellite cell and mitochondrial dysfunction, hormonal changes, low-grade inflammation, senescence, anorexia of aging, and behavioral factors such as low physical activity. Therefore, pharmaceuticals, either alone or combined, that exhibit multiple actions on these factors simultaneously will likely be the drug of choice to manage sarcopenia. Among various drug options explored throughout the years, testosterone still has the most cumulated evidence regarding its effects on muscle health and its safety. A mas receptor agonist, BIO101, stands out as a recent promising pharmaceutical. In addition to the conventional strategies (i.e., nutritional support and physical exercise), therapeutics with multiple targets of action or combination of multiple therapeutics with different targets/modes of action appear to promise greater benefit for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Gulistan Bahat
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medical School, Istanbul University, Capa, 34390, Istanbul, Turkey.
| | - Serdar Ozkok
- Division of Geriatrics, Department of Internal Medicine, Hatay Training and Research Hospital, Hatay, 31040, Turkey
| |
Collapse
|
11
|
Wu J, Chi H, Kok S, Chua JM, Huang XX, Zhang S, Mah S, Foo LX, Peh HY, Lee HB, Tay P, Tong C, Ladlad J, Tan CH, Khoo N, Aw D, Chong CX, Ho LM, Sivarajah SS, Ng J, Tan WJ, Foo FJ, Teh BT, Koh FH. Multimodal prerehabilitation for elderly patients with sarcopenia in colorectal surgery. Ann Coloproctol 2024; 40:3-12. [PMID: 37004990 PMCID: PMC10915526 DOI: 10.3393/ac.2022.01207.0172] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 04/04/2023] Open
Abstract
Sarcopenia, which is characterized by progressive and generalized loss of skeletal muscle mass and strength, has been well described to be associated with numerous poor postoperative outcomes, such as increased perioperative mortality, postoperative sepsis, prolonged length of stay, increased cost of care, decreased functional outcome, and poorer oncological outcomes in cancer surgery. Multimodal prehabilitation, as a concept that involves boosting and optimizing the preoperative condition of a patient prior to the upcoming stressors of a surgical procedure, has the purported benefits of reversing the effects of sarcopenia, shortening hospitalization, improving the rate of return to bowel activity, reducing the costs of hospitalization, and improving quality of life. This review aims to present the current literature surrounding the concept of sarcopenia, its implications pertaining to colorectal cancer and surgery, a summary of studied multimodal prehabilitation interventions, and potential future advances in the management of sarcopenia.
Collapse
Affiliation(s)
- Jingting Wu
- Division of Surgery, Sengkang General Hospital, Singapore
| | - Hannah Chi
- Division of Surgery, Sengkang General Hospital, Singapore
| | - Shawn Kok
- Department of Radiology, Sengkang General Hospital, Singapore
| | - Jason M.W. Chua
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore
| | - Xi-Xiao Huang
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore
| | - Shipin Zhang
- Duke-NUS Graduate Medical School, National Cancer Centre Singapore, Singapore
| | - Shimin Mah
- Department of Physiotherapy, Sengkang General Hospital, Singapore
| | - Li-Xin Foo
- Department of Physiotherapy, Sengkang General Hospital, Singapore
| | - Hui-Yee Peh
- Department of Dietetics, Sengkang General Hospital, Singapore
| | - Hui-Bing Lee
- Department of Dietetics, Sengkang General Hospital, Singapore
| | - Phoebe Tay
- Department of Dietetics, Sengkang General Hospital, Singapore
| | - Cherie Tong
- Department of Dietetics, Sengkang General Hospital, Singapore
| | - Jasmine Ladlad
- Division of Surgery, Sengkang General Hospital, Singapore
| | | | | | - Darius Aw
- Division of Surgery, Sengkang General Hospital, Singapore
| | | | | | | | - Jialin Ng
- Division of Surgery, Sengkang General Hospital, Singapore
| | | | - Fung-Joon Foo
- Division of Surgery, Sengkang General Hospital, Singapore
| | - Bin-Tean Teh
- Duke-NUS Graduate Medical School, National Cancer Centre Singapore, Singapore
| | | |
Collapse
|
12
|
Jiang H, Liu B, Lin J, Xue T, Han Y, Lu C, Zhou S, Gu Y, Xu F, Shen Y, Xu L, Sun H. MuSCs and IPCs: roles in skeletal muscle homeostasis, aging and injury. Cell Mol Life Sci 2024; 81:67. [PMID: 38289345 PMCID: PMC10828015 DOI: 10.1007/s00018-023-05096-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
Skeletal muscle is a highly specialized tissue composed of myofibres that performs crucial functions in movement and metabolism. In response to external stimuli and injuries, a range of stem/progenitor cells, with muscle stem cells or satellite cells (MuSCs) being the predominant cell type, are rapidly activated to repair and regenerate skeletal muscle within weeks. Under normal conditions, MuSCs remain in a quiescent state, but become proliferative and differentiate into new myofibres in response to injury. In addition to MuSCs, some interstitial progenitor cells (IPCs) such as fibro-adipogenic progenitors (FAPs), pericytes, interstitial stem cells expressing PW1 and negative for Pax7 (PICs), muscle side population cells (SPCs), CD133-positive cells and Twist2-positive cells have been identified as playing direct or indirect roles in regenerating muscle tissue. Here, we highlight the heterogeneity, molecular markers, and functional properties of these interstitial progenitor cells, and explore the role of muscle stem/progenitor cells in skeletal muscle homeostasis, aging, and muscle-related diseases. This review provides critical insights for future stem cell therapies aimed at treating muscle-related diseases.
Collapse
Affiliation(s)
- Haiyan Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Junfei Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Tong Xue
- Department of Paediatrics, Medical School of Nantong University, Nantong University, Nantong, 226001, People's Republic of China
| | - Yimin Han
- Department of Paediatrics, Medical School of Nantong University, Nantong University, Nantong, 226001, People's Republic of China
| | - Chunfeng Lu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, Jiangsu, People's Republic of China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Lingchi Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Liu W, Wang T, Wang W, Lin X, Xie K. Tanshinone IIA promotes the proliferation and differentiation ability of primary muscle stem cells via MAPK and Akt signaling. Biochem Biophys Res Commun 2023; 689:149235. [PMID: 37976834 DOI: 10.1016/j.bbrc.2023.149235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Salvia miltiorrhiza Bunge is a widely-used traditional Chinese medicine to treat a variety of diseases including muscle disorders. The underlying pharmacological mechanisms of which active component and how it functions are still unknown. Tanshinone IIA (Tan IIA) is the main active lipophilic compound in Salvia miltiorrhiza Bunge. Muscle stem cells (MuSCs) play a crucial role in maintaining healthy physiological function of skeletal muscle. For the purpose of this study, we investigated the effects of Tan IIA on primary MuSCs as well as mechanism. The EdU staining, cell counts assay and RT-qPCR results of proliferative genes revealed increased proliferation ability of MuSCs after Tan IIA treatment. Immunofluorescent staining of MyHC and RT-qPCR results of myogenic genes found Tan IIA contributed to promoting differentiation of MuSCs. In addition, enrichment analysis of RNA-seq data and Western blot assay results demonstrated activated MAPK and Akt signaling after treatment of Tan IIA during proliferation and differentiation. The above proliferative and differentiative phonotypes could be suppressed by the combination of MAPK inhibitor U0126 and Akt inhibitor Akti 1/2, respectively. Furthermore, HE staining found significantly improved myofiber regeneration of injured muscle after Tan IIA treatment, which also contributed to muscle force and running performance recovery. Thus, Tan IIA could promote proliferation and differentiation ability of MuSCs through activating MAPK and Akt signaling, respectively. These beneficial effects also significantly contributed to muscle regeneration and muscle function recovery after muscle injury.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Orthopedic Surgery, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Third Affiliated Hospital of Shanghai University, No.57 Canghou Street, Wenzhou, Zhejiang, PR China
| | - Tihui Wang
- Department of Orthopedic Surgery, Mindong Hospital Affiliated to Fujian Medical University, No.89 Heshan Road, Fuan, Fujian, PR China
| | - Wei Wang
- Department of Orthopedic Surgery, HuBei Provincial Hospital of TCM, No.4 Hua Yuan Shan, Wuchang District, Wuhan, Hubei, PR China
| | - Xingzuan Lin
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, PR China.
| | - Kailuo Xie
- Department of Orthopedic Surgery, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Third Affiliated Hospital of Shanghai University, No.57 Canghou Street, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
14
|
Huang T, Zhou J, Wang B, Wang X, Xiao W, Yang M, Liu Y, Wang Q, Xiang Y, Lan X. Integrated Amino Acids and Transcriptome Analysis Reveals Arginine Transporter SLC7A2 Is a Novel Regulator of Myogenic Differentiation. Int J Mol Sci 2023; 25:95. [PMID: 38203268 PMCID: PMC10778648 DOI: 10.3390/ijms25010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal muscle differentiation is a precisely coordinated process. While many of the molecular details of myogenesis have been investigated extensively, the dynamic changes and functions of amino acids and related transporters remain unknown. In this study, we conducted a comprehensive analysis of amino acid levels during different time points of C2C12 myoblast differentiation using high-performance liquid chromatography (HPLC). Our findings revealed that the levels of most amino acids exhibited an initial increase at the onset of differentiation, reaching their peak typically on the fourth or sixth day, followed by a decline on the eighth day. Particularly, arginine and branched-chain amino acids showed a prominent increase during this period. Furthermore, we used RNA-seq analysis to show that the gene encoding the arginine transporter, Slc7a2, is significantly upregulated during differentiation. Knockdown of Slc7a2 gene expression resulted in a significant decrease in myoblast proliferation and led to a reduction in the expression levels of crucial myogenic regulatory factors, hindering the process of myoblast differentiation, fusion, and subsequent myotube formation. Lastly, we assessed the expression level of Slc7a2 during aging in humans and mice and found an upregulation of Slc7a2 expression during the aging process. These findings collectively suggest that the arginine transporter SLC7A2 plays a critical role in facilitating skeletal muscle differentiation and may hold potential as a therapeutic target for sarcopenia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yang Xiang
- Metabolic Control and Aging—Jiangxi Key Laboratory of Human Aging, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang 330031, China (Q.W.)
| | - Xinqiang Lan
- Metabolic Control and Aging—Jiangxi Key Laboratory of Human Aging, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang 330031, China (Q.W.)
| |
Collapse
|
15
|
Callegari S, Mirzaei F, Agbaria L, Shariff S, Kantawala B, Moronge D, Ogendi BMO. Zebrafish as an Emerging Model for Sarcopenia: Considerations, Current Insights, and Future Directions. Int J Mol Sci 2023; 24:17018. [PMID: 38069340 PMCID: PMC10707505 DOI: 10.3390/ijms242317018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Sarcopenia poses a significant challenge to public health and can severely impact the quality of life of aging populations. Despite extensive efforts to study muscle degeneration using traditional animal models, there is still a lack of effective diagnostic tools, precise biomarkers, and treatments for sarcopenia. Zebrafish models have emerged as powerful tools in biomedical research, providing unique insights into age-related muscle disorders like sarcopenia. The advantages of using zebrafish models include their rapid growth outside of the embryo, optical transparency during early developmental stages, high reproductive potential, ease of husbandry, compact size, and genetic tractability. By deepening our understanding of the molecular processes underlying sarcopenia, we may develop novel diagnostic tools and effective treatments that can improve the lives of aging individuals affected by this condition. This review aims to explore the unique advantages of zebrafish as a model for sarcopenia research, highlight recent breakthroughs, outline potential avenues for future investigations, and emphasize the distinctive contributions that zebrafish models offer. Our research endeavors to contribute significantly to address the urgent need for practical solutions to reduce the impact of sarcopenia on aging populations, ultimately striving to enhance the quality of life for individuals affected by this condition.
Collapse
Affiliation(s)
- Santiago Callegari
- Vascular Medicine Outcomes Laboratory, Cardiology Department, Yale University, New Haven, CT 06510, USA
| | - Foad Mirzaei
- Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, 2 Koryun, Yerevan 0025, Armenia; (F.M.); (L.A.); (B.K.)
| | - Lila Agbaria
- Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, 2 Koryun, Yerevan 0025, Armenia; (F.M.); (L.A.); (B.K.)
| | - Sanobar Shariff
- Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, 2 Koryun, Yerevan 0025, Armenia; (F.M.); (L.A.); (B.K.)
| | - Burhan Kantawala
- Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, 2 Koryun, Yerevan 0025, Armenia; (F.M.); (L.A.); (B.K.)
| | - Desmond Moronge
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA;
| | - Brian M. O. Ogendi
- Department of Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA;
| |
Collapse
|
16
|
Ahmad K, Shaikh S, Chun HJ, Ali S, Lim JH, Ahmad SS, Lee EJ, Choi I. Extracellular matrix: the critical contributor to skeletal muscle regeneration-a comprehensive review. Inflamm Regen 2023; 43:58. [PMID: 38008778 PMCID: PMC10680355 DOI: 10.1186/s41232-023-00308-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 11/28/2023] Open
Abstract
The regenerative ability of skeletal muscle (SM) in response to damage, injury, or disease is a highly intricate process that involves the coordinated activities of multiple cell types and biomolecular factors. Of these, extracellular matrix (ECM) is considered a fundamental component of SM regenerative ability. This review briefly discusses SM myogenesis and regeneration, the roles played by muscle satellite cells (MSCs), other cells, and ECM components, and the effects of their dysregulations on these processes. In addition, we review the various types of ECM scaffolds and biomaterials used for SM regeneration, their applications, recent advances in ECM scaffold research, and their impacts on tissue engineering and SM regeneration, especially in the context of severe muscle injury, which frequently results in substantial muscle loss and impaired regenerative capacity. This review was undertaken to provide a comprehensive overview of SM myogenesis and regeneration, the stem cells used for muscle regeneration, the significance of ECM in SM regeneration, and to enhance understanding of the essential role of the ECM scaffold during SM regeneration.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
17
|
Dai J, Wang H, Jiang L, Zhang F, Lin J, Wang L, Yang J, Wang X. Exploring the therapeutic mechanisms of Sijunzi decoction in the treatment of sarcopenia: Key targets and signaling pathways. Biomed Chromatogr 2023; 37:e5722. [PMID: 37609865 DOI: 10.1002/bmc.5722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/29/2023] [Indexed: 08/24/2023]
Abstract
Sarcopenia, an age-associated condition, negatively impacts the quality of life. This study investigates the mechanism of Sijunzi decoction (SJZD), a traditional Chinese formula, against sarcopenia. Active compounds and potential targets of SJZD for sarcopenia were gathered from databases. Hub targets were identified using protein-protein interaction networks, with GO and KEGG analyses suggesting potential pathways. Molecular docking was used to assess compound-target affinity. A lipopolysaccharide-induced sarcopenia rat model was used to verify the targets. Sijunzi decoction contains 92 compounds and 47 targets for sarcopenia. The top 10 hub targets comprise AKT1, ALB, INS, IL6, TNF, TP53, VEGFA, SIRT1, CAT and FOS. GO and KEGG analyses indicate involvement in steroid hormone response, vesicle lumen, receptor agonist activity, and FoxO and HIF-1 signaling pathways. Validation experiments showed that SJZD alleviates sarcopenia by downregulating SIRT1, IL-6, TNF and AKT1. Sijunzi decoction treats sarcopenia by targeting SIRT1, IL-6, TNF and AKT1, potentially involving FoxO and HIF-1 signaling pathways. This highlights SJZD's potential for sarcopenia treatment.
Collapse
Affiliation(s)
- Jin Dai
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Haifeng Wang
- Department of Geriatrics, Tongji Hospital of Tongji University, Shanghai, China
| | - Libin Jiang
- Department of Geriatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Fuying Zhang
- Department of Geriatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Jin Lin
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Ling Wang
- Department of Geriatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Jun Yang
- Department of Geriatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xiao Wang
- Department of Geriatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Franchi-Mendes T, Silva M, Cartaxo AL, Fernandes-Platzgummer A, Cabral JMS, da Silva CL. Bioprocessing Considerations towards the Manufacturing of Therapeutic Skeletal and Smooth Muscle Cells. Bioengineering (Basel) 2023; 10:1067. [PMID: 37760170 PMCID: PMC10525286 DOI: 10.3390/bioengineering10091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Tissue engineering approaches within the muscle context represent a promising emerging field to address the current therapeutic challenges related with multiple pathological conditions affecting the muscle compartments, either skeletal muscle or smooth muscle, responsible for involuntary and voluntary contraction, respectively. In this review, several features and parameters involved in the bioprocessing of muscle cells are addressed. The cell isolation process is depicted, depending on the type of tissue (smooth or skeletal muscle), followed by the description of the challenges involving the use of adult donor tissue and the strategies to overcome the hurdles of reaching relevant cell numbers towards a clinical application. Specifically, the use of stem/progenitor cells is highlighted as a source for smooth and skeletal muscle cells towards the development of a cellular product able to maintain the target cell's identity and functionality. Moreover, taking into account the need for a robust and cost-effective bioprocess for cell manufacturing, the combination of muscle cells with biomaterials and the need for scale-up envisioning clinical applications are also approached.
Collapse
Affiliation(s)
- Teresa Franchi-Mendes
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marília Silva
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Luísa Cartaxo
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Cláudia L. da Silva
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
19
|
Ashraf M, Tipparaju SM, Kim JW, Xuan W. Chemokine/ITGA4 Interaction Directs iPSC-Derived Myogenic Progenitor Migration to Injury Sites in Aging Muscle for Regeneration. Cells 2023; 12:1837. [PMID: 37508502 PMCID: PMC10378040 DOI: 10.3390/cells12141837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The failure of muscle to repair after injury during aging may be a major contributor to muscle mass loss. We recently generated muscle progenitor cells (MPCs) from human-induced pluripotent stem-cell (iPSC) cell lines using small molecules, CHIR99021 and Givinostat (Givi-MPCs) sequentially. Here, we test whether the chemokines overexpressed in injured endothelial cells direct MPC migration to the site by binding to their receptor, ITGA4. ITGA4 was heavily expressed in Givi-MPCs. To study the effects on the mobilization of Givi-MPCs, ITGA4 was knocked down by an ITGA4 shRNA lentiviral vector. With and without ITGA4 knocked down, cell migration in vitro and cell mobilization in vivo using aged NOD scid gamma (NSG) mice and mdx/scid mice were analyzed. The migration of shITGA4-Givi-MPCs was significantly impaired, as shown in a wound-healing assay. The knockdown of ITGA4 impaired the migration of Givi-MPCs towards human aortic endothelial cells (HAECs), in which CX3CL1 and VCAM-1 were up-regulated by the treatment of TNF-α compared with scramble ones using a transwell system. MPCs expressing ITGA4 sensed chemokines secreted by endothelial cells at the injury site as a chemoattracting signal to migrate to the injured muscle. The mobilization of Givi-MPCs was mediated by the ligand-receptor interaction, which facilitated their engraftment for repairing the sarcopenic muscle with injury.
Collapse
|
20
|
Yin P, Jiang Y, Fang X, Wang D, Li Y, Chen M, Deng H, Tang P, Zhang L. Cell-Based Therapies for Degenerative Musculoskeletal Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207050. [PMID: 37199688 PMCID: PMC10375105 DOI: 10.1002/advs.202207050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/29/2023] [Indexed: 05/19/2023]
Abstract
Degenerative musculoskeletal diseases (DMDs), including osteoporosis, osteoarthritis, degenerative disc disease, and sarcopenia, present major challenges in the aging population. Patients with DMDs present with pain, functional decline, and reduced exercise tolerance, which result in long-term or permanent deficits in their ability to perform daily activities. Current strategies for dealing with this cluster of diseases focus on relieving pain, but they have a limited capacity to repair function or regenerate tissue. Cell-based therapies have attracted considerable attention in recent years owing to their unique mechanisms of action and remarkable effects on regeneration. In this review, current experimental attempts to use cell-based therapies for DMDs are highlighted, and the modes of action of different cell types and their derivatives, such as exosomes, are generalized. In addition, the latest findings from state-of-the-art clinical trials are reviewed, approaches to improve the efficiency of cell-based therapies are summarized, and unresolved questions and potential future research directions for the translation of cell-based therapies are identified.
Collapse
Affiliation(s)
- Pengbin Yin
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Yuheng Jiang
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
- Department of OrthopedicsGeneral Hospital of Southern Theater Command of PLANo. 111, Liuhua AvenueGuangzhou510010China
| | - Xuan Fang
- Department of Anatomy, Histology and EmbryologySchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Daofeng Wang
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Yi Li
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Ming Chen
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Hao Deng
- Department of OrthopedicsThird Affiliated Hospital of Jinzhou Medical UniversityJinzhouLiaoning Province121000China
| | - Peifu Tang
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Licheng Zhang
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| |
Collapse
|
21
|
Wei S, Nguyen TT, Zhang Y, Ryu D, Gariani K. Sarcopenic obesity: epidemiology, pathophysiology, cardiovascular disease, mortality, and management. Front Endocrinol (Lausanne) 2023; 14:1185221. [PMID: 37455897 PMCID: PMC10344359 DOI: 10.3389/fendo.2023.1185221] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Sarcopenic obesity is defined as the coexistence of sarcopenia and obesity in the same individual, characterized by of the co-presence of body fat accumulation and muscle loss. This condition is currently a major concern as it is associated with frailty and disabilities such as cardiovascular disease, fractures, dementia, cancer, and increased all-cause mortality. Particularly, older individuals remain at risk of sarcopenic obesity. Progress at several levels is needed to improve the global prognostic outlook for this condition, including the elaboration and implementation of a more uniform definition that may favor the identification and specification of prevalence by age group. Furthermore, improvements in the understanding of the pathogenesis of sarcopenic obesity may lead to the development of more specific therapeutic interventions to improve prognosis. We reviewed the knowledge on sarcopenic obesity and its associations with cardiovascular diseases and mortality.
Collapse
Affiliation(s)
- Shibo Wei
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Thanh T. Nguyen
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yan Zhang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Karim Gariani
- Division of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Medical Specialties, Geneva University Hospitals, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
22
|
Kim J, Lee JY, Kim CY. A Comprehensive Review of Pathological Mechanisms and Natural Dietary Ingredients for the Management and Prevention of Sarcopenia. Nutrients 2023; 15:nu15112625. [PMID: 37299588 DOI: 10.3390/nu15112625] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Sarcopenia is characterized by an age-related loss of skeletal muscle mass and function and has been recognized as a clinical disease by the World Health Organization since 2016. Substantial evidence has suggested that dietary modification can be a feasible tool to combat sarcopenia. Among various natural dietary ingredients, the present study focused on botanical and marine extracts, phytochemicals, and probiotics. Aims of this review were (1) to provide basic concepts including the definition, diagnosis, prevalence, and adverse effects of sarcopenia, (2) to describe possible pathological mechanisms including protein homeostasis imbalance, inflammation, mitochondrial dysfunction, and satellite cells dysfunction, and (3) to analyze recent experimental studies reporting potential biological functions against sarcopenia. A recent literature review for dietary ingredients demonstrated that protein homeostasis is maintained via an increase in the PI3K/Akt pathway and/or a decrease in the ubiquitin-proteasome system. Regulation of inflammation has primarily targeted inhibition of NF-κB signaling. Elevated Pgc-1α or Pax7 expression reverses mitochondrial or satellite cell dysfunction. This review provides the current knowledge on dietary components with the potential to assist sarcopenia prevention and/or treatment. Further in-depth studies are required to elucidate the role of and develop various dietary materials for healthier aging, particularly concerning muscle health.
Collapse
Affiliation(s)
- Juhae Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Joo-Yeon Lee
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
23
|
Jiang X, Ji S, Yuan F, Li T, Cui S, Wang W, Ye X, Wang R, Chen Y, Zhu S. Pyruvate dehydrogenase B regulates myogenic differentiation via the FoxP1-Arih2 axis. J Cachexia Sarcopenia Muscle 2023; 14:606-621. [PMID: 36564038 PMCID: PMC9891931 DOI: 10.1002/jcsm.13166] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Sarcopenia, the age-related decline in skeletal muscle mass and function, diminishes life quality in elderly people. Improving the capacity of skeletal muscle differentiation is expected to counteract sarcopenia. However, the mechanisms underlying skeletal muscle differentiation are complex, and effective therapeutic targets are largely unknown. METHODS The human Gene Expression Omnibus database, aged mice and primary skeletal muscle cells were used to assess the expression level of pyruvate dehydrogenase B (PDHB) in human and mouse aged state. d-Galactose (d-gal)-induced sarcopenia mouse model and two classic cell models (C2C12 and HSkMC) were used to assess the myogenic effect of PDHB and the underlying mechanisms via immunocytochemistry, western blotting, quantitative real-time polymerase chain reaction, RNA interference or overexpression, dual-luciferase reporter assay, RNA sequencing and untargeted metabolomics. RESULTS We identified that a novel target PDHB promoted myogenic differentiation. PDHB expression decreased in aged mouse muscle relative to the young state (-50% of mRNA level, P < 0.01) and increased during mouse and primary human muscle cell differentiation (+3.97-fold, P < 0.001 and +3.79-fold, P < 0.001). Knockdown or overexpression of PDHB modulated the expression of genes related to muscle differentiation, namely, myogenic factor 5 (Myf5) (-46%, P < 0.01 and -27%, P < 0.05; +1.8-fold, P < 0.01), myogenic differentiation (MyoD) (-55%, P < 0.001 and -34%, P < 0.01; +2.27-fold, P < 0.001), myogenin (MyoG) (-60%, P < 0.001 and -70%, P < 0.001; +5.46-fold, P < 0.001) and myosin heavy chain (MyHC) (-70%, P < 0.001 and -69%, P < 0.001; +3.44-fold, P < 0.001) in both C2C12 cells and HSkMC. Metabolomic and transcriptomic analyses revealed that PDHB knockdown suppressed pyruvate metabolism (P < 0.001) and up-regulated ariadne RBR E3 ubiquitin protein ligase 2 (Arih2) (+7.23-fold, P < 0.001) in cellular catabolic pathways. The role of forkhead box P1 (FoxP1) (+4.18-fold, P < 0.001)-mediated Arih2 transcription was the key downstream regulator of PDHB in muscle differentiation. PDHB overexpression improved d-gal-induced muscle atrophy in mice, which was characterized by significant increases in grip strength, muscle mass and mean muscle cross-sectional area (1.19-fold to 1.5-fold, P < 0.01, P < 0.05 and P < 0.001). CONCLUSIONS The comprehensive results show that PDHB plays a sarcoprotective role by suppressing the FoxP1-Arih2 axis and may serve as a therapeutic target in sarcopenia.
Collapse
Affiliation(s)
- Xuan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Siyu Ji
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Fenglai Yuan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Tushuai Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Siyuan Cui
- Wuxi No. 2 People's Hospital, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Translational Medicine, Jiangnan University, Wuxi, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Translational Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
24
|
Shintani-Ishida K, Tsurumi R, Ikegaya H. Decrease in the expression of muscle-specific miRNAs, miR-133a and miR-1, in myoblasts with replicative senescence. PLoS One 2023; 18:e0280527. [PMID: 36649291 PMCID: PMC9844915 DOI: 10.1371/journal.pone.0280527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Muscles that are injured or atrophied by aging undergo myogenic regeneration. Although myoblasts play a pivotal role in myogenic regeneration, their function is impaired with aging. MicroRNAs (miRNAs) are also involved in myogenic regeneration. MiRNA (miR)-1 and miR-133a are muscle-specific miRNAs that control the proliferation and differentiation of myoblasts. In this study, we determined whether miR-1 and miR-133a expression in myoblasts is altered with cellular senescence and involved in senescence-impaired myogenic differentiation. C2C12 murine skeletal myoblasts were converted to a replicative senescent state by culturing to a high passage number. Although miR-1 and miR-133a expression was largely induced during myogenic differentiation, expression was suppressed in cells at high passage numbers (passage 10 and/or passage 20). Although the senescent myoblasts exhibited a deterioration of myogenic differentiation, transfection of miR-1 or miR-133a into myoblasts ameliorated cell fusion. Treatment with the glutaminase 1 inhibitor, BPTES, removed senescent cells from C2C12 myoblasts with a high passage number, whereas myotube formation and miR-133a expression was increased. In addition, primary cultured myoblasts prepared from aged C57BL/6J male mice (20 months old) exhibited a decrease in miR-1 and miR-133a levels compared with younger mice (3 months old). The results suggest that replicative senescence suppresses muscle-specific miRNA expression in myoblasts, which contributes to the senescence-related dysfunction of myogenic regeneration.
Collapse
Affiliation(s)
- Kaori Shintani-Ishida
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Riko Tsurumi
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Ikegaya
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
25
|
Potential Therapeutic Strategies for Skeletal Muscle Atrophy. Antioxidants (Basel) 2022; 12:antiox12010044. [PMID: 36670909 PMCID: PMC9854691 DOI: 10.3390/antiox12010044] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The maintenance of muscle homeostasis is vital for life and health. Skeletal muscle atrophy not only seriously reduces people's quality of life and increases morbidity and mortality, but also causes a huge socioeconomic burden. To date, no effective treatment has been developed for skeletal muscle atrophy owing to an incomplete understanding of its molecular mechanisms. Exercise therapy is the most effective treatment for skeletal muscle atrophy. Unfortunately, it is not suitable for all patients, such as fractured patients and bedridden patients with nerve damage. Therefore, understanding the molecular mechanism of skeletal muscle atrophy is crucial for developing new therapies for skeletal muscle atrophy. In this review, PubMed was systematically screened for articles that appeared in the past 5 years about potential therapeutic strategies for skeletal muscle atrophy. Herein, we summarize the roles of inflammation, oxidative stress, ubiquitin-proteasome system, autophagic-lysosomal pathway, caspases, and calpains in skeletal muscle atrophy and systematically expound the potential drug targets and therapeutic progress against skeletal muscle atrophy. This review focuses on current treatments and strategies for skeletal muscle atrophy, including drug treatment (active substances of traditional Chinese medicine, chemical drugs, antioxidants, enzyme and enzyme inhibitors, hormone drugs, etc.), gene therapy, stem cell and exosome therapy (muscle-derived stem cells, non-myogenic stem cells, and exosomes), cytokine therapy, physical therapy (electroacupuncture, electrical stimulation, optogenetic technology, heat therapy, and low-level laser therapy), nutrition support (protein, essential amino acids, creatine, β-hydroxy-β-methylbutyrate, and vitamin D), and other therapies (biomaterial adjuvant therapy, intestinal microbial regulation, and oxygen supplementation). Considering many treatments have been developed for skeletal muscle atrophy, we propose a combination of proper treatments for individual needs, which may yield better treatment outcomes.
Collapse
|
26
|
Rizzo R, Bonato A, Chansoria P, Zenobi-Wong M. Macroporous Aligned Hydrogel Microstrands for 3D Cell Guidance. ACS Biomater Sci Eng 2022; 8:3871-3882. [PMID: 35977074 DOI: 10.1021/acsbiomaterials.2c00370] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tissue engineering strongly relies on the use of hydrogels as highly hydrated 3D matrices to support the maturation of laden cells. However, because of the lack of microarchitecture and sufficient porosity, common hydrogel systems do not provide physical cell-instructive guidance cues and efficient transport of nutrients and oxygen to the inner part of the construct. A controlled, organized cellular alignment and resulting alignment of secreted ECM are hallmarks of muscle, tendons, and nerves and play an important role in determining their functional properties. Although several strategies to induce cellular alignment have been investigated in 2D systems, the generation of cell-instructive 3D hydrogels remains a challenge. Here, we report on the development of a simple and scalable method to efficiently generate highly macroporous constructs featuring aligned guidance cues. A precross-linked bulk hydrogel is pressed through a grid with variable opening sizes, thus deconstructing it into an array of aligned, high aspect ratio microgels (microstrands) with tunable diameter that are eventually stabilized by a second photoclick cross-linking step. This method has been investigated and optimized both in silico and in vitro, thereby leading to conditions with excellent viability and organized cellular alignment. Finally, as proof of concept, the method has been shown to direct aligned muscle tissue maturation. These findings demonstrate the 3D physical guidance potential of our system, which can be used for a variety of anisotropic tissues and applications.
Collapse
Affiliation(s)
- Riccardo Rizzo
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich 8093, Switzerland
| | - Angela Bonato
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich 8093, Switzerland
| | - Parth Chansoria
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich 8093, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich 8093, Switzerland
| |
Collapse
|
27
|
Xiao Y, Deng Z, Tan H, Jiang T, Chen Z. Bibliometric Analysis of the Knowledge Base and Future Trends on Sarcopenia from 1999–2021. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148866. [PMID: 35886713 PMCID: PMC9320125 DOI: 10.3390/ijerph19148866] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023]
Abstract
Sarcopenia is characterized by progressive loss of muscle mass and function, and it is becoming a serious public health problem with the aging population. However, a comprehensive overview of the knowledge base and future trends is still lacking. The articles and reviews with “sarcopenia” in their title published from 1999 to 2021 in the SCIE database were retrieved. We used Microsoft Excel, VOSviewer, and CiteSpace to conduct a descriptive and bibliometric analysis. A total of 3582 publications were collected, from 4 published in 2000 increasing dramatically to 850 documents in 2021. The USA was the most productive country, with the most citations. The Catholic University of the Sacred Heart and Landi F were the most influential organization and author in this field, respectively. The core journal in this field was the Journal of Cachexia Sarcopenia and Muscle. According to the analysis of keywords and references, we roughly categorized the main research areas into four domains as follows: 1. Definition and diagnosis; 2. Epidemiology; 3. Etiology and pathogenesis; 4. Treatments. Comparing different diagnostic tools and the epidemiology of sarcopenia in different populations are recent hotspots, while more efforts are needed in the underlying mechanism and developing safe and effective treatments. In conclusion, this study provides comprehensive insights into developments and trends in sarcopenia research that can help researchers and clinicians better manage and implement their work.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha 410008, China; (Y.X.); (T.J.)
| | - Ziheng Deng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410008, China; (Z.D.); (H.T.)
- Centers of System Biology, Data Information and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410008, China
| | - Hangjing Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410008, China; (Z.D.); (H.T.)
- Centers of System Biology, Data Information and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410008, China
| | - Tiejian Jiang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha 410008, China; (Y.X.); (T.J.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
| | - Zhiheng Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha 410013, China
- Correspondence:
| |
Collapse
|