1
|
Maul-Newby HM, Halene S. Splicing the Difference: Harnessing the Complexity of the Transcriptome in Hematopoiesis. Exp Hematol 2024; 140:104655. [PMID: 39393608 DOI: 10.1016/j.exphem.2024.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Alternative splicing has long been recognized as a powerful tool to expand the diversity of the transcriptome and the proteome. The study of hematopoiesis, from hematopoietic stem cell maintenance and differentiation into committed progenitors to maturation into functional blood cells, has led the field of stem cell research and cellular differentiation for decades. The importance of aberrant splicing due to mutations in cis has been exemplified in thalassemias, resulting from aberrant expression of β-globin. The simultaneous development of increasingly sophisticated technologies, in particular the combination of multicolor flow cytometric cell sorting with bulk and single-cell sequencing, has provided sophisticated insights into the complex regulation of the blood system. The recognition that mutations in key splicing factors drive myeloid malignancies, in particular myelodysplastic syndromes, has galvanized research into alternative splicing in hematopoiesis and its diseases. In this review, we will update the audience on the exciting novel technologies, highlight alternative splicing events and their regulators with essential functions in hematopoiesis, and provide a high-level overview how splicing factor mutations contribute to hematologic malignancies.
Collapse
Affiliation(s)
- Hannah M Maul-Newby
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
2
|
Tan W, Chen J, Wang Y, Xiang K, Lu X, Han Q, Hou M, Yang J. Single-cell RNA sequencing in diabetic kidney disease: a literature review. Ren Fail 2024; 46:2387428. [PMID: 39099183 DOI: 10.1080/0886022x.2024.2387428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/06/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD), and its pathogenesis has not been clarified. Current research suggests that DKD involves multiple cell types and extra-renal factors, and it is particularly important to clarify the pathogenesis and identify new therapeutic targets. Single-cell RNA sequencing (scRNA-seq) technology is high-throughput sequencing of the transcriptomes of individual cells at the single-cell level, which is an effective technology for exploring the development of diseases by comparing genetic information, reflecting the differences in genetic information between cells, and identifying different cell subpopulations. Accumulating evidence supports the role of scRNA-seq in revealing the pathogenesis of diabetes and strengthening our understanding of the molecular mechanisms of DKD. We reviewed the scRNA-seq data this time. Then, we analyzed and discussed the applications of scRNA-seq technology in DKD research, including annotation of cell types, identification of novel cell types (or subtypes), identification of intercellular communication, analysis of cell differentiation trajectories, gene expression detection, and analysis of gene regulatory networks, and lastly, we explored the future perspectives of scRNA-seq technology in DKD research.
Collapse
Affiliation(s)
- Wei Tan
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaoyan Chen
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunyan Wang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kui Xiang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xianqiong Lu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuyu Han
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingyue Hou
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Li Z, Lin J, Wu J, Suo J, Wang Z. The Hippo signalling pathway in bone homeostasis: Under the regulation of mechanics and aging. Cell Prolif 2024; 57:e13652. [PMID: 38700015 PMCID: PMC11471399 DOI: 10.1111/cpr.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
The Hippo signalling pathway is a conserved kinase cascade that orchestrates diverse cellular processes, such as proliferation, apoptosis, lineage commitment and stemness. With the onset of society ages, research on skeletal aging-mechanics-bone homeostasis has exploded. In recent years, aging and mechanical force in the skeletal system have gained groundbreaking research progress. Under the regulation of mechanics and aging, the Hippo signalling pathway has a crucial role in the development and homeostasis of bone. We synthesize the current knowledge on the role of the Hippo signalling pathway, particularly its downstream effectors yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), in bone homeostasis. We discuss the regulation of the lineage specification and function of different skeletal cell types by the Hippo signalling pathway. The interactions of the Hippo signalling pathway with other pathways, such as Wnt, transforming growth factor beta and nuclear factor kappa-B, are also mentioned because of their importance for modulating bone homeostasis. Furthermore, YAP/TAZ have been extensively studied as mechanotransducers. Due to space limitations, we focus on reviewing how mechanical forces and aging influence cell fate, communications and homeostasis through a dysregulated Hippo signalling pathway.
Collapse
Affiliation(s)
- Zhengda Li
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| | - Junqing Lin
- Institute of Microsurgery on Extremities, and Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine ShanghaiShanghaiChina
| | - Jing Wu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| | - Jinlong Suo
- Institute of Microsurgery on Extremities, and Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine ShanghaiShanghaiChina
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| |
Collapse
|
4
|
Pan S, Chang KC, Fernández-Maestre I, Van Haver S, Wereski MG, Bowman RL, Levine RL, Abate AR. PURE-seq identifies Egr1 as a Potential Master Regulator in Murine Aging by Sequencing Long-Term Hematopoietic Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607664. [PMID: 39185152 PMCID: PMC11343112 DOI: 10.1101/2024.08.12.607664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Single-cell transcriptomics is valuable for uncovering individual cell properties, particularly in highly heterogeneous systems. However, this technique often results in the analysis of many well-characterized cells, increasing costs and diluting rare cell populations. To address this, we developed PURE-seq (PIP-seq for Rare-cell Enrichment and Sequencing) for scalable sequencing of rare cells. PURE-seq allows direct cell loading from FACS into PIP-seq reactions, minimizing handling and reducing cell loss. PURE-seq reliably captures rare cells, with 60 minutes of sorting capturing tens of cells at a rarity of 1 in 1,000,000. Using PURE-seq, we investigated murine long-term hematopoietic stem cells and their transcriptomes in the context of hematopoietic aging, identifying Egr1 as a potential master regulator of hematopoiesis in the aging context. PURE-seq offers an accessible and reliable method for isolating and sequencing cells that are currently too rare to capture successfully with existing methods.
Collapse
Affiliation(s)
- Sixuan Pan
- Department of Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kai-Chun Chang
- Department of Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA
| | - Inés Fernández-Maestre
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stéphane Van Haver
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew G. Wereski
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert L. Bowman
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adam R. Abate
- Department of Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
Pan S, Chang KC, Fernández-Maestre I, Van Haver S, Wereski MG, Bowman RL, Levine RL, Abate AR. PURE-seq identifies Egr1 as a Potential Master Regulator in Murine Aging by Sequencing Long-Term Hematopoietic Stem Cells. RESEARCH SQUARE 2024:rs.3.rs-4863813. [PMID: 39184105 PMCID: PMC11343284 DOI: 10.21203/rs.3.rs-4863813/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Single-cell transcriptomics is valuable for uncovering individual cell properties, particularly in highly heterogeneous systems. However, this technique often results in the analysis of many well-characterized cells, increasing costs and diluting rare cell populations. To address this, we developed PURE-seq (PIP-seq for Rare-cell Enrichment and Sequencing) for scalable sequencing of rare cells. PURE-seq allows direct cell loading from FACS into PIP-seq reactions, minimizing handling and reducing cell loss. PURE-seq reliably captures rare cells, with 60 minutes of sorting capturing tens of cells at a rarity of 1 in 1,000,000. Using PURE-seq, we investigated murine long-term hematopoietic stem cells and their transcriptomes in the context of hematopoietic aging, identifying Egr1 as a potential master regulator of hematopoiesis in the aging context. PURE-seq offers an accessible and reliable method for isolating and sequencing cells that are currently too rare to capture successfully with existing methods.
Collapse
Affiliation(s)
- Sixuan Pan
- Department of Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kai-Chun Chang
- Department of Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA
| | - Inés Fernández-Maestre
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stéphane Van Haver
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew G. Wereski
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert L. Bowman
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adam R. Abate
- Department of Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
6
|
Feng C, Tie R, Xin S, Chen Y, Li S, Chen Y, Hu X, Zhou Y, Liu Y, Hu Y, Hu Y, Pan H, Wu Z, Chao H, Zhang S, Ni Q, Huang J, Luo W, Huang H, Chen M. Systematic single-cell analysis reveals dynamic control of transposable element activity orchestrating the endothelial-to-hematopoietic transition. BMC Biol 2024; 22:143. [PMID: 38937802 PMCID: PMC11209969 DOI: 10.1186/s12915-024-01939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND The endothelial-to-hematopoietic transition (EHT) process during definitive hematopoiesis is highly conserved in vertebrates. Stage-specific expression of transposable elements (TEs) has been detected during zebrafish EHT and may promote hematopoietic stem cell (HSC) formation by activating inflammatory signaling. However, little is known about how TEs contribute to the EHT process in human and mouse. RESULTS We reconstructed the single-cell EHT trajectories of human and mouse and resolved the dynamic expression patterns of TEs during EHT. Most TEs presented a transient co-upregulation pattern along the conserved EHT trajectories, coinciding with the temporal relaxation of epigenetic silencing systems. TE products can be sensed by multiple pattern recognition receptors, triggering inflammatory signaling to facilitate HSC emergence. Interestingly, we observed that hypoxia-related signals were enriched in cells with higher TE expression. Furthermore, we constructed the hematopoietic cis-regulatory network of accessible TEs and identified potential TE-derived enhancers that may boost the expression of specific EHT marker genes. CONCLUSIONS Our study provides a systematic vision of how TEs are dynamically controlled to promote the hematopoietic fate decisions through transcriptional and cis-regulatory networks, and pre-train the immunity of nascent HSCs.
Collapse
Affiliation(s)
- Cong Feng
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China
- Department of Hematology, The Second Clinical Medical College of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030000, China
- Department of Hematology-Oncology, Taizhou Hospital of Zhejiang Province, Linhai, 317000, China
| | - Saige Xin
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuhao Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sida Li
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaotian Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yincong Zhou
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongjing Liu
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yueming Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanshi Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hang Pan
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
| | - Zexu Wu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haoyu Chao
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shilong Zhang
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingyang Ni
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinyan Huang
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wenda Luo
- Department of Hematology-Oncology, Taizhou Hospital of Zhejiang Province, Linhai, 317000, China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Aprile D, Patrone D, Peluso G, Galderisi U. Multipotent/pluripotent stem cell populations in stromal tissues and peripheral blood: exploring diversity, potential, and therapeutic applications. Stem Cell Res Ther 2024; 15:139. [PMID: 38735988 PMCID: PMC11089765 DOI: 10.1186/s13287-024-03752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
The concept of "stemness" incorporates the molecular mechanisms that regulate the unlimited self-regenerative potential typical of undifferentiated primitive cells. These cells possess the unique ability to navigate the cell cycle, transitioning in and out of the quiescent G0 phase, and hold the capacity to generate diverse cell phenotypes. Stem cells, as undifferentiated precursors endow with extraordinary regenerative capabilities, exhibit a heterogeneous and tissue-specific distribution throughout the human body. The identification and characterization of distinct stem cell populations across various tissues have revolutionized our understanding of tissue homeostasis and regeneration. From the hematopoietic to the nervous and musculoskeletal systems, the presence of tissue-specific stem cells underlines the complex adaptability of multicellular organisms. Recent investigations have revealed a diverse cohort of non-hematopoietic stem cells (non-HSC), primarily within bone marrow and other stromal tissue, alongside established hematopoietic stem cells (HSC). Among these non-HSC, a rare subset exhibits pluripotent characteristics. In vitro and in vivo studies have demonstrated the remarkable differentiation potential of these putative stem cells, known by various names including multipotent adult progenitor cells (MAPC), marrow-isolated adult multilineage inducible cells (MIAMI), small blood stem cells (SBSC), very small embryonic-like stem cells (VSELs), and multilineage differentiating stress enduring cells (MUSE). The diverse nomenclatures assigned to these primitive stem cell populations may arise from different origins or varied experimental methodologies. This review aims to present a comprehensive comparison of various subpopulations of multipotent/pluripotent stem cells derived from stromal tissues. By analysing isolation techniques and surface marker expression associated with these populations, we aim to delineate the similarities and distinctions among stromal tissue-derived stem cells. Understanding the nuances of these tissue-specific stem cells is critical for unlocking their therapeutic potential and advancing regenerative medicine. The future of stem cells research should prioritize the standardization of methodologies and collaborative investigations in shared laboratory environments. This approach could mitigate variability in research outcomes and foster scientific partnerships to fully exploit the therapeutic potential of pluripotent stem cells.
Collapse
Affiliation(s)
- Domenico Aprile
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy
| | - Deanira Patrone
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy
| | - Gianfranco Peluso
- Faculty of Medicine and Surgery, Saint Camillus International, University of Health Sciences, Rome, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy.
- Genome and Stem Cell Center (GENKÖK), Erciyes University, Kayseri, Turkey.
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine Temple University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Feng X, Qi F, Wang H, Li W, Gan Y, Qi C, Lin Z, Chen L, Wang P, Hu Z, Miao Y. Sorting Technology for Mesenchymal Stem Cells from a Single Tissue Source. Stem Cell Rev Rep 2024; 20:524-537. [PMID: 38112926 DOI: 10.1007/s12015-023-10635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2023] [Indexed: 12/21/2023]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells that can be obtained, enriched and proliferated in vitro. They owned enormous potential in fields like regenerative medicine, tissue engineering and immunomodulation. However, though isolated from the same origin, MSCs are still essentially heterogeneous cell populations with different phenotypes and functions. This heterogeneity of MSCs significantly affects their therapeutic efficacy and brings obstacles to scientific research. Thus, reliable sorting technology which can isolate or purify MSC subpopulations with various potential and differentiation pathways is urgently needed. This review summarized principles, application status and clinical implications for these sorting methods, aiming at improving the understanding of MSC heterogeneity as well as providing fresh perspectives for subsequent clinical applications.
Collapse
Affiliation(s)
- Xinyi Feng
- The First Clinical School of Southern Medical University, Guangzhou, China
| | - Fangfang Qi
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Hailin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Wenzhen Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yuyang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Caiyu Qi
- The First Clinical School of Southern Medical University, Guangzhou, China
| | - Zhen Lin
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Lu Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Piao Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Shi G, Zhang P, Zhang X, Li J, Zheng X, Yan J, Zhang N, Yang H. The spatiotemporal heterogeneity of the biophysical microenvironment during hematopoietic stem cell development: from embryo to adult. Stem Cell Res Ther 2023; 14:251. [PMID: 37705072 PMCID: PMC10500792 DOI: 10.1186/s13287-023-03464-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Hematopoietic stem cells (HSCs) with the ability to self-renew and differentiate are responsible for maintaining the supply of all types of blood cells. The complex and delicate microenvironment surrounding HSCs is called the HSC niche and can provide physical, chemical, and biological stimuli to regulate the survival, maintenance, proliferation, and differentiation of HSCs. Currently, the exploration of the biophysical regulation of HSCs remains in its infancy. There is evidence that HSCs are susceptible to biophysical stimuli, suggesting that the construction of engineered niche biophysical microenvironments is a promising way to regulate the fate of HSCs in vitro and ultimately contribute to clinical applications. In this review, we introduced the spatiotemporal heterogeneous biophysical microenvironment during HSC development, homeostasis, and malignancy. Furthermore, we illustrated how these biophysical cues contribute to HSC behaviors, as well as the possible mechanotransduction mechanisms from the extracellular microenvironment into cells. Comprehending the important functions of these biophysical regulatory factors will provide novel approaches to resolve clinical problems.
Collapse
Affiliation(s)
- Guolin Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Pan Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Xi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jing Li
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xinmin Zheng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jinxiao Yan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Nu Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China.
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Bastani S, Staal FJT, Canté-Barrett K. The quest for the holy grail: overcoming challenges in expanding human hematopoietic stem cells for clinical use. Stem Cell Investig 2023; 10:15. [PMID: 37457748 PMCID: PMC10345135 DOI: 10.21037/sci-2023-016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Hematopoietic stem cell (HSC) transplantation has been the golden standard for many hematological disorders. However, the number of HSCs obtained from several sources, including umbilical cord blood (UCB), often is insufficient for transplantation. For decades, maintaining or even expanding HSCs for therapeutic purposes has been a "holy grail" in stem cell biology. Different methods have been proposed to improve the efficiency of cell expansion and enhance homing potential such as co-culture with stromal cells or treatment with specific agents. Recent progress has shown that this is starting to become feasible using serum-free and well-defined media. Some of these protocols to expand HSCs along with genetic modification have been successfully applied in clinical trials and some others are studied in preclinical and clinical studies. However, the main challenges regarding ex vivo expansion of HSCs such as limited growth potential and tendency to differentiate in culture still need improvements. Understanding the biology of blood stem cells, their niche and signaling pathways has provided possibilities to regulate cell fate decisions and manipulate cells to optimize expansion of HSCs in vitro. Here, we review the plethora of HSC expansion protocols that have been proposed and indicate the current state of the art for their clinical application.
Collapse
Affiliation(s)
- Sepideh Bastani
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Kirsten Canté-Barrett
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Blümke A, Ijeoma E, Simon J, Wellington R, Purwaningrum M, Doulatov S, Leber E, Scatena M, Giachelli CM. Comparison of osteoclast differentiation protocols from human induced pluripotent stem cells of different tissue origins. RESEARCH SQUARE 2023:rs.3.rs-3089289. [PMID: 37461708 PMCID: PMC10350192 DOI: 10.21203/rs.3.rs-3089289/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferrable regarding the differentiation of osteoclasts. Methods In this study we compare the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. Results were validated using qRT-PCR throughout the differentiation stages. Results Embryoid-body based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. Conclusions The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.
Collapse
Affiliation(s)
| | - Erica Ijeoma
- University of Washington Department of Bioengineering
| | - Jessica Simon
- University of Washington Department of Bioengineering
| | | | | | | | | | - Marta Scatena
- University of Washington Department of Bioengineering
| | | |
Collapse
|
12
|
Duan H, Cheng T, Cheng H. Spatially resolved transcriptomics: advances and applications. BLOOD SCIENCE 2023; 5:1-14. [PMID: 36742187 PMCID: PMC9891446 DOI: 10.1097/bs9.0000000000000141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Spatial transcriptomics, which is capable of both measuring all gene activity in a tissue sample and mapping where this activity occurs, is vastly improving our understanding of biological processes and disease. The field has expanded rapidly in recent years, and the development of several new technologies has resulted in spatially resolved transcriptomics (SRT) becoming highly multiplexed, high-resolution, and high-throughput. Here, we summarize and compare the major methods of SRT, including imaging-based methods, sequencing-based methods, and in situ sequencing methods. We also highlight some typical applications of SRT in neuroscience, cancer biology, developmental biology, and hematology. Finally, we discuss future possibilities for improving spatially resolved transcriptomic methods and the expected applications of such methods, especially in the adult bone marrow, anticipating that new developments will unlock the full potential of spatially resolved multi-omics in both biological research and the clinic.
Collapse
Affiliation(s)
- Honglin Duan
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
13
|
Gu L, Liao P, Liu H. Cancer-associated fibroblasts in acute leukemia. Front Oncol 2022; 12:1022979. [PMID: 36601484 PMCID: PMC9806275 DOI: 10.3389/fonc.2022.1022979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Although the prognosis for acute leukemia has greatly improved, treatment of relapsed/refractory acute leukemia (R/R AL) remains challenging. Recently, increasing evidence indicates that the bone marrow microenvironment (BMM) plays a crucial role in leukemogenesis and therapeutic resistance; therefore, BMM-targeted strategies should be a potent protocol for treating R/R AL. The targeting of cancer-associated fibroblasts (CAFs) in solid tumors has received much attention and has achieved some progress, as CAFs might act as an organizer in the tumor microenvironment. Additionally, over the last 10 years, attention has been drawn to the role of CAFs in the BMM. In spite of certain successes in preclinical and clinical studies, the heterogeneity and plasticity of CAFs mean targeting them is a big challenge. Herein, we review the heterogeneity and roles of CAFs in the BMM and highlight the challenges and opportunities associated with acute leukemia therapies that involve the targeting of CAFs.
Collapse
Affiliation(s)
- Ling Gu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore, Singapore,Academic & Clinical Development, Duke-NUS Medical School, Singapore, Singapore,Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| | - Hanmin Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China,Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| |
Collapse
|
14
|
Quesenberry PJ, Wen S, Goldberg LR, Dooner MS. The universal stem cell. Leukemia 2022; 36:2784-2792. [PMID: 36307485 PMCID: PMC9712109 DOI: 10.1038/s41375-022-01715-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 11/08/2022]
Abstract
Current dogma is that there exists a hematopoietic pluripotent stem cell, resident in the marrow, which is quiescent, but with tremendous proliferative and differentiative potential. Furthermore, the hematopoietic system is essentially hierarchical with progressive differentiation from the pluripotent stem cells to different classes of hematopoietic cells. However, results summarized here indicate that the marrow pluripotent hematopoietic stem cell is actively cycling and thus continually changing phenotype. As it progresses through cell cycle differentiation potential changes as illustrated by sequential changes in surface expression of B220 and GR-1 epitopes. Further data indicated that the potential of purified hematopoietic stem cells extends to multiple other non-hematopoietic cells. It appears that marrow stem cells will give rise to epithelial pulmonary cells at certain points in cell cycle. Thus, it appears that the marrow "hematopoietic" stem cell is also a stem cell for other non-hematopoietic tissues. These observations give rise to the concept of a universal stem cell. The marrow stem cell is not limited to hematopoiesis and its differentiation potential continually changes as it transits cell cycle. Thus, there is a universal stem cell in the marrow which alters its differentiation potential as it progresses through cell cycle. This potential is expressed when it resides in tissues compatible with its differentiation potential, at a particular point in cell cycle transit, or when it interacts with vesicles from that tissue.
Collapse
Affiliation(s)
- Peter J Quesenberry
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, RI, 02903, USA.
| | - Sicheng Wen
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, RI, 02903, USA
| | - Laura R Goldberg
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, RI, 02903, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Mark S Dooner
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, RI, 02903, USA
| |
Collapse
|
15
|
Fujino T, Asada S, Goyama S, Kitamura T. Mechanisms involved in hematopoietic stem cell aging. Cell Mol Life Sci 2022; 79:473. [PMID: 35941268 PMCID: PMC11072869 DOI: 10.1007/s00018-022-04356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Hematopoietic stem cells (HSCs) undergo progressive functional decline over time due to both internal and external stressors, leading to aging of the hematopoietic system. A comprehensive understanding of the molecular mechanisms underlying HSC aging will be valuable in developing novel therapies for HSC rejuvenation and to prevent the onset of several age-associated diseases and hematological malignancies. This review considers the general causes of HSC aging that range from cell-intrinsic factors to cell-extrinsic factors. In particular, epigenetics and inflammation have been implicated in the linkage of HSC aging, clonality, and oncogenesis. The challenges in clarifying mechanisms of HSC aging have accelerated the development of therapeutic interventions to rejuvenate HSCs, the major goal of aging research; these details are also discussed in this review.
Collapse
Affiliation(s)
- Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Shuhei Asada
- The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, 1628666, Japan
| | - Susumu Goyama
- Division of Molecular Oncology Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1088639, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
16
|
Xiao J, Liu T, Liu Z, Xiao C, Du J, Zuo S, Li H, Gu H. A Differentiation-Related Gene Prognostic Index Contributes to Prognosis and Immunotherapy Evaluation in Patients with Hepatocellular Carcinoma. Cells 2022; 11:cells11152302. [PMID: 35892599 PMCID: PMC9367442 DOI: 10.3390/cells11152302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common gastrointestinal tumor with a poor prognosis, which is associated with poor differentiation of tumor cells. However, the potential value of cell differentiation-related molecules in predicting the benefit and prognosis of immune checkpoint inhibitors (ICI) therapy remains unknown. Herein, to investigate the differentiation trajectory of HCC cells and their clinical significance, a differentiation-related gene prognostic index (DRGPI) based on HCC differentiation-related genes (HDRGs) was constructed to elucidate the immune characteristics and therapeutic benefits of ICI in the HCC subgroup defined by DRGPI. Single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data from four HCC samples were integrated for bioinformatics analysis. Then, PON1, ADH4, SQSTM1, HSP90AA1, and STMN1 were screened out to construct a DRGPI. More intriguingly, RT-qPCR validation of the expression of these genes yielded consistent results with the TCGA database. Next, the risk scoring (RS) constructed based on DRGPI suggested that the overall survival (OS) of the DRGPI-high patients was significantly worse than that of the DRGPI-low patients. A nomogram was constructed based on DRGPI-RS and clinical characteristics, which showed strong predictive performance and high accuracy. The comprehensive results indicated that a low DRGPI score was associated with low TP53 mutation rates, high CD8 T cell infiltration, and more benefit from ICI therapy. Homoplastically, the high DRGPI score reflected the opposite results. Taken together, our study highlights the significance of HCC cell differentiation in predicting prognosis, indicating immune characteristics, and understanding the therapeutic benefits of ICI, and suggests that DRGPI is a valuable prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Jingjing Xiao
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550000, China; (J.X.); (T.L.); (C.X.); (J.D.); (S.Z.); (H.L.)
- Department of Hepatobiliary Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, China;
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Tao Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550000, China; (J.X.); (T.L.); (C.X.); (J.D.); (S.Z.); (H.L.)
- Department of Hepatobiliary Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
| | - Zhenhua Liu
- Department of Hepatobiliary Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, China;
| | - Chuan Xiao
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550000, China; (J.X.); (T.L.); (C.X.); (J.D.); (S.Z.); (H.L.)
| | - Jun Du
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550000, China; (J.X.); (T.L.); (C.X.); (J.D.); (S.Z.); (H.L.)
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Shi Zuo
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550000, China; (J.X.); (T.L.); (C.X.); (J.D.); (S.Z.); (H.L.)
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Haiyang Li
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550000, China; (J.X.); (T.L.); (C.X.); (J.D.); (S.Z.); (H.L.)
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Huajian Gu
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550000, China; (J.X.); (T.L.); (C.X.); (J.D.); (S.Z.); (H.L.)
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
- Correspondence: ; Tel.: +86-851-8677-2723
| |
Collapse
|