1
|
Costa CMM, Santos DS, Opretzka LCF, de Assis Silva GS, Santos GC, Evangelista AF, Soares MBP, Villarreal CF. Different mechanisms guide the antinociceptive effect of bone marrow-mononuclear cells and bone marrow-mesenchymal stem/stromal cells in trigeminal neuralgia. Life Sci 2024; 354:122944. [PMID: 39111567 DOI: 10.1016/j.lfs.2024.122944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/21/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
AIMS Trigeminal neuralgia (TN) is a type of chronic orofacial pain evoked by trivial stimuli that manifests as episodes of excruciating and sudden, recurrent paroxysmal pain. Most patients are refractory to pharmacological therapy used for the treatment of TN. Mononuclear cells (MNC) and mesenchymal stem/stromal cells (MSC) have shown therapeutic potential in painful neuropathies, but their mechanism of action is not fully understood. The present work aimed to investigate the antinociceptive effect and mechanism of action of MNC and MSC in experimental TN. MATERIALS AND METHODS Mice submitted to the chronic constriction injury of the infraorbital nerve (CCI-ION) mouse model of TN received a single intravenous injection of saline, MNC, or MSC (1 × 106 cells/mouse). The effect of the treatments on the behavioral signs of painful neuropathy, morphological aspects of the infraorbital nerve, and inflammatory and oxidative stress markers in the infraorbital nerve were assessed. KEY FINDINGS MNC and MSC improved behavioral painful neuropathy, activated key cell signaling antioxidant pathways by increasing Nrf2 expression, and reduced the proinflammatory cytokines IL-1β and TNF-α. However, treatment with MSC, but not MNC, was associated with a sustained increase of IL-10 and with the re-establishment of the morphometric pattern of the infraorbital nerve, indicating a difference in the mechanism of action between MNC and MSC. In line with this result, in IL-10 knockout mice, MSC transplantation did not induce an antinociceptive effect. SIGNIFICANCE Importantly, these data suggest an IL-10-induced disease-modifying profile related to MSC treatment and reinforce cell therapy's potential in treating trigeminal neuralgia.
Collapse
Affiliation(s)
| | | | | | | | - Girlaine Café Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, BA, Brazil.
| | | | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, BA, Brazil; Institute of Advanced Systems in Health, SENAI CIMATEC, Salvador 41650-010, BA, Brazil.
| | - Cristiane Flora Villarreal
- Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, BA, Brazil.
| |
Collapse
|
2
|
Zhao L, Ni B, Li J, Liu R, Zhang Q, Zheng Z, Yang W, Yu W, Bi L. Evaluation of the impact of customized serum-free culture medium on the production of clinical-grade human umbilical cord mesenchymal stem cells: insights for future clinical applications. Stem Cell Res Ther 2024; 15:327. [PMID: 39334391 PMCID: PMC11438183 DOI: 10.1186/s13287-024-03949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The selection of suitable culture medium is critical for achieving good clinical outcomes in cell therapy. To support the commercial application of stem cell therapy, customized culture media not only need to promote stem cell proliferation, but also need to save costs and meet industrial requirements for inter-batch consistency, efficacy, and biosafety. In this study, we developed a series of serum-free media (SFM) and elucidated the effects between different SFM, as well as between SFM and serum-containing meida (SCM), on human umbilical cord mesenchymal stem cells (hUC-MSCs) phenotype and function. We analyze and emphasize from the perspectives of clinical and commercial application why research on customized culture media is critical for the success of enterprises developing novel cellular therapeutics. METHODS We cultured hUC-MSCs with identical cell seeding densities in different formulations of SFM and SCM until passage 10 and examined the changes in cell phenotype and function. We analyzed the results with the commercial application requirments of the cellular therapy industry to assess the potential impact of customized culture media on inter-batch consistency, efficacy, stability, biosafety, and cost-effectiveness of industrial-scale cell production. RESULTS hUC-MSCs cultured in SCM and SFM exhibit consistent cell morphology and surface molecule expression, but hUC-MSCs cultured in SFM demonstrate higher activity, superior proliferative capacity, and greater stability. Furthermore, hUC-MSCs cultured in different SFM exhibit differences in cell activity, proliferative capacity, senescent rate, and S/M ratio of cell cycle, while maintaining a normal karyotype after long-term in vitro cultivation. Moreover, we found that hUC-MSCs cultured in different media exhibit variations in paracrine capacity and in their support of hematopoietic stem cell (HSC) self-renewal. CONCLUSION Considering the substantial funding and time required for cell-based drug development, our results underscore the importances of comprehensively optimizing the composition of medium for the specific disease prior to conducting clinical trials of cell-based therapies. The criteria for selecting culture medium should be based on the requirements of the target disease for cellular function. In addition, we provide a way to formulate different customized SFM, which is beneficial for the development of cell therapy industry.
Collapse
Affiliation(s)
- Lan Zhao
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Beibei Ni
- Vaccine Research Institute, Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Jinqing Li
- Division of Hematology and Oncology, Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People's Republic of China
| | - Rui Liu
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Qi Zhang
- Vaccine Research Institute, Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Zhuangbin Zheng
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Wenjuan Yang
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.
| | - Wei Yu
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China.
| | - Lijun Bi
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China.
| |
Collapse
|
3
|
Sojakova D, Husakova J, Fejfarova V, Nemcova A, Jarosikova R, Kopp S, Lovasova V, Jude EB, Dubsky M. The Use of Autologous Cell Therapy in Diabetic Patients with Chronic Limb-Threatening Ischemia. Int J Mol Sci 2024; 25:10184. [PMID: 39337669 PMCID: PMC11431855 DOI: 10.3390/ijms251810184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Autologous cell therapy (ACT) is primarily used in diabetic patients with chronic limb-threatening ischemia (CLTI) who are not candidates for standard revascularization. According to current research, this therapy has been shown in some studies to be effective in improving ischemia parameters, decreasing the major amputation rate, and in foot ulcer healing. This review critically evaluates the efficacy of ACT in patients with no-option CLTI, discusses the use of mononuclear and mesenchymal stem cells, and compares the route of delivery of ACT. In addition to ACT, we also describe the use of new revascularization strategies, e.g., nanodiscs, microbeads, and epigenetics, that could enhance the therapeutic effect. The main aim is to summarize new findings on subcellular and molecular levels with the clinical aspects of ACT.
Collapse
Affiliation(s)
- Dominika Sojakova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
- First Faculty of Medicine, Charles University, 14021 Prague, Czech Republic
| | - Jitka Husakova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
- First Faculty of Medicine, Charles University, 14021 Prague, Czech Republic
| | - Vladimira Fejfarova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
| | - Andrea Nemcova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
| | - Radka Jarosikova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
| | - Simon Kopp
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
| | - Veronika Lovasova
- Transplantation Surgery Department, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic;
- Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Edward B. Jude
- Diabetes Center, Tameside and Glossop Integrated Care NHS Foundation Trust, Ashton-under-Lyne OL6 9RW, UK;
- Department of Endocrinology and Gastroenterology, University of Manchester, Manchester M13 9PL, UK
| | - Michal Dubsky
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
- First Faculty of Medicine, Charles University, 14021 Prague, Czech Republic
| |
Collapse
|
4
|
Wang H, Zhang Q, Wu S, Pan D, Ning Y, Wang C, Guo J, Gu Y. Mesenchymal stem cell therapy in eosinophilic granulomatosis with polyangiitis-related lower limb gangrene: a case report. Stem Cell Res Ther 2024; 15:307. [PMID: 39285456 PMCID: PMC11406883 DOI: 10.1186/s13287-024-03924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Eosinophilic granulomatosis with polyangiitis (EGPA), a rare but life-threatening systemic vasculitis, is distinguished by marked eosinophilia and presents with diverse symptoms, including asthma, cutaneous purpura, ecchymosis, skin necrosis, cardiac lesions, peripheral neuropathy, and necrotizing vasculitis. The etiology of EGPA involves a complex interaction among humoral, adaptive, innate, and allergic immune responses. Standard treatment employs prolonged high-dose glucocorticoid therapy, which is critical for survival; however, some patients' symptoms cannot be relieved. CASE REPORT This case report details the medical management of an 11-year-old patient with EGPA, who was at risk of bilateral lower limb amputation due to differential arterial occlusion and severe, necrotizing vasculitis-induced gangrene in both feet. Treatment modalities administered included systemic infusion of Umbilical Cord Mesenchymal Stem Cells (UC-MSCs), targeted gastrocnemius muscle injections, and application of a Placenta-Derived Mesenchymal Stem Cells (PD-MSCs) hydrogel. RESULTS After receiving a four-month regimen of allogeneic mesenchymal stem cell therapy via intravenous and local administration, the patient showed normalized eosinophil counts, reestablished blood flow in the dorsal arteries, and marked improvement in foot ulcerations. CONCLUSION Mesenchymal stem cell therapy is a promising option for severe EGPA cases refractory to glucocorticoids.
Collapse
Affiliation(s)
- Hui Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China
- ShangRao Jingkai Health-Biotech United Hospital, ShangRao, 334000, Jiangxi, China
| | - Qian Zhang
- ShangRao Jingkai Health-Biotech United Hospital, ShangRao, 334000, Jiangxi, China
- Shangrao Normal University, ShangRao, 334000, Jiangxi, China
| | - Sensen Wu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China
| | - Dikang Pan
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China
| | - Yachan Ning
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China
| | - Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China.
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China.
| |
Collapse
|
5
|
Chugan GS, Lyundup AV, Bondarenko ON, Galstyan GR. [The application of cell products for the treatment of critical limb ischemia in patients with diabetes mellitus: a review of the literature]. PROBLEMY ENDOKRINOLOGII 2024; 70:4-14. [PMID: 39302860 DOI: 10.14341/probl13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 09/22/2024]
Abstract
The number of patients with diabetes mellitus (DM) has been progressively increasing worldwide over the past decades, and many international organizations consider DM as a public health emergency of the 21st century.Critical limb ischemia (CLI) is the most severe stage of peripheral arterial disease (PAD) in DM and is characterized by a high risk of limb loss without revascularization. Traditional treatment tactics include open and endovascular revascularization surgical techniques. However, in patients not eligible for revascularization and in cases where performed surgical treatment performed has been ineffective, there are almost no therapeutic alternatives, often leading to amputations and death. As of today, one of the newest non-surgical treatment options is cell therapy. Among different cells, mesenchymal stromal cells (MSCs) are potentially one of the most prospective for use in this patient population.This article provides an overview of clinical trials using cell therapy in patients with CLI.To analyze publications, electronic databases PubMed, SCOPUS, ClinicalTrials, and ScienceDirect were searched to identify published data from clinical trials, research studies, and review articles on cell therapy for critical lower extremity ischemia. After the search, 489 results were received.As a result of systematic selection, 22 clinical trials were analyzed.According to the analyzed literature data, the use of cell products in this category of patients is effective and safe. Cell therapy can stimulate the formation of new vessels and enhances collateral circulation; it is also reported improved distal perfusion, increased pain-free walking distance, decreased amputation rates, and increased survival rates.Nevertheless, further study of the potential use of this category of drugs is needed.
Collapse
Affiliation(s)
| | - A V Lyundup
- Endocrinology Research Centre; Research and Educational Resource Center for Cellular Technologies, Peoples' Friendship University of Russia (RUDN University)
| | | | | |
Collapse
|
6
|
Česnik AB, Švajger U. The issue of heterogeneity of MSC-based advanced therapy medicinal products-a review. Front Cell Dev Biol 2024; 12:1400347. [PMID: 39129786 PMCID: PMC11310176 DOI: 10.3389/fcell.2024.1400347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Mesenchymal stromal stem cells (MSCs) possess a remarkable potential for numerous clinical applications due to their unique properties including self-renewal, immunomodulation, paracrine actions and multilineage differentiation. However, the translation of MSC-based Advanced Therapy Medicinal Products (ATMPs) into the clinic has frequently met with inconsistent outcomes. One of the suspected reasons for this issue is the inherent and extensive variability that exists among such ATMPs, which makes the interpretation of their clinical efficacy difficult to assess, as well as to compare the results of various studies. This variability stems from numerous reasons including differences in tissue sources, donor attributes, variances in manufacturing protocols, as well as modes of administration. MSCs can be isolated from various tissues including bone marrow, umbilical cord, adipose tissue and others, each with its unique phenotypic and functional characteristics. While MSCs from different sources do share common features, they also exhibit distinct gene expression profiles and functional properites. Donor-specific factors such as age, sex, body mass index, and underlying health conditions can influence MSC phenotype, morphology, differentiation potential and function. Moreover, variations in preparation of MSC products introduces additional heterogeneity as a result of cell culture media composition, presence or absence of added growth factors, use of different serum supplements and culturing techniques. Once MSC products are formulated, storage protocols play a pivotal role in its efficacy. Factors that affect cell viability include cell concentration, delivery solution and importantly, post-thawing protocols where applicable. Ensuing, differences in administration protocols can critically affect the distribution and functionallity of administered cells. As MSC-based therapies continue to advance through numerous clinical trials, implication of strategies to reduce product heterogeneity is imperative. Central to addressing these challenges is the need for precise prediction of clinical responses, which require well-defined MSC populations and harmonized assessment of their specific functions. By addressing these issues by meaningful approaches, such as, e.g., MSC pooling, the field can overcome barriers to advance towards more consistent and effective MSC-based therapies.
Collapse
Affiliation(s)
- Ana Bajc Česnik
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
| | - Urban Švajger
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Liu M, Du X, Hu J, Liang X, Wang H. Utilization of convolutional neural networks to analyze microscopic images for high-throughput screening of mesenchymal stem cells. Open Life Sci 2024; 19:20220859. [PMID: 39005738 PMCID: PMC11245879 DOI: 10.1515/biol-2022-0859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 07/16/2024] Open
Abstract
This work investigated the high-throughput classification performance of microscopic images of mesenchymal stem cells (MSCs) using a hyperspectral imaging-based separable convolutional neural network (CNN) (H-SCNN) model. Human bone marrow mesenchymal stem cells (hBMSCs) were cultured, and microscopic images were acquired using a fully automated microscope. Flow cytometry (FCT) was employed for functional classification. Subsequently, the H-SCNN model was established. The hyperspectral microscopic (HSM) images were created, and the spatial-spectral combined distance (SSCD) was employed to derive the spatial-spectral neighbors (SSNs) for each pixel in the training set to determine the optimal parameters. Then, a separable CNN (SCNN) was adopted instead of the classic convolutional layer. Additionally, cultured cells were seeded into 96-well plates, and high-functioning hBMSCs were screened using both manual visual inspection (MV group) and the H-SCNN model (H-SCNN group), with each group consisting of 96 samples. FCT served as the benchmark to compare the area under the curve (AUC), F1 score, accuracy (Acc), sensitivity (Sen), specificity (Spe), positive predictive value (PPV), and negative predictive value (NPV) between the manual and model groups. The best classification Acc was 0.862 when using window size of 9 and 12 SSNs. The classification Acc of the SCNN model, ResNet model, and VGGNet model gradually increased with the increase in sample size, reaching 89.56 ± 3.09, 80.61 ± 2.83, and 80.06 ± 3.01%, respectively at the sample size of 100. The corresponding training time for the SCNN model was significantly shorter at 21.32 ± 1.09 min compared to ResNet (36.09 ± 3.11 min) and VGGNet models (34.73 ± 3.72 min) (P < 0.05). Furthermore, the classification AUC, F1 score, Acc, Sen, Spe, PPV, and NPV were all higher in the H-SCNN group, with significantly less time required (P < 0.05). Microscopic images based on the H-SCNN model proved to be effective for the classification assessment of hBMSCs, demonstrating excellent performance in classification Acc and efficiency, enabling its potential to be a powerful tool in future MSCs research.
Collapse
Affiliation(s)
- MuYun Liu
- National Engineering Research Center of Foundational Technologies for CGT Industry, Shenzhen, Guangdong, China
| | - XiangXi Du
- Shenzhen Cellauto Automation Co., Ltd., Shenzhen, Guangdong, China
| | - JunYuan Hu
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, Guangdong, China
| | - Xiao Liang
- National Engineering Research Center of Foundational Technologies for CGT Industry, Shenzhen, Guangdong, China
| | - HaiJun Wang
- Shenzhen Cellauto Automation Co., Ltd., Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Li Y, Yue G, Yu S, Cheng X, Cao Y, Wang X. Evaluating the efficacy of mesenchymal stem cells for diabetic neuropathy: A systematic review and meta-analysis of preclinical studies. Front Bioeng Biotechnol 2024; 12:1349050. [PMID: 38770273 PMCID: PMC11102959 DOI: 10.3389/fbioe.2024.1349050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Diabetic neuropathy affects nearly half of all diabetics and poses a significant threat to public health. Recent preclinical studies suggest that mesenchymal stem cells (MSCs) may represent a promising solution for the treatment of diabetic neuropathy. However, an objective assessment of the preclinical effectiveness of MSCs is still pending. We conducted a comprehensive search of PubMed, Web of Science, Embase, and Cochrane library to identify preclinical studies that investigate the effects of MSCs on diabetic neuropathy up until 15 September 2023. Outcome indicators consisted of motor and sensory nerve conduction velocities, intra-epidermal nerve fiber density, sciatic nerve blood flow, capillary-to-muscle fiber ratio, neurotrophic factors, angiogenic factors and inflammatory cytokines. The literature review and meta-analysis were conducted independently by two researchers. 23 studies that met the inclusion criteria were included in this system review for qualitative and quantitative analysis. Pooled analyses indicated that MSCs exhibited an evident benefit in diabetic neuropathy in terms of motor (SMD = 2.16, 95% CI: 1.71-2.61) and sensory nerve conduction velocities (SMD = 2.93, 95% CI: 1.78-4.07), intra-epidermal nerve fiber density (SMD = 3.17, 95% CI: 2.28-4.07), sciatic nerve blood flow (SMD = 2.02, 95% CI: 1.37-2.66), and capillary-to-muscle fiber ratio (SMD = 2.28, 95% CI: 1.55 to 3.01, p < 0.00001). Furthermore, after MSC therapy, the expressions of neurotrophic and angiogenic factors increased significantly in most studies, while the levels of inflammatory cytokines were significantly reduced. The relevance of this review relies on the fact that summarizes an extensive body of work entailing substantial preclinical evidence that supports the efficacy of MSCs in mitigating diabetic neuropathy. While MSCs emerge as a promising potential treatment for diabetic neuropathy, further research is essential to elucidate the underlying mechanisms and the best administration strategy for MSCs.
Collapse
Affiliation(s)
- Yu Li
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangren Yue
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuying Yu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinhao Cheng
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ximei Wang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Zhang H, Gu Y, Zhang K, Tu Y, Ouyang C. Roles and mechanisms of umbilical cord mesenchymal stem cells in the treatment of diabetic foot: A review of preclinical and clinical studies. J Diabetes Complications 2024; 38:108671. [PMID: 38154217 DOI: 10.1016/j.jdiacomp.2023.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
AIMS Growing preclinical and clinical evidence has suggested the potential method of umbilical cord mesenchymal stem cell (UCMSC) therapy for diabetic foot. Thus, the authors provided an outline of the application of UCMSCs in the treatment of diabetic foot and further summarized the roles and mechanisms of this therapy. DATA SYNTHESIS With no time limitations, the authors searched the Web of Science, Cochrane Central Register of Controlled Trials, and PubMed (MEDLINE) databases. 14 studies were included, including 9 preclinical experiments and 5 clinical trials (3 RCTs and 2 single-arm trials). CONCLUSIONS The UCMSCs are of great efficacy and safety, and function mainly by reducing inflammation, regulating immunity, promoting growth factors, and enhancing the functions of vascular endothelial cells, fibroblasts, and keratinocytes. As a result, ulcer healing-related biological processes ensue, which finally lead to diabetic foot ulcer healing and clinical symptom improvement. UCMSC treatment enhances diabetic foot ulcer healing and has a safety profile. They function mainly by modulating immunity, promoting growth factor secretion, and enhancing cellular functions. More well-designed preclinical and clinical studies are needed to provide the most optimal protocol, the comprehensive molecular mechanisms, as well as to further evaluate the efficiency and safety profile of UCMSC treatment in diabetic foot patients.
Collapse
Affiliation(s)
- Haorui Zhang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Yuanrui Gu
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Ke Zhang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Yanxia Tu
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing 100037, China.
| |
Collapse
|