1
|
Rao NR, Upadhyay A, Savas JN. Derailed protein turnover in the aging mammalian brain. Mol Syst Biol 2024; 20:120-139. [PMID: 38182797 PMCID: PMC10897147 DOI: 10.1038/s44320-023-00009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024] Open
Abstract
Efficient protein turnover is essential for cellular homeostasis and organ function. Loss of proteostasis is a hallmark of aging culminating in severe dysfunction of protein turnover. To investigate protein turnover dynamics as a function of age, we performed continuous in vivo metabolic stable isotope labeling in mice along the aging continuum. First, we discovered that the brain proteome uniquely undergoes dynamic turnover fluctuations during aging compared to heart and liver tissue. Second, trends in protein turnover in the brain proteome during aging showed sex-specific differences that were tightly tied to cellular compartments. Next, parallel analyses of the insoluble proteome revealed that several cellular compartments experience hampered turnover, in part due to misfolding. Finally, we found that age-associated fluctuations in proteasome activity were associated with the turnover of core proteolytic subunits, which was recapitulated by pharmacological suppression of proteasome activity. Taken together, our study provides a proteome-wide atlas of protein turnover across the aging continuum and reveals a link between the turnover of individual proteasome subunits and the age-associated decline in proteasome activity.
Collapse
Affiliation(s)
- Nalini R Rao
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Arun Upadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Nieddu G, Formato M, Lepedda AJ. Searching for Atherosclerosis Biomarkers by Proteomics: A Focus on Lesion Pathogenesis and Vulnerability. Int J Mol Sci 2023; 24:15175. [PMID: 37894856 PMCID: PMC10607641 DOI: 10.3390/ijms242015175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Plaque rupture and thrombosis are the most important clinical complications in the pathogenesis of stroke, coronary arteries, and peripheral vascular diseases. The identification of early biomarkers of plaque presence and susceptibility to ulceration could be of primary importance in preventing such life-threatening events. With the improvement of proteomic tools, large-scale technologies have been proven valuable in attempting to unravel pathways of atherosclerotic degeneration and identifying new circulating markers to be utilized either as early diagnostic traits or as targets for new drug therapies. To address these issues, different matrices of human origin, such as vascular cells, arterial tissues, plasma, and urine, have been investigated. Besides, proteomics was also applied to experimental atherosclerosis in order to unveil significant insights into the mechanisms influencing atherogenesis. This narrative review provides an overview of the last twenty years of omics applications to the study of atherogenesis and lesion vulnerability, with particular emphasis on lipoproteomics and vascular tissue proteomics. Major issues of tissue analyses, such as plaque complexity, sampling, availability, choice of proper controls, and lipoproteins purification, will be raised, and future directions will be addressed.
Collapse
Affiliation(s)
| | | | - Antonio Junior Lepedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (G.N.); (M.F.); Antonio Junior Lepedda (A.J.L.)
| |
Collapse
|
3
|
Theofilatos K, Stojkovic S, Hasman M, van der Laan SW, Baig F, Barallobre-Barreiro J, Schmidt LE, Yin S, Yin X, Burnap S, Singh B, Popham J, Harkot O, Kampf S, Nackenhorst MC, Strassl A, Loewe C, Demyanets S, Neumayer C, Bilban M, Hengstenberg C, Huber K, Pasterkamp G, Wojta J, Mayr M. Proteomic Atlas of Atherosclerosis: The Contribution of Proteoglycans to Sex Differences, Plaque Phenotypes, and Outcomes. Circ Res 2023; 133:542-558. [PMID: 37646165 PMCID: PMC10498884 DOI: 10.1161/circresaha.123.322590] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Using proteomics, we aimed to reveal molecular types of human atherosclerotic lesions and study their associations with histology, imaging, and cardiovascular outcomes. METHODS Two hundred nineteen carotid endarterectomy samples were procured from 120 patients. A sequential protein extraction protocol was employed in conjunction with multiplexed, discovery proteomics. To focus on extracellular proteins, parallel reaction monitoring was employed for targeted proteomics. Proteomic signatures were integrated with bulk, single-cell, and spatial RNA-sequencing data, and validated in 200 patients from the Athero-Express Biobank study. RESULTS This extensive proteomics analysis identified plaque inflammation and calcification signatures, which were inversely correlated and validated using targeted proteomics. The inflammation signature was characterized by the presence of neutrophil-derived proteins, such as S100A8/9 (calprotectin) and myeloperoxidase, whereas the calcification signature included fetuin-A, osteopontin, and gamma-carboxylated proteins. The proteomics data also revealed sex differences in atherosclerosis, with large-aggregating proteoglycans versican and aggrecan being more abundant in females and exhibiting an inverse correlation with estradiol levels. The integration of RNA-sequencing data attributed the inflammation signature predominantly to neutrophils and macrophages, and the calcification and sex signatures to smooth muscle cells, except for certain plasma proteins that were not expressed but retained in plaques, such as fetuin-A. Dimensionality reduction and machine learning techniques were applied to identify 4 distinct plaque phenotypes based on proteomics data. A protein signature of 4 key proteins (calponin, protein C, serpin H1, and versican) predicted future cardiovascular mortality with an area under the curve of 75% and 67.5% in the discovery and validation cohort, respectively, surpassing the prognostic performance of imaging and histology. CONCLUSIONS Plaque proteomics redefined clinically relevant patient groups with distinct outcomes, identifying subgroups of male and female patients with elevated risk of future cardiovascular events.
Collapse
Affiliation(s)
- Konstantinos Theofilatos
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
| | - Stefan Stojkovic
- Division of Cardiology, Department of Internal Medicine II (S.S., O.H., C.H., J.W., M.M.), Medical University of Vienna, Austria
| | - Maria Hasman
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
| | - Sander W. van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, the Netherlands (S.W.v.d.L., G.P.)
| | - Ferheen Baig
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
| | - Javier Barallobre-Barreiro
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
| | - Lukas Emanuel Schmidt
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
| | - Siqi Yin
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
| | - Xiaoke Yin
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
| | - Sean Burnap
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
| | - Bhawana Singh
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
| | - Jude Popham
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
| | - Olesya Harkot
- Division of Cardiology, Department of Internal Medicine II (S.S., O.H., C.H., J.W., M.M.), Medical University of Vienna, Austria
| | - Stephanie Kampf
- Division of Vascular Surgery, Department of Surgery (S.K., C.N.), Medical University of Vienna, Austria
| | | | - Andreas Strassl
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-Guided Therapy (A.S., C.L.), Medical University of Vienna, Austria
| | - Christian Loewe
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-Guided Therapy (A.S., C.L.), Medical University of Vienna, Austria
| | - Svitlana Demyanets
- Department of Laboratory Medicine (S.D.), Medical University of Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of Surgery (S.K., C.N.), Medical University of Vienna, Austria
| | - Martin Bilban
- Core Facilities (M.B.), Medical University of Vienna, Austria
| | - Christian Hengstenberg
- Division of Cardiology, Department of Internal Medicine II (S.S., O.H., C.H., J.W., M.M.), Medical University of Vienna, Austria
| | - Kurt Huber
- Third Medical Department, Wilhelminenspital, and Sigmund Freud University, Medical Faculty, Vienna, Austria (K.H.)
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, the Netherlands (S.W.v.d.L., G.P.)
| | - Johann Wojta
- Division of Cardiology, Department of Internal Medicine II (S.S., O.H., C.H., J.W., M.M.), Medical University of Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria (J.W.)
| | - Manuel Mayr
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
- Division of Cardiology, Department of Internal Medicine II (S.S., O.H., C.H., J.W., M.M.), Medical University of Vienna, Austria
| |
Collapse
|
4
|
Eckersley A, Ozols M, Chen P, Tam V, Ward LJ, Hoyland JA, Trafford A, Yuan XM, Schiller HB, Chan D, Sherratt MJ. Peptide location fingerprinting identifies species- and tissue-conserved structural remodelling of proteins as a consequence of ageing and disease. Matrix Biol 2022; 114:108-137. [PMID: 35618217 DOI: 10.1016/j.matbio.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 12/30/2022]
Abstract
Extracellular matrices (ECMs) in the intervertebral disc (IVD), lung and artery are thought to undergo age-dependant accumulation of damage by chronic exposure to mechanisms such as reactive oxygen species, proteases and glycation. It is unknown whether this damage accumulation is species-dependant (via differing lifespans and hence cumulative exposures) or whether it can influence the progression of age-related diseases such as atherosclerosis. Peptide location fingerprinting (PLF) is a new proteomic analysis method, capable of the non-targeted identification of structure-associated changes within proteins. Here we applied PLF to publicly available ageing human IVD (outer annulus fibrosus), ageing mouse lung and human arterial atherosclerosis datasets and bioinformatically identified novel target proteins alongside common age-associated differences within protein structures which were conserved between three ECM-rich organs, two species, three IVD tissue regions, sexes and in an age-related disease. We identify peptide yield differences across protein structures which coincide with biological regions, potentially reflecting the functional consequences of ageing or atherosclerosis for macromolecular assemblies (collagen VI), enzyme/inhibitor activity (alpha-2 macroglobulin), activation states (complement C3) and interaction states (laminins, perlecan, fibronectin, filamin-A, collagen XIV and apolipoprotein-B). Furthermore, we show that alpha-2 macroglobulin and collagen XIV exhibit possible shared structural consequences in IVD ageing and arterial atherosclerosis, providing novel links between an age-related disease and intrinsic ageing. Crucially, we also demonstrate that fibronectin, laminin beta chains and filamin-A all exhibit conserved age-associated structural differences between mouse lung and human IVD, providing evidence that ECM, and their associating proteins, may be subjected to potentially similar mechanisms or consequences of ageing across both species, irrespective of differences in lifespan and tissue function.
Collapse
Affiliation(s)
- Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| | - Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, United Kingdom; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Peikai Chen
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, Guangdong 518053, China
| | - Vivian Tam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Liam J Ward
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Judith A Hoyland
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrew Trafford
- Division of Cardiovascular Sciences, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xi-Ming Yuan
- Occupational and Environmental Medicine, Division of Prevention, Rehabilitation and Community Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Herbert B Schiller
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
5
|
Chiorescu RM, Mocan M, Inceu AI, Buda AP, Blendea D, Vlaicu SI. Vulnerable Atherosclerotic Plaque: Is There a Molecular Signature? Int J Mol Sci 2022; 23:13638. [PMID: 36362423 PMCID: PMC9656166 DOI: 10.3390/ijms232113638] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 08/18/2023] Open
Abstract
Atherosclerosis and its clinical manifestations, coronary and cerebral artery diseases, are the most common cause of death worldwide. The main pathophysiological mechanism for these complications is the rupture of vulnerable atherosclerotic plaques and subsequent thrombosis. Pathological studies of the vulnerable lesions showed that more frequently, plaques rich in lipids and with a high level of inflammation, responsible for mild or moderate stenosis, are more prone to rupture, leading to acute events. Identifying the vulnerable plaques helps to stratify patients at risk of developing acute vascular events. Traditional imaging methods based on plaque appearance and size are not reliable in prediction the risk of rupture. Intravascular imaging is a novel technique able to identify vulnerable lesions, but it is invasive and an operator-dependent technique. This review aims to summarize the current data from literature regarding the main biomarkers involved in the attempt to diagnose vulnerable atherosclerotic lesions. These biomarkers could be the base for risk stratification and development of the new therapeutic drugs in the treatment of patients with vulnerable atherosclerotic plaques.
Collapse
Affiliation(s)
- Roxana Mihaela Chiorescu
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Mihaela Mocan
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Andreea Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine, 400349 Cluj-Napoca, Romania
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
| | - Andreea Paula Buda
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
| | - Dan Blendea
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
- Department of Cardiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400437 Cluj-Napoca, Romania
| | - Sonia Irina Vlaicu
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Stakhneva EM, Kashtanova EV, Polonskaya YV, Striukova EV, Shramko VS, Sadovski EV, Kurguzov AV, Murashov IS, Chernyavskii AM, Ragino YI. The Search for Associations of Serum Proteins with the Presence of Unstable Atherosclerotic Plaque in Coronary Atherosclerosis. Int J Mol Sci 2022; 23:ijms232112795. [PMID: 36361589 PMCID: PMC9654322 DOI: 10.3390/ijms232112795] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
To study the associations of blood proteins with the presence of unstable atherosclerotic plaques in the arteries of patients with coronary atherosclerosis using quantitative proteomics. The studies involved two groups of men with coronary atherosclerosis (group 1 (St) had only stable atherosclerotic plaques; group 2 (Ns) had only unstable atherosclerotic plaques, according to histological analysis of tissue samples); the average age of patients was 57.95 ± 7.22. Protein concentrations in serum samples were determined using the PeptiQuant Plus Proteomics Kit. The identification of protein fractions was carried out by monitoring multiple reactions on a Q-TRAP 6500 mass spectrometer combined with a liquid chromatograph. Mass spectrometric identification revealed in serum samples from patients with unstable atherosclerotic plaques a reduced concentration of proteins in the blood: α-1-acid glycoprotein, α-1-antichymotrypsin, α-1-antitrypsin, ceruloplasmin, hemopexin, haptoglobin, apolipoprotein B-100, apolipoprotein L1, afamin and complement component (C3, C7, C9). Moreover, at the same time a high concentration complements factor H and attractin. The differences were considered significant at p < 0.05. It was found that the instability of atherosclerotic plaques is associated with the concentration of proteins: afamin, attractin, components of the complement system, hemopexin and haptoglobin. The data of our study showed the association of some blood proteins with the instability of atherosclerotic plaques in coronary atherosclerosis. Their potential role in the development of this disease and the possibility of using the studied proteins as biomarkers requires further research.
Collapse
Affiliation(s)
- Ekaterina Mikhailovna Stakhneva
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-923-113-7712
| | - Elena Vladimirovna Kashtanova
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
| | - Yana Vladimirovna Polonskaya
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
| | - Eugeniia Vitalievna Striukova
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
| | - Viktoriya Sergeevna Shramko
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
| | - Evgeny Viktorovich Sadovski
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
| | - Alexey Vitalievich Kurguzov
- The Federal State Budgetary Institution “National Medical Research Center named academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Ivan Sergeevich Murashov
- The Federal State Budgetary Institution “National Medical Research Center named academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Alexander Mikhailovich Chernyavskii
- The Federal State Budgetary Institution “National Medical Research Center named academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Yuliya Igorevna Ragino
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
| |
Collapse
|
7
|
Qian J, Gao Y, Lai Y, Ye Z, Yao Y, Ding K, Tong J, Lin H, Zhu G, Yu Y, Ding H, Yuan D, Chu J, Chen F, Liu X. Single-Cell RNA Sequencing of Peripheral Blood Mononuclear Cells From Acute Myocardial Infarction. Front Immunol 2022; 13:908815. [PMID: 35844519 PMCID: PMC9278132 DOI: 10.3389/fimmu.2022.908815] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
Background Acute myocardial infarction (AMI) can occur in patients with atherosclerotic disease, with or without plaque rupture. Previous studies have indicated a set of immune responses to plaque rupture. However, the specific circulating immune cell subsets that mediate inflammatory plaque rupture remain elusive. Methods Ten AMI patients were enrolled in our study (five with and five without plaque rupture; plaque characteristics were identified by optical coherence tomography). By single-cell RNA sequencing, we analyzed the transcriptomic profile of peripheral blood mononuclear cells. Results We identified 27 cell clusters among 82,550 cells, including monocytes, T cells, NK cells, B cells, megakaryocytes, and CD34+ cells. Classical and non-classical monocytes constitute the major inflammatory cell types, and pro-inflammatory genes such as CCL5, TLR7, and CX3CR1 were significantly upregulated in patients with plaque rupture, while the neutrophil activation and degranulation genes FPR2, MMP9, and CLEC4D were significantly expressed in the intermediate monocytes derived from patients without plaque rupture. We also found that CD4+ effector T cells may contribute to plaque rupture by producing a range of cytokines and inflammatory-related chemokines, while CD8+ effector T cells express more effector molecules in patients without plaque rupture, such as GZMB, GNLY, and PRF1, which may contribute to the progress of plaque erosion. Additionally, NK and B cells played a significant role in activating inflammatory cells and promoting chemokine production in the plaque rupture. Cell-cell communication elaborated characteristics in signaling pathways dominated by inflammatory activation of classical monocytes in patients with plaque rupture. Conclusions Our studies demonstrate that the circulating immune cells of patients with plaque rupture exhibit highly pro-inflammatory characteristics, while plaque erosion is mainly associated with intermediate monocyte amplification, neutrophil activation, and degranulation. These findings may provide novel targets for the precise treatment of patients with AMI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Fei Chen
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuebo Liu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Maffei S, Forini F, Canale P, Nicolini G, Guiducci L. Gut Microbiota and Sex Hormones: Crosstalking Players in Cardiometabolic and Cardiovascular Disease. Int J Mol Sci 2022; 23:ijms23137154. [PMID: 35806159 PMCID: PMC9266921 DOI: 10.3390/ijms23137154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023] Open
Abstract
The available evidence indicates a close connection between gut microbiota (GM) disturbance and increased risk of cardiometabolic (CM) disorders and cardiovascular (CV) disease. One major objective of this narrative review is to discuss the key contribution of dietary regimen in determining the GM biodiversity and the implications of GM dysbiosis for the overall health of the CV system. In particular, emerging molecular pathways are presented, linking microbiota-derived signals to the local activation of the immune system as the driver of a systemic proinflammatory state and permissive condition for the onset and progression of CM and CV disease. We further outline how the cross-talk between sex hormones and GM impacts disease susceptibility, thereby offering a mechanistic insight into sexual dimorphism observed in CVD. A better understanding of these relationships could help unravel novel disease targets and pave the way to the development of innovative, low-risk therapeutic strategies based on diet interventions, GM manipulation, and sex hormone analogues.
Collapse
Affiliation(s)
- Silvia Maffei
- Department of Gynecological and Cardiovascular Endocrinology, CNR-Tuscany Region, G. Monasterio Foundation, Via G. Moruzzi 1, 56124 Pisa, Italy;
| | - Francesca Forini
- CNR Institute of Clinical Physiology, Via G Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (L.G.)
- Correspondence:
| | - Paola Canale
- CNR Institute of Clinical Physiology, Via G Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (L.G.)
| | - Giuseppina Nicolini
- CNR Institute of Clinical Physiology, Via G Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (L.G.)
| | - Letizia Guiducci
- CNR Institute of Clinical Physiology, Via G Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (L.G.)
| |
Collapse
|
9
|
Li W, Osman E, Forssell C, Yuan XM. Protease-Activated Receptor 1 in Human Carotid Atheroma Is Significantly Related to Iron Metabolism, Plaque Vulnerability, and the Patient's Age. Int J Mol Sci 2022; 23:ijms23126363. [PMID: 35742805 PMCID: PMC9223560 DOI: 10.3390/ijms23126363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022] Open
Abstract
(1) Background: Protease-activated receptor 1 (PAR1) has regulatory functions in inflammation, atherogenesis, and atherothrombosis. Chronic iron administration accelerates arterial thrombosis. Intraplaque hemorrhage and hemoglobin catabolism by macrophages are associated with dysregulated iron metabolism and atherosclerotic lesion instability. However, it remains unknown whether expressions of PAR1 in human atherosclerotic lesions are related to plaque severity, accumulation of macrophages, and iron-related proteins. We investigated the expression of PAR1 and its relation to the expression of ferritin and transferrin receptors in human carotid atherosclerotic plaques and then explored potential connections between their expressions, plaque development, and classical risk factors. (2) Methods: Carotid samples from 39 patients (25 males and 14 females) were immunostained with PAR1, macrophages, ferritin, and transferrin receptor. Double immunocytochemistry of PAR1 and ferritin was performed on THP-1 macrophages exposed to iron. (3) Results: PAR1 expression significantly increases with the patient’s age and the progression of human atherosclerotic plaques. Expressions of PAR1 are significantly correlated with the accumulation of CD68-positive macrophages, ferritin, and transferrin receptor 1 (TfR1), and inversely correlated with levels of high-density lipoprotein. In vitro, PAR1 is significantly increased in macrophages exposed to iron, and the expression of PAR1 is colocalized with ferritin expression. (4) Conclusions: PAR1 is significantly related to the progression of human atherosclerotic lesions and the patient’s age. PAR1 is also associated with macrophage infiltration and accumulation of iron metabolic proteins in human atherosclerotic lesions. Cellular iron-mediated induction of PAR1 and its colocalization with ferritin in macrophages may further indicate an important role of cellular iron in atherothrombosis.
Collapse
Affiliation(s)
- Wei Li
- Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
- Correspondence: ; Tel.: +46-0761619736
| | - Ehab Osman
- Occupational and Environmental Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85 Linköping, Sweden; (E.O.); (X.-M.Y.)
| | - Claes Forssell
- Vascular Surgery, Linköping University Hospital, 581 85 Linköping, Sweden;
| | - Xi-Ming Yuan
- Occupational and Environmental Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85 Linköping, Sweden; (E.O.); (X.-M.Y.)
| |
Collapse
|
10
|
Relationship between Serum Kallistatin and Afamin and Anthropometric Factors Associated with Obesity and of Being Overweight in Patients after Myocardial Infarction and without Myocardial Infarction. J Clin Med 2021; 10:jcm10245792. [PMID: 34945088 PMCID: PMC8708718 DOI: 10.3390/jcm10245792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022] Open
Abstract
Extensive clinical and epidemiological evidence has linked obesity to a broad spectrum of cardiovascular disease (CVD), including coronary disease, heart failure, hypertension, cerebrovascular disease, atrial fibrillation, ventricular arrhythmias, and sudden death. In addition, increasing knowledge of regulatory peptides has allowed an assessment of their role in various non-communicable diseases, including CVD. The study assessed the concentration of kallistatin and afamin in the blood serum of patients after a myocardial infarction and without a cardiovascular event, and determined the relationship between the concentration of kallistatin and afamin and the anthropometric indicators of being overweight and of obesity in these groups. Serum kallistatin and afamin were quantified by ELISA tests in a cross-sectional study of 160 patients who were divided into two groups: study group (SG) (n = 80) and another with no cardiovascular event (CG) (n = 80). Serum kallistatin concentration was significantly higher in the SG (p < 0.001), while the level of afamin was significantly lower in this group (p < 0.001). In addition, a positive correlation was observed in the SG between the afamin concentration and the waist to hip ratio (WHR), lipid accumulation product (LAP) and the triglyceride glucose index (TyG index). In the CG, the concentration of kallistatin positively correlated with the LAP and TyG index, while the concentration of afamin positively correlated with all the examined parameters: body mass index (BMI), waist circumference (WC), hip circumference (HC), waist to hip ratio (WHtR), visceral adiposity index (VAI), LAP and TyG index. Serum kallistatin and afamin concentrations are associated with the anthropometric parameters related to being overweight and to obesity, especially to those describing the visceral distribution of adipose tissue and metabolic disorders related to excessive fatness.
Collapse
|
11
|
Faranda AP, Shihan MH, Wang Y, Duncan MK. The effect of sex on the mouse lens transcriptome. Exp Eye Res 2021; 209:108676. [PMID: 34146586 DOI: 10.1016/j.exer.2021.108676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The transcriptome of mammalian tissues differs between males and females, and these differences can change across the lifespan, likely regulating known sexual dimorphisms in disease prevalence and severity. Cataract, the most prevalent disease of the ocular lens, occurs at similar rates in young individuals, but its incidence is elevated in older women compared to men of the same age. However, the influence of sex on the lens transcriptome was unknown. RNAseq based transcriptomic profiling of young adult C57BL/6J mouse lens epithelial and fiber cells revealed that few genes are differentially expressed between the sexes. In contrast, lens cells from aged (24 month old) male and female C57BL/6J mice differentially expressed many genes, including several whose expression is lens preferred. Like cataracts, posterior capsular opacification (PCO), a major sequela of cataract surgery, may also be more prevalent in women. Lens epithelial cells isolated from mouse eyes 24 h after lens fiber cell removal exhibited numerous transcriptomic differences between the sexes, including genes implicated in complement cascades and extracellular matrix regulation, and these differences are much more pronounced in aged mice than in young mice. These results provide an unbiased basis for future studies on how sex affects the lens response to aging, cataract development, and cataract surgery.
Collapse
Affiliation(s)
- Adam P Faranda
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA
| | - Mahbubul H Shihan
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA
| | - Yan Wang
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
12
|
Parker SJ, Chen L, Spivia W, Saylor G, Mao C, Venkatraman V, Holewinski RJ, Mastali M, Pandey R, Athas G, Yu G, Fu Q, Troxlair D, Vander Heide R, Herrington D, Van Eyk JE, Wang Y. Identification of Putative Early Atherosclerosis Biomarkers by Unsupervised Deconvolution of Heterogeneous Vascular Proteomes. J Proteome Res 2020; 19:2794-2806. [PMID: 32202800 DOI: 10.1021/acs.jproteome.0c00118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coronary artery disease remains a leading cause of death in industrialized nations, and early detection of disease is a critical intervention target to effectively treat patients and manage risk. Proteomic analysis of mixed tissue homogenates may obscure subtle protein changes that occur uniquely in underlying tissue subtypes. The unsupervised 'convex analysis of mixtures' (CAM) tool has previously been shown to effectively segregate cellular subtypes from mixed expression data. In this study, we hypothesized that CAM would identify proteomic information specifically informative to early atherosclerosis lesion involvement that could lead to potential markers of early disease detection. We quantified the proteome of 99 paired abdominal aorta (AA) and left anterior descending coronary artery (LAD) specimens (N = 198 specimens total) acquired during autopsy of young adults free of diagnosed cardiac disease. The CAM tool was then used to segregate protein subsets uniquely associated with different underlying tissue types, yielding markers of normal and fibrous plaque (FP) tissues in LAD and AA (N = 62 lesions markers). CAM-derived FP marker expression was validated against pathologist estimated luminal surface involvement of FP, as well as in an orthogonal cohort of "pure" fibrous plaque, fatty streak, and normal vascular specimens. A targeted mass spectrometry (MS) assay quantified 39 of 62 CAM-FP markers in plasma from women with angiographically verified coronary artery disease (CAD, N = 46) or free from apparent CAD (control, N = 40). Elastic net variable selection with logistic regression reduced this list to 10 proteins capable of classifying CAD status in this cohort with <6% misclassification error, and a mean area under the receiver operating characteristic curve of 0.992 (confidence interval 0.968-0.998) after cross validation. The proteomics-CAM workflow identified lesion-specific molecular biomarker candidates by distilling the most representative molecules from heterogeneous tissue types.
Collapse
Affiliation(s)
- Sarah J Parker
- Heart Institute & Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Lulu Chen
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, Virginia 24061, United States
| | - Weston Spivia
- Heart Institute & Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Georgia Saylor
- Department of Cardiovascular Medicine, Wake Forest University, Winston-Salem, North Carolina 27101, United States
| | - Chunhong Mao
- Biocomplexity Institute & Initiative, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Vidya Venkatraman
- Heart Institute & Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Ronald J Holewinski
- Heart Institute & Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Mitra Mastali
- Heart Institute & Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Rakhi Pandey
- Heart Institute & Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Grace Athas
- Department of Pathology, Louisiana State University, New Orleans, Louisiana 70112, United States
| | - Guoqiang Yu
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, Virginia 24061, United States
| | - Qin Fu
- Heart Institute & Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Dana Troxlair
- Department of Pathology, Louisiana State University, New Orleans, Louisiana 70112, United States
| | - Richard Vander Heide
- Department of Pathology, Louisiana State University, New Orleans, Louisiana 70112, United States
| | - David Herrington
- Department of Cardiovascular Medicine, Wake Forest University, Winston-Salem, North Carolina 27101, United States
| | - Jennifer E Van Eyk
- Heart Institute & Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, Virginia 24061, United States
| |
Collapse
|