1
|
van Vliet MM, Schoenmakers S, Boers RG, van der Meeren LE, Gribnau J, Steegers-Theunissen RPM. Methylome profiling of cell-free DNA during the early life course in (un)complicated pregnancies using MeD-seq: Protocol for a cohort study embedded in the prospective Rotterdam periconception cohort. PLoS One 2025; 20:e0310019. [PMID: 39787204 PMCID: PMC11717202 DOI: 10.1371/journal.pone.0310019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/23/2024] [Indexed: 01/12/2025] Open
Abstract
INTRODUCTION Placental DNA methylation differences have been associated with timing in gestation and pregnancy complications. Maternal cell-free DNA (cfDNA) partly originates from the placenta and could enable the minimally invasive study of placental DNA methylation dynamics. We will for the first time longitudinally investigate cfDNA methylation during pregnancy by using Methylated DNA Sequencing (MeD-seq), which is compatible with low cfDNA levels and has an extensive genome-wide coverage. We aim to investigate DNA methylation in placental tissues and cfDNA during different trimesters in uncomplicated pregnancies, and in pregnancies with placental-related complications, including preeclampsia and fetal growth restriction. Identified gestational-age and disease-specific differentially methylated regions (DMRs) could lead to numerous applications including biomarker development. METHODS AND ANALYSIS Our study design involves three sub-studies. Sub-study 1 is a single-centre prospective, observational subcohort embedded within the Rotterdam Periconception cohort (Predict study). We will longitudinally collect maternal plasma in each trimester and during delivery, and sample postpartum placentas (n = 300). In sub-study 2, we will prospectively collect first and second trimester placental tissues (n = 10 per trimester). In sub-study 3 we will retrospectively collect plasma after non-invasive prenatal testing (NIPT) in an independent validation case-control cohort (n = 30-60). A methylation-dependent restriction enzyme (LpnPI) will be used to generate DNA fragments followed by sequencing on the Illumina NextSeq2000 platform. DMRs will be identified in placental tissues and cell types, and in cfDNA related to gestational-age or placental-related complications. (Paired) placental methylation profiles will be correlated to DMRs in cfDNA to aid tissue-of-origin analysis. We will establish a methylation score to predict associated diseases. DISCUSSION This study will provide insights in placental DNA methylation dynamics in health and disease, and could lead to clinical relevant biomarkers.
Collapse
Affiliation(s)
- Marjolein M. van Vliet
- Department of Obstetrics and Gynaecology, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Developmental Biology, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Sam Schoenmakers
- Department of Obstetrics and Gynaecology, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Ruben G. Boers
- Department of Developmental Biology, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Lotte E. van der Meeren
- Department of pathology, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | |
Collapse
|
2
|
Baetens M, Van Gaever B, Deblaere S, De Koker A, Meuris L, Callewaert N, Janssens S, Roelens K, Roets E, Van Dorpe J, Dehaene I, Menten B. Advancing diagnosis and early risk assessment of preeclampsia through noninvasive cell-free DNA methylation profiling. Clin Epigenetics 2024; 16:182. [PMID: 39695764 DOI: 10.1186/s13148-024-01798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Aberrant embryo implantation and suboptimal placentation can lead to (severe) complications such as preeclampsia and fetal growth restriction later in pregnancy. Current identification of high-risk pregnancies relies on a combination of risk factors, biomarkers, and ultrasound examinations, a relatively inaccurate approach. Previously, aberrant DNA methylation due to placental hypoxia has been identified as a potential marker of placental insufficiency and, hence, potential (future) pregnancy complications. The goal of the Early Prediction of prEgnancy Complications Testing, or the ExPECT study, is to validate a genome-wide, cell-free DNA (cfDNA) methylation strategy to diagnose preeclampsia accurately. More importantly, the predictive potential of this strategy is also explored to reliably identify high-risk pregnancies early in gestation. Furthermore, a longitudinal study was conducted, including sequential blood samples from pregnant individuals experiencing both uneventful and complicated gestations, to assess the methylation dynamics of cfDNA throughout these pregnancies. A significant strength of this study is its enzymatic digest, which enriches CpG-rich regions across the genome without the need for proprietary reagents or prior selection of regions of interest. This makes it useful for the cost-effective discovery of novel markers. RESULTS Investigation of methylation patterns throughout pregnancy showed different methylation trends between unaffected and affected pregnancies. We detected differentially methylated regions (DMRs) in pregnancies complicated with preeclampsia as early as 12 weeks of gestation, with distinct differences in the methylation profile between early and late pregnancy. Two classification models were developed to diagnose and predict preeclampsia, demonstrating promising results on a small set of validation samples. CONCLUSIONS This study offers valuable insights into methylation changes at specific genomic regions throughout pregnancy, revealing critical differences between normal and complicated pregnancies. The power of noninvasive cfDNA methylation profiling was successfully proven, suggesting the potential to integrate this noninvasive approach into routine prenatal care.
Collapse
Affiliation(s)
- Machteld Baetens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - Bram Van Gaever
- Department of Pathology, Ghent University, Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Stephanie Deblaere
- Department of Obstetrics and Gynaecology, Ghent University Hospital, Ghent, Belgium
| | - Andries De Koker
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Leander Meuris
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Nico Callewaert
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sandra Janssens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kristien Roelens
- Department of Obstetrics and Gynaecology, Ghent University Hospital, Ghent, Belgium
| | - Ellen Roets
- Department of Obstetrics and Gynaecology, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University, Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Isabelle Dehaene
- Department of Obstetrics and Gynaecology, Ghent University Hospital, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Meng Y, Meng Y, Li L, Li Y, He J, Shan Y. The role of DNA methylation in placental development and its implications for preeclampsia. Front Cell Dev Biol 2024; 12:1494072. [PMID: 39691449 PMCID: PMC11649665 DOI: 10.3389/fcell.2024.1494072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
Preeclampsia (PE) is a prevalent and multifaceted pregnancy disorder, characterized by high blood pressure, edema, proteinuria, and systemic organ dysfunction. It remains one of the leading causes of pregnancy complications, yet its exact origins and pathophysiological mechanisms are not fully understood. Currently, the only definitive treatment is delivery, often requiring preterm termination of pregnancy, which increases neonatal and maternal morbidity and mortality rates, particularly in severe cases. This highlights the urgent need for further research to elucidate its underlying mechanisms and develop targeted interventions. PE is thought to result from a combination of factors, including inflammatory cytokines, trophoblast dysfunction, and environmental influences, which may trigger epigenetic changes, particularly DNA methylation. The placenta, a vital organ for fetal and maternal exchange, plays a central role in the onset of PE. Increasing evidence suggests a strong association between DNA methylation, placental function, and the development of PE. This review focuses on the impact of DNA methylation on placental development and its contribution to PE pathophysiology. It aims to clarify the epigenetic processes essential for normal placental development and explore potential epigenetic biomarkers and therapeutic targets for PE. Such insights could lead to the development of novel preventive and therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Yizi Meng
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Yimei Meng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linli Li
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Yuan Li
- Department of General Gynecology I, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Jin He
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Yanhong Shan
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Yuen N, Lemaire M, Wilson SL. Cell-free placental DNA: What do we really know? PLoS Genet 2024; 20:e1011484. [PMID: 39652523 PMCID: PMC11627368 DOI: 10.1371/journal.pgen.1011484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Cell-free placental DNA (cfpDNA) is present in maternal circulation during gestation. CfpDNA carries great potential as a research and clinical tool as it provides a means to investigate the placental (epi)genome across gestation, which previously required invasive placenta sampling procedures. CfpDNA has been widely implemented in the clinical setting for noninvasive prenatal testing (NIPT). Despite this, the basic biology of cfpDNA remains poorly understood, limiting the research and clinical utility of cfpDNA. This review will examine the current knowledge of cfpDNA, including origins and molecular characteristics, highlight gaps in knowledge, and discuss future research directions.
Collapse
Affiliation(s)
- Natalie Yuen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Melanie Lemaire
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Samantha L. Wilson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
van Vliet MM, Boers RG, Boers JB, Schäffers OJM, van der Meeren LE, Steegers-Theunissen RPM, Gribnau J, Schoenmakers S. Genome-wide methylation profiling of maternal cell-free DNA using methylated DNA sequencing (MeD-seq) indicates a placental and immune-cell signature. Eur J Clin Invest 2024:e14363. [PMID: 39589853 DOI: 10.1111/eci.14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Placental-originated cell-free DNA (cfDNA) provides unique opportunities to study (epi)genetic placental programming remotely, but studies investigating the cfDNA methylome are scarce and usually technologically challenging. Methylated DNA sequencing (MeD-seq) is well compatible with low cfDNA concentrations and has a high genome-wide coverage. We therefore aim to investigate the feasibility of genome-wide methylation profiling of first trimester maternal cfDNA using MeD-seq, by identifying placental-specific methylation marks in cfDNA. METHODS We collected cfDNA from nonpregnant controls (female n = 6, male n = 12) and pregnant women (n = 10), first trimester placentas (n = 10), and paired preconceptional and first trimester buffy coats (total n = 20). Differentially methylated regions (DMRs) were identified between pregnant and nonpregnant women. We investigated placental-specific markers in maternal cfDNA, including RASSF1 promoter and Y-chromosomal methylation, and studied overlap with placental and buffy coat DNA methylation. RESULTS We identified 436 DMRs between cfDNA from pregnant and nonpregnant women, which were validated using male cfDNA. RASSF1 promoter methylation was higher in maternal cfDNA (fold change 2.87, unpaired t-test p < .0001). Differential methylation of Y-chromosomal sequences could determine fetal sex. DMRs in maternal cfDNA showed large overlap with DNA methylation of these regions in placentas and buffy coats. Sixteen DMRs in maternal cfDNA were specifically found only in placentas. These novel potential placental-specific DMRs were more prominent than RASSF1. CONCLUSIONS MeD-seq can detect (novel) genome-wide placental DNA methylation marks and determine fetal sex in maternal cfDNA. Our results indicate a placental and immune-cell contribution to the pregnancy-specific cfDNA methylation signature. This study supports future research into maternal cfDNA methylation.
Collapse
Affiliation(s)
- Marjolein M van Vliet
- Department of Obstetrics and Gynaecology, Erasmus MC, Rotterdam, The Netherlands
- Department of Developmental Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Ruben G Boers
- Department of Developmental Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Joachim B Boers
- Department of Developmental Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Olivier J M Schäffers
- Department of Obstetrics and Gynaecology, Erasmus MC, Rotterdam, The Netherlands
- Department of Developmental Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Lotte E van der Meeren
- Department of Pathology, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Sam Schoenmakers
- Department of Obstetrics and Gynaecology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Rosengaard LO, Andersen MZ, Rosenberg J, Fonnes S. Several methods for assessing research waste in reviews with a systematic search: a scoping review. PeerJ 2024; 12:e18466. [PMID: 39575170 PMCID: PMC11580664 DOI: 10.7717/peerj.18466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/15/2024] [Indexed: 11/24/2024] Open
Abstract
Background Research waste is present in all study designs and can have significant consequences for science, including reducing the reliability of research findings and contributing to the inefficient use of resources. Estimates suggest that as much as 85% of all biomedical research is wasted. However, it is uncertain how avoidable research waste is assessed in specific types of study designs and what methods could be used to examine different aspects of research waste. We aimed to investigate which methods, systematic reviews, scoping reviews, and overviews of reviews discussing research waste, have used to assess avoidable research waste. Materials and Methods We published a protocol in the Open Science Framework prospectively (https://osf.io/2fbp4). We searched PubMed and Embase with a 30-year limit (January 1993-August 2023). The concept examined was how research waste and related synonyms (e.g., unnecessary, redundant, duplicate, etc.) were assessed in reviews with a systematic search: systematic, scoping, or overviews of reviews. We extracted data on the method used in the review to examine for research waste and for which study design this method was applied. Results The search identified 4,285 records of which 93 reviews with systematic searches were included. The reviews examined a median of 90 (range 10-6,781) studies, where the study designs most commonly included were randomized controlled trials (48%) and systematic reviews (33%). In the last ten years, the number of reports assessing research waste has increased. More than 50% of examined reviews reported evaluating methodological research waste among included studies, typically using tools such as one of Cochrane Risk of Bias tools (n = 8) for randomized controlled trials or AMSTAR 1 or 2 (n = 12) for systematic reviews. One fourth of reviews assessed reporting guideline adherence to e.g., CONSORT (n = 4) for randomized controlled trials or PRISMA (n = 6) for systematic reviews. Conclusion Reviews with systematic searches focus on methodological quality and reporting guideline adherence when examining research waste. However, this scoping review revealed that a wide range of tools are used, which may pose difficulties in comparing examinations and performing meta-research. This review aids researchers in selecting methodologies and contributes to the ongoing discourse on optimizing research efficiency.
Collapse
Affiliation(s)
- Louise Olsbro Rosengaard
- Center for Perioperative Optimization, Department of Surgery, Copenhagen University Hospital - Herlev and Gentofte, Denmark
| | - Mikkel Zola Andersen
- Center for Perioperative Optimization, Department of Surgery, Copenhagen University Hospital - Herlev and Gentofte, Denmark
| | - Jacob Rosenberg
- Center for Perioperative Optimization, Department of Surgery, Copenhagen University Hospital - Herlev and Gentofte, Denmark
| | - Siv Fonnes
- Center for Perioperative Optimization, Department of Surgery, Copenhagen University Hospital - Herlev and Gentofte, Denmark
| |
Collapse
|
7
|
Eaves LA, Harrington CE, Fry RC. Epigenetic Responses to Nonchemical Stressors: Potential Molecular Links to Perinatal Health Outcomes. Curr Environ Health Rep 2024; 11:145-157. [PMID: 38580766 DOI: 10.1007/s40572-024-00435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 04/07/2024]
Abstract
PURPOSE OF REVIEW We summarize the recent literature investigating exposure to four nonchemical stressors (financial stress, racism, psychosocial stress, and trauma) and DNA methylation, miRNA expression, and mRNA expression. We also highlight the relationships between these epigenetic changes and six critical perinatal outcomes (preterm birth, low birth weight, preeclampsia, gestational diabetes, childhood allergic disease, and childhood neurocognition). RECENT FINDINGS Multiple studies have found financial stress, psychosocial stress, and trauma to be associated with DNA methylation and/or miRNA and mRNA expression. Fewer studies have investigated the effects of racism. The majority of studies assessed epigenetic or genomic changes in maternal blood, cord blood, or placenta. Several studies included multi-OMIC assessments in which DNA methylation and/or miRNA expression were associated with gene expression. There is strong evidence for the role of epigenetics in driving the health outcomes considered. A total of 22 biomarkers, including numerous HPA axis genes, were identified to be epigenetically altered by both stressors and outcomes. Epigenetic changes related to inflammation, the immune and endocrine systems, and cell growth and survival were highlighted across numerous studies. Maternal exposure to nonchemical stressors is associated with epigenetic and/or genomic changes in a tissue-specific manner among inflammatory, immune, endocrine, and cell growth-related pathways, which may act as mediating pathways to perinatal health outcomes. Future research can test the mediating role of the specific biomarkers identified as linked with both stressors and outcomes. Understanding underlying epigenetic mechanisms altered by nonchemical stressors can provide a better understanding of how chemical and nonchemical exposures interact.
Collapse
Affiliation(s)
- Lauren A Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Cailee E Harrington
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Gong X, He W, Jin W, Ma H, Wang G, Li J, Xiao Y, Zhao Y, Chen Q, Guo H, Yang J, Qi Y, Dong W, Fu M, Li X, Liu J, Liu X, Yin A, Zhang Y, Wei Y. Disruption of maternal vascular remodeling by a fetal endoretrovirus-derived gene in preeclampsia. Genome Biol 2024; 25:117. [PMID: 38715110 PMCID: PMC11075363 DOI: 10.1186/s13059-024-03265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Preeclampsia, one of the most lethal pregnancy-related diseases, is associated with the disruption of uterine spiral artery remodeling during placentation. However, the early molecular events leading to preeclampsia remain unknown. RESULTS By analyzing placentas from preeclampsia, non-preeclampsia, and twin pregnancies with selective intrauterine growth restriction, we show that the pathogenesis of preeclampsia is attributed to immature trophoblast and maldeveloped endothelial cells. Delayed epigenetic reprogramming during early extraembryonic tissue development leads to generation of excessive immature trophoblast cells. We find reduction of de novo DNA methylation in these trophoblast cells results in selective overexpression of maternally imprinted genes, including the endoretrovirus-derived gene PEG10 (paternally expressed gene 10). PEG10 forms virus-like particles, which are transferred from the trophoblast to the closely proximate endothelial cells. In normal pregnancy, only a low amount of PEG10 is transferred to maternal cells; however, in preeclampsia, excessive PEG10 disrupts maternal vascular development by inhibiting TGF-beta signaling. CONCLUSIONS Our study reveals the intricate epigenetic mechanisms that regulate trans-generational genetic conflict and ultimately ensure proper maternal-fetal interface formation.
Collapse
Affiliation(s)
- Xiaoli Gong
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wei He
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wan Jin
- Euler Technology, Beijing, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongwei Ma
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
- Department Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yangyu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | | | | | - Jiexia Yang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yiming Qi
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wei Dong
- Maternity Ward, Haidian Maternal and Child Health Hospital, Beijing, China
| | - Meng Fu
- Department of Obstetrics and Gynecology, Haidian Maternal and Child Health Hospital, Beijing, China
| | - Xiaojuan Li
- Euler Technology, Beijing, China
- Present Address: International Max Planck Research School for Genome Science, and University of Göttingen, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | | | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China.
- Department Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Aihua Yin
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China.
| | - Yi Zhang
- Euler Technology, Beijing, China.
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
9
|
Ge Q, Zhao J, Qu F. Investigating the progression of preeclampsia through a comprehensive analysis of genes associated with per- and polyfluoroalkyl substances. Toxicol Mech Methods 2024; 34:444-453. [PMID: 38166544 DOI: 10.1080/15376516.2023.2299485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
Per- and Polyfluoroalkyl Substances (PFAS) are synthetic chemicals utilized in the production of various products that possess water and dirt-repellent properties. Exposure to PFAS has been linked to numerous diseases, such as cancer and preeclampsia (PE). However, whether PFAS contributes to the advancement of PE remains uncertain. In this study, we conducted an extensive bioinformatics analysis using the Comparative Toxicogenomics Database (CTD) and Gene Expression Omnibus (GEO) databases, leading us to discover a connection between PE and four specific PFAS. Moreover, further examination revealed that six genes associated with PFAS exhibited significant diagnostic potential for individuals with PE. By employing receiver operating characteristic (ROC) curves, our PFAS-related gene-based nomogram model demonstrated outstanding predictive efficacy for diagnosing PE. Immune infiltration analysis showed that six PFAS-related genes were significantly associated with the level of immune cell infiltration. The expression of PFAS-related genes in PE patients was confirmed by collecting clinical samples. This research has offered fresh perspectives on comprehending the impact of PFAS on PE, drawing attention to the connection between environmental factors and the risks and development of PE.
Collapse
Affiliation(s)
- Qiuyan Ge
- Department of Obstetrics, Nantong Tongzhou People's Hospital, Nantong, China
| | - Ju Zhao
- Department of Obstetrics, Nantong Tongzhou People's Hospital, Nantong, China
| | - Fujuan Qu
- Department of Obstetrics, Nantong Tongzhou People's Hospital, Nantong, China
| |
Collapse
|
10
|
Zhan F, He L, Wu J, Wu X. Bioinformatic Analysis Identifies Potential Extracellular Matrix Related Genes in the Pathogenesis of Early Onset Preeclampsia. Biochem Genet 2024; 62:646-665. [PMID: 37498421 DOI: 10.1007/s10528-023-10461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
Early-onset preeclampsia (EOPE) is a complex pregnancy complication that poses significant risks to the health of both mothers and fetuses, and research on its pathogenesis and pathophysiology remains insuffcient. This study aims to explore the role of candidate genes and their potential interaction mechanisms in EOPE through bioinformatics analysis techniques. Two gene expression datasets, GSE44711 and GSE74341, were obtained from the Gene Expression Omnibus (GEO) to identify differentially expressed genes (DEGs) between EOPE and gestational age-matched preterm control samples. Functional enrichment analysis was performed utilizing the kyoto encyclopedia of genes and genomes (KEGG), gene ontology (GO), and gene set enrichment analysis (GSEA). A protein-protein interaction (PPI) network was constructed using the STRING database, and hub DEGs were identified through Cytoscape software and comparative toxicogenomics database (CTD) analysis. Furthermore, a diagnostic logistic model was established using these hub genes, which were confirmed through reverse transcription polymerase chain reaction (RT-PCR). Finally, immune cell infiltration was analyzed using CIBERSORT. In total, 807 DEGs were identified in the GSE44711 dataset (451 upregulated genes and 356 downregulated genes), and 787 DEGs were identified in the GSE74341 dataset (446 upregulated genes and 341 downregulated genes). These DEGs were significantly enriched in various molecular functions such as extracellular matrix structural constituent, receptor-ligand activity binding, cytokine activity, and platelet-derived growth factor. KEGG and GSEA annotation revealed significant enrichment in pathways related to ECM-receptor interaction, PI3K-AKT signaling, and focal adhesion. Ten hub genes were identified through the CytoHubba plugin in Cytoscape. Among these hub genes, three key DEGs (COL1A1, SPP1, and THY1) were selected using CTD analysis and various topological methods in Cytoscape. The diagnostic logistic model based on these three genes exhibited high efficiency in predicting EOPE (AUC = 0.922). RT-PCR analysis confirmed the downregulation of these genes in EOPE, and immune cell infiltration analysis suggested the significant role of M1 and M2 macrophages in EOPE. In conclusion, this study highlights the association of three key genes (COL1A1, SPP1, and THY1) with EOPE and their contribution to high diagnostic efficiency in the logistic model. Additionally, it provides new insights for future research on EOPE and emphasizes the diagnostic value of these identified genes. More research is needed to explore their functional and diagnostic significance in EOPE.
Collapse
Affiliation(s)
- Feng Zhan
- College of Engineering, Fujian Jiangxia University, Fuzhou, 350108, Fujian, China
- School of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Lidan He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, Fujian, China.
| | - Jianbo Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, Fujian, China
| | - Xiuyan Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, Fujian, China
| |
Collapse
|
11
|
Hu P, Luo S, Qu G, Luo Q, Tian Y, Huang K, Sun T. Identification and validation of feature genes associated with M1 macrophages in preeclampsia. Aging (Albany NY) 2023; 15:13822-13839. [PMID: 38048229 PMCID: PMC10756132 DOI: 10.18632/aging.205264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/23/2023] [Indexed: 12/06/2023]
Abstract
Preeclampsia (PE) is a pregnancy-specific cardiovascular complication that is the leading cause of maternal and neonatal morbidity and mortality. Previous studies have indicated the importance of immune cells, such as M1 and M2 macrophages, in the pathogenesis of PE. However, the mechanisms leading to immune dysregulation are unclear. Data-independent acquisition proteomic analysis was performed on placental tissues collected from patients with PE and healthy controls. Transcriptome data for placenta samples from patients with PE and their corresponding controls were obtained from the Gene Expression Omnibus database. Differential analysis of transcriptome and proteome data between PE and control groups was performed using R software. Immunocytic infiltration scoring was performed using the quantiseq algorithm. Weighted gene co-expression network analysis (WGCNA) screened for feature genes associated with M1 cell infiltration. Protein-protein interaction (PPI) analysis identified hub genes. We confirm that the infiltration score of M1 macrophages was significantly increased in the placental tissues of patients with PE. Differential analysis, WGCNA, and PPI analysis identified four hub molecules associated with M1 cell infiltration (HTRA4, POGK, MFAP5, and INHBA). The hub molecules displayed dysregulated expression in PE tissues. The qPCR, Western blots, and immunohistochemistry analyses confirmed that Inhibin, beta A (INHBA) was highly expressed in placental tissues of patients with PE. Immunofluorescence revealed the extensive infiltration of M1 macrophages in the placental tissues of patients with PE and their co-localization with INHBA. The collective results identified hub genes associated with M1 macrophage infiltration, providing potential targets for the pathogenesis and treatment of PE.
Collapse
Affiliation(s)
- Panpan Hu
- Department of Gerontology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shanshun Luo
- Department of Gerontology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Guangjin Qu
- Department of Gerontology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Qiqi Luo
- Department of Gerontology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yu Tian
- Department of Gerontology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Kun Huang
- Department of Gerontology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Tingting Sun
- Department of Gerontology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
12
|
Knihtilä HM, Kachroo P, Shadid I, Raissadati A, Peng C, McElrath TF, Litonjua AA, Demeo DL, Loscalzo J, Weiss ST, Mirzakhani H. Cord blood DNA methylation signatures associated with preeclampsia are enriched for cardiovascular pathways: insights from the VDAART trial. EBioMedicine 2023; 98:104890. [PMID: 37995466 PMCID: PMC10709000 DOI: 10.1016/j.ebiom.2023.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Preeclampsia has been associated with maternal epigenetic changes, in particular DNA methylation changes in the placenta. It has been suggested that preeclampsia could also cause DNA methylation changes in the neonate. We examined DNA methylation in relation to gene expression in the cord blood of offspring born to mothers with preeclampsia. METHODS This study included 128 mother-child pairs who participated in the Vitamin D Antenatal Asthma Reduction Trial (VDAART), where assessment of preeclampsia served as secondary outcome. We performed an epigenome-wide association study of preeclampsia and cord blood DNA methylation (Illumina 450 K chip). We then examined gene expression of the same subjects for validation and replicated the gene signatures in independent DNA methylation datasets. Lastly, we applied functional enrichment and network analyses to identify biological pathways that could potentially be involved in preeclampsia. FINDINGS In the cord blood samples (n = 128), 263 CpGs were differentially methylated (FDR <0.10) in preeclampsia (n = 16), of which 217 were annotated. Top pathways in the functional enrichment analysis included apelin signaling pathway and other endothelial and cardiovascular pathways. Of the 217 genes, 13 showed differential expression (p's < 0.001) in preeclampsia and 11 had been previously related to preeclampsia (p's < 0.0001). These genes were linked to apelin, cGMP and Notch signaling pathways, all having a role in angiogenic process and cardiovascular function. INTERPRETATION Preeclampsia is related to differential cord blood DNA methylation signatures of cardiovascular pathways, including the apelin signaling pathway. The association of these cord blood DNA methylation signatures with offspring's long-term morbidities due to preeclampsia should be further investigated. FUNDING VDAART is funded by National Heart, Lung, and Blood Institute grants of R01HL091528 and UH3OD023268. HMK is supported by Jane and Aatos Erkko Foundation, Paulo Foundation, and the Pediatric Research Foundation. HM is supported by K01 award from NHLBI (1K01HL146977-01A1). PK is supported by K99HL159234 from NIH/NHLBI.
Collapse
Affiliation(s)
- Hanna M Knihtilä
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Iskander Shadid
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alireza Raissadati
- Department of Pediatric Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Cheng Peng
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas F McElrath
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY, USA
| | - Dawn L Demeo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hooman Mirzakhani
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Khan A, Inkster AM, Peñaherrera MS, King S, Kildea S, Oberlander TF, Olson DM, Vaillancourt C, Brain U, Beraldo EO, Beristain AG, Clifton VL, Del Gobbo GF, Lam WL, Metz GAS, Ng JWY, Price EM, Schuetz JM, Yuan V, Portales-Casamar É, Robinson WP. The application of epiphenotyping approaches to DNA methylation array studies of the human placenta. Epigenetics Chromatin 2023; 16:37. [PMID: 37794499 PMCID: PMC10548571 DOI: 10.1186/s13072-023-00507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Genome-wide DNA methylation (DNAme) profiling of the placenta with Illumina Infinium Methylation bead arrays is often used to explore the connections between in utero exposures, placental pathology, and fetal development. However, many technical and biological factors can lead to signals of DNAme variation between samples and between cohorts, and understanding and accounting for these factors is essential to ensure meaningful and replicable data analysis. Recently, "epiphenotyping" approaches have been developed whereby DNAme data can be used to impute information about phenotypic variables such as gestational age, sex, cell composition, and ancestry. These epiphenotypes offer avenues to compare phenotypic data across cohorts, and to understand how phenotypic variables relate to DNAme variability. However, the relationships between placental epiphenotyping variables and other technical and biological variables, and their application to downstream epigenome analyses, have not been well studied. RESULTS Using DNAme data from 204 placentas across three cohorts, we applied the PlaNET R package to estimate epiphenotypes gestational age, ancestry, and cell composition in these samples. PlaNET ancestry estimates were highly correlated with independent polymorphic ancestry-informative markers, and epigenetic gestational age, on average, was estimated within 4 days of reported gestational age, underscoring the accuracy of these tools. Cell composition estimates varied both within and between cohorts, as well as over very long placental processing times. Interestingly, the ratio of cytotrophoblast to syncytiotrophoblast proportion decreased with increasing gestational age, and differed slightly by both maternal ethnicity (lower in white vs. non-white) and genetic ancestry (lower in higher probability European ancestry). The cohort of origin and cytotrophoblast proportion were the largest drivers of DNAme variation in this dataset, based on their associations with the first principal component. CONCLUSIONS This work confirms that cohort, array (technical) batch, cell type proportion, self-reported ethnicity, genetic ancestry, and biological sex are important variables to consider in any analyses of Illumina DNAme data. We further demonstrate the specific utility of epiphenotyping tools developed for use with placental DNAme data, and show that these variables (i) provide an independent check of clinically obtained data and (ii) provide a robust approach to compare variables across different datasets. Finally, we present a general framework for the processing and analysis of placental DNAme data, integrating the epiphenotype variables discussed here.
Collapse
Affiliation(s)
- A Khan
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Princess Margaret Cancer Center, Toronto, ON, M5G 2C4, Canada
| | - A M Inkster
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - M S Peñaherrera
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - S King
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
- Psychosocial Research Division, Douglas Hospital Research Centre, Montreal, QC, H4H 1R3, Canada
| | - S Kildea
- Mater Research Institute, University of Queensland, Brisbane, QLD, 4101, Australia
- Molly Wardaguga Research Centre, Charles Darwin University, Brisbane, QLD, 4000, Australia
| | - T F Oberlander
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, V6H 3V4, Canada
| | - D M Olson
- Department of Obstetrics and Gynecology, University of Alberta, 220 HMRC, Edmonton, AB, T6G 2S2, Canada
| | - C Vaillancourt
- Centre Armand Frappier Santé Biotechnologie - INRS and University of Quebec Intersectorial Health Research Network, Laval, QC, H7V 1B7, Canada
| | - U Brain
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, V6H 3V4, Canada
| | - E O Beraldo
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - A G Beristain
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Obstetrics & Gynecology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - V L Clifton
- Mater Research Institute, University of Queensland, Brisbane, QLD, 4101, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia
| | - G F Del Gobbo
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, K1H 5B2, Canada
| | - W L Lam
- British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - G A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - J W Y Ng
- Faculty of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - E M Price
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, K1H 5B2, Canada
| | - J M Schuetz
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - V Yuan
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - É Portales-Casamar
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada.
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada.
| | - W P Robinson
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada.
| |
Collapse
|
14
|
Keighley LM, Lynch-Sutherland CF, Almomani SN, Eccles MR, Macaulay EC. Unveiling the hidden players: The crucial role of transposable elements in the placenta and their potential contribution to pre-eclampsia. Placenta 2023; 141:57-64. [PMID: 37301654 DOI: 10.1016/j.placenta.2023.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
The human placenta is a vital connection between maternal and fetal tissues, allowing for the exchange of molecules and modulation of immune interactions during pregnancy. Interestingly, some of the placenta's unique functions can be attributed to transposable elements (TEs), which are DNA sequences that have mobilised into the genome. Co-option throughout mammalian evolution has led to the generation of TE-derived regulators and TE-derived genes, some of which are expressed in the placenta but silenced in somatic tissues. TE genes encompass both TE-derived genes with a repeat element in the coding region and TE-derived regulatory regions such as alternative promoters and enhancers. Placental-specific TE genes are known to contribute to the placenta's unique functions, and interestingly, they are also expressed in some cancers and share similar functions. There is evidence to support that aberrant activity of TE genes may contribute to placental pathologies, cancer and autoimmunity. In this review, we highlight the crucial roles of TE genes in placental function, and how their dysregulation may lead to pre-eclampsia, a common and dangerous placental condition. We provide a summary of the functional TE genes in the placenta to offer insight into their significance in normal and abnormal human development. Ultimately, this review highlights an opportunity for future research to investigate the potential dysregulation of TE genes in the development of placental pathologies such as pre-eclampsia. Further understanding of TE genes and their role in the placenta could lead to significant improvements in maternal and fetal health.
Collapse
Affiliation(s)
- Laura M Keighley
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Chiemi F Lynch-Sutherland
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Suzan N Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
15
|
Fernández-Boyano I, Inkster AM, Yuan V, Robinson WP. eoPred: predicting the placental phenotype of early-onset preeclampsia using public DNA methylation data. Front Genet 2023; 14:1248088. [PMID: 37736302 PMCID: PMC10509376 DOI: 10.3389/fgene.2023.1248088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/08/2023] [Indexed: 09/23/2023] Open
Abstract
Background: A growing body of literature has reported molecular and histological changes in the human placenta in association with preeclampsia (PE). Placental DNA methylation (DNAme) and transcriptomic patterns have revealed molecular subgroups of PE that are associated with placental histopathology and clinical phenotypes of the disease. However, the clinical and molecular heterogeneity of PE both across and within subtypes complicates the study of this disease. PE is most strongly associated with placental pathology and adverse fetal and maternal outcomes when it develops early in pregnancy. We focused on placentae from pregnancies affected by preeclampsia that were delivered before 34 weeks of gestation to develop eoPred, a predictor of the DNAme signature associated with the placental phenotype of early-onset preeclampsia (EOPE). Results: Public data from 83 placental samples (HM450K), consisting of 42 EOPE and 41 normotensive preterm birth (nPTB) cases, was used to develop eoPred-a supervised model that relies on a highly discriminative 45 CpG DNAme signature of EOPE in the placenta. The performance of eoPred was assessed using cross-validation (AUC = 0.95) and tested in an independent validation cohort (n = 49, AUC = 0.725). A subset of fetal growth restriction (FGR) and late-PE cases showed a similar DNAme profile at the 45 predictive CpGs, consistent with the overlap in placental pathology between these conditions. The relationship between the EOPE probability generated by eoPred and various phenotypic variables was also assessed, revealing that it is associated with gestational age, and it is not driven by cell composition differences. Conclusion: eoPred relies on a 45-CpG DNAme signature to predict a homogeneous placental phenotype of EOPE in a discrete or continuous manner. Using this classifier should 1) aid in the study of placental insufficiency and improve the consistency of future placental DNAme studies of PE, 2) facilitate identifying the placental phenotype of EOPE in public data sets and 3) importantly, standardize the placental diagnosis of EOPE to allow better cross-cohort comparisons. Lastly, classification of cases with eoPred will be useful for investigating the relationship between placental pathology and genetic or environmental variables.
Collapse
Affiliation(s)
- I. Fernández-Boyano
- BC Children’s Hospital Research Institute (BCCHR), Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - A. M. Inkster
- BC Children’s Hospital Research Institute (BCCHR), Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - V. Yuan
- BC Children’s Hospital Research Institute (BCCHR), Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - W. P. Robinson
- BC Children’s Hospital Research Institute (BCCHR), Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Khan A, Inkster AM, Peñaherrera MS, King S, Kildea S, Oberlander TF, Olson DM, Vaillancourt C, Brain U, Beraldo EO, Beristain AG, Clifton VL, Del Gobbo GF, Lam WL, Metz GA, Ng JW, Price EM, Schuetz JM, Yuan V, Portales-Casamar É, Robinson WP. The application of epiphenotyping approaches to DNA methylation array studies of the human placenta. RESEARCH SQUARE 2023:rs.3.rs-3069705. [PMID: 37461679 PMCID: PMC10350117 DOI: 10.21203/rs.3.rs-3069705/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background : Genome-wide DNA methylation (DNAme) profiling of the placenta with Illumina Infinium Methylation bead arrays is often used to explore the connections between in utero exposures, placental pathology, and fetal development. However, many technical and biological factors can lead to signals of DNAme variation between samples and between cohorts, and understanding and accounting for these factors is essential to ensure meaningful and replicable data analysis. Recently, "epiphenotyping" approaches have been developed whereby DNAme data can be used to impute information about phenotypic variables such as gestational age, sex, cell composition, and ancestry. These epiphenotypes offer avenues to compare phenotypic data across cohorts, and to understand how phenotypic variables relate to DNAme variability. However, the relationships between placental epiphenotyping variables and other technical and biological variables, and their application to downstream epigenome analyses, have not been well studied. Results : Using DNAme data from 204 placentas across three cohorts, we applied the PlaNET R package to estimate epiphenotypes gestational age, ancestry, and cell composition in these samples. PlaNET ancestry estimates were highly correlated with independent polymorphic ancestry informative markers, and epigenetic gestational age, on average, was estimated within 4 days of reported gestational age, underscoring the accuracy of these tools. Cell composition estimates varied both within and between cohorts, but reassuringly were robust to placental processing time. Interestingly, the ratio of cytotrophoblast to syncytiotrophoblast proportion decreased with increasing gestational age, and differed slightly by both maternal ethnicity (lower in white vs. non-white) and genetic ancestry (lower in higher probability European ancestry). The cohort of origin and cytotrophoblast proportion were the largest drivers of DNAme variation in this dataset, based on their associations with the first principal component. Conclusions : This work confirms that cohort, array (technical) batch, cell type proportion, self-reported ethnicity, genetic ancestry, and biological sex are important variables to consider in any analyses of Illumina DNAme data. Further, we demonstrate that estimating epiphenotype variables from the DNAme data itself, when possible, provides both an independent check of clinically-obtained data and can provide a robust approach to compare variables across different datasets.
Collapse
Affiliation(s)
- Almas Khan
- BC Children's Hospital Research Institute (BCCHR)
| | | | | | | | | | | | | | - Cathy Vaillancourt
- Centre Armand Frappier Santé Biotechnologie - INRS and University of Quebec Intersectorial Health Research Network
| | - Ursula Brain
- BC Children's Hospital Research Institute (BCCHR)
| | | | | | | | | | - Wan L Lam
- British Columbia Cancer Research Centre
| | | | | | | | | | - Victor Yuan
- BC Children's Hospital Research Institute (BCCHR)
| | | | | |
Collapse
|
17
|
Zakeri S, Rahimi Z, Jalilian1 N, Vaisi-Raygani A, Rezvani A, Dastafkan Z. Aberrant Methylation of the SOD1 GENE, its Expression and Enzyme Activity in the Placenta of Patients with Preeclampsia. Rep Biochem Mol Biol 2023; 12:112-119. [PMID: 37724155 PMCID: PMC10505468 DOI: 10.52547/rbmb.12.1.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/02/2023] [Indexed: 09/20/2023]
Abstract
Background Oxidative stress is involved in the pathogenesis of preeclampsia (PE). Dysregulation of SOD1 may be involved in the pathogenesis of PE. We examined and compared the methylation level of the promoter region (PMR) of the SOD1, gene expression, and enzyme activity of superoxide dismutase (SOD) in both placenta and maternal blood in PE women. Methods A total of 140 blood samples and 40 placental tissue samples from PE and healthy pregnant controls were studied. The PMR of the SOD1 (Methylight PCR method), the expression (Real-time PCR), and its enzyme activity were investigated and compared in two groups. Results The PMR of the SOD1 gene in the placental tissue of the patients was significantly increased compared to the control group (P= 0.008); this result was accompanied by a decrease in the expression of the gene and a decrease in the activity of the SOD enzyme. Meanwhile, the PMR of the SOD1 gene did not significantly change in the blood samples of the patients (P= 0.95), while a significant decrease in the expression of SOD1 (without a significant change in the SOD activity) was observed. Conclusion The results showed significant changes in the PMR of the SOD1 gene and gene expression in placenta tissue. The results highlight the role of the placenta in complications during pregnancy and also revealed epigenetics as an important regulatory pathway in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Saba Zakeri
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran. And Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Nazanin Jalilian1
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Asad Vaisi-Raygani
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Rezvani
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Zahra Dastafkan
- Medical Genetics Laboratory, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
18
|
Wei X, Zhou S, Liao L, Liu M, Gao Y, Yin Y, Xu Q, Zhou R. Comprehensive analysis of transcriptomic profiling of 5-methylcytosin modification in placentas from preeclampsia and normotensive pregnancies. FASEB J 2023; 37:e22751. [PMID: 36692426 DOI: 10.1096/fj.202201248r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023]
Abstract
Increasing evidence suggests that RNA m5C modification and its regulators have been confirmed to be associated with the pathogenesis of many diseases. However, the distribution and biological functions of m5C in mRNAs of placental tissues remain unknown. we collected placentae from normotensive pregnancies (CTR) and preeclampsia patients (PE) to analyze the transcriptomic profiling of m5C RNA methylation through m5C RNA immunoprecipitation (UMI-MeRIP-Seq). we discovered that overall m5C methylation peaks were decreased in placental tissues from PE patients. And, 2844 aberrant m5C peaks were identified, of which respectively 1304 m5C peaks were upregulated and 1540 peaks were downregulated. The distribution of m5C peaks were mainly located in CDS (coding sequences) regions in placental tissues of both groups, but compared with the CTR group, the m5C peak in PE group before the stop code of CDS was significantly increased and even higher than the peak value after start code in CDS. Differentially methylated genes were mainly enriched in MAPK/cAMP signaling pathway. Moreover, the up-regulated genes with hypermethylated modification were enriched in the processes of hypoxia, inflammation/immune response. Finally, through analyzing the mRNA expression levels of m5C RNA methylation regulators, we found only DNMT3B and TET3 were significantly upregulated in PE samples than in control group. And they are not only negatively correlated with each other, but also closely related to those differentially expressed genes modified by differential methylation.Our findings provide new insights regarding alterations of m5C RNA modification into the pathogenic mechanisms of PE.
Collapse
Affiliation(s)
- Xiaohong Wei
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Shengping Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Lingyun Liao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Min Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Yijie Gao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Yangxue Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Qin Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
19
|
Hypertensive disorders of pregnancy share common cfDNA methylation profiles. Sci Rep 2022; 12:19837. [PMID: 36400896 PMCID: PMC9674847 DOI: 10.1038/s41598-022-24348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Hypertensive disorders of pregnancy (HDP) contribute substantially to perinatal morbidity and mortality. Epigenetic changes point towards cardio-metabolic dysregulation for these vascular disorders. In early pregnancy, epigenetic changes using cell free DNA (cfDNA) are largely unexplored. We aimed to investigate these in HDP between 11 and 14 weeks of gestation by analysis of cfDNA methylation profiles in patients with hypertensive disorders. We identified patients without chronic hypertension but with subsequent development of preeclampsia (PE) (n = 11), with chronic hypertension (HT) but without PE development (n = 14), and lacking both PE and HT (n = 422). We matched patients according to PE risk factors into three groups (n = 5 each group): (1) PE: no HT but PE development, (2) HT: chronic hypertension but no PE and (3) Control: no PE or HT. We successfully optimized our cfDNA isolation process prior to whole genome bisulfite sequencing. Analysis of cfDNA methylation changes indicate a common predisposition in PE and HT groups, chiefly of maternal origin. Assessment of significant differentially methylated regions and annotated genes point towards a common cardiovascular predisposition in preeclampsia and hypertension groups in the first trimester. We postulate the pivotal role of the maternal cardiovascular system in HDP, which is already evident in the first trimester.
Collapse
|
20
|
Koeck RM, Busato F, Tost J, Consten D, van Echten-Arends J, Mastenbroek S, Wurth Y, Remy S, Langie S, Nawrot TS, Plusquin M, Alfano R, Bijnens EM, Gielen M, van Golde R, Dumoulin JCM, Brunner H, van Montfoort APA, Zamani Esteki M. Methylome-wide analysis of IVF neonates that underwent embryo culture in different media revealed no significant differences. NPJ Genom Med 2022; 7:39. [PMID: 35768464 PMCID: PMC9243125 DOI: 10.1038/s41525-022-00310-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
A growing number of children born are conceived through in vitro fertilisation (IVF), which has been linked to an increased risk of adverse perinatal outcomes, as well as altered growth profiles and cardiometabolic differences in the resultant individuals. Some of these outcomes have also been shown to be influenced by the use of different IVF culture media and this effect is hypothesised to be mediated epigenetically, e.g. through the methylome. As such, we profiled the umbilical cord blood methylome of IVF neonates that underwent preimplantation embryo development in two different IVF culture media (G5 or HTF), using the Infinium Human Methylation EPIC BeadChip. We found no significant methylation differences between the two groups in terms of: (i) systematic differences at CpG sites or regions, (ii) imprinted sites/genes or birth weight-associated sites, (iii) stochastic differences presenting as DNA methylation outliers or differentially variable sites, and (iv) epigenetic gestational age acceleration.
Collapse
Affiliation(s)
- Rebekka M Koeck
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Florence Busato
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Genomique Humaine, CEA - institut de Biologie François Jacob, Université Paris Saclay, 91000, Evry, France
| | - Jorg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Genomique Humaine, CEA - institut de Biologie François Jacob, Université Paris Saclay, 91000, Evry, France
| | - Dimitri Consten
- Center for Reproductive Medicine, St. Elisabeth-TweeSteden Hospital, Hilvarenbeekseweg 60, 5022, GC, Tilburg, the Netherlands
| | - Jannie van Echten-Arends
- Section of Reproductive Medicine, Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Sebastiaan Mastenbroek
- Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Yvonne Wurth
- Center for Reproductive Medicine, St. Elisabeth-TweeSteden Hospital, Hilvarenbeekseweg 60, 5022, GC, Tilburg, the Netherlands
| | - Sylvie Remy
- Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Sabine Langie
- Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium.,Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Department of Public Health and Primary Care, Leuven University (KU Leuven), Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Esmée M Bijnens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Marij Gielen
- Department of Epidemiology and Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ron van Golde
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - John C M Dumoulin
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Han Brunner
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Aafke P A van Montfoort
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands.
| | - Masoud Zamani Esteki
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands. .,Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
21
|
Shi M, Yang X, Ding Y, Sun L, Zhang P, Liu M, Han X, Huang Z, Li R. Ferroptosis-Related Proteins Are Potential Diagnostic Molecular Markers for Patients with Preeclampsia. BIOLOGY 2022; 11:950. [PMID: 36101331 PMCID: PMC9311911 DOI: 10.3390/biology11070950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
Preeclampsia (PE) is the leading cause of maternal and fetal mortality and morbidity. Early and accurate diagnosis is critical to reduce mortality. Placental oxidative stress has been identified as a major pathway to the development of PE. Ferroptosis, a new form of regulated cell death, is associated with iron metabolism and oxidative stress, and has been suspected to play a role in the pathophysiology of PE, although the mechanism is yet to be elucidated. The identification of potential ferroptosis-related biomarkers is of great significance for the early diagnosis and treatment of PE. A gene expression dataset of peripheral blood samples was downloaded from the Gene Expression Omnibus (GEO) dataset. Differentially expressed genes (DEGs) were filtrated with the R package “limma”. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the DEGs were then conducted. Ferroptosis-related DEGs were screened by overlapping the ferroptosis-related genes with DEGs. The protein−protein interaction (PPI) network was used to identify the key ferroptosis-related DEGs. Enzyme-linked immunosorbent assay (ELISA) was used to validate changes in the selected key ferroptosis-related DEGs. The correlations between the key genes and clinical and pathological characteristics were analyzed. Finally, the diagnostic value of these key genes for PE was confirmed by a receiver operating characteristic (ROC) curve. A total of 5913 DEGs were identified and 45 ferroptosis-related DEGs were obtained. Besides, ferroptosis-related pathways were enriched by KEGG using DEGs. The PPI network showed that p53 and c-Jun were the critical hub genes. ELISA showed that p53 in the serum of PE patients was higher than that of the control group, while c-Jun was lower than that of the control group. Analysis of the clinicopathological features showed that p53 and c-Jun were correlated with the PE characteristics. Finally, based on the area under curve (AUC) values, c-Jun had the superior diagnostic power (AUC = 0.87, p < 0.001), followed by p53 (AUC = 0.75, p < 0.001). Our study identified that two key genes, p53 and c-Jun, might be potential diagnostic biomarkers of PE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510000, China; (M.S.); (X.Y.); (Y.D.); (L.S.); (P.Z.); (M.L.); (X.H.); (Z.H.)
| |
Collapse
|
22
|
Early Pregnancy Exposure to Ambient Air Pollution among Late-Onset Preeclamptic Cases Is Associated with Placental DNA Hypomethylation of Specific Genes and Slower Placental Maturation. TOXICS 2021; 9:toxics9120338. [PMID: 34941772 PMCID: PMC8708250 DOI: 10.3390/toxics9120338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023]
Abstract
Exposure to ambient air pollution during pregnancy has been associated with an increased risk of preeclampsia (PE). Some suggested mechanisms behind this association are changes in placental DNA methylation and gene expression. The objective of this study was to identify how early pregnancy exposure to ambient nitrogen oxides (NOx) among PE cases and normotensive controls influence DNA methylation (EPIC array) and gene expression (RNA-seq). The study included placentas from 111 women (29 PE cases/82 controls) in Scania, Sweden. First-trimester NOx exposure was assessed at the participants’ residence using a dispersion model and categorized via median split into high or low NOx. Placental gestational epigenetic age was derived from the DNA methylation data. We identified six differentially methylated positions (DMPs, q < 0.05) comparing controls with low NOx vs. cases with high NOx and 14 DMPs comparing cases and controls with high NOx. Placentas with female fetuses showed more DMPs (N = 309) than male-derived placentas (N = 1). Placentas from PE cases with high NOx demonstrated gestational age deceleration compared to controls with low NOx (p = 0.034). No differentially expressed genes (DEGs, q < 0.05) were found. In conclusion, early pregnancy exposure to NOx affected placental DNA methylation in PE, resulting in placental immaturity and showing sexual dimorphism.
Collapse
|
23
|
Cruz JDO, Conceição IMCA, Sandrim VC, Luizon MR. Comprehensive analyses of DNA methylation of the TIMP3 promoter in placentas from early-onset and late-onset preeclampsia. Placenta 2021; 117:118-121. [PMID: 34883455 DOI: 10.1016/j.placenta.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/23/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022]
Abstract
Preeclampsia (PE) is classified into late-onset (LOPE) or early-onset (EOPE) according to gestational age of onset (≥34 or <34 weeks, respectively), and into preterm and term (delivery at <37 or ≥37 weeks, respectively). An imbalanced expression of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) impairs proper placentation in PE, and DNA methylation (DNAm) may affect their expression. We performed comprehensive analyses of DNAm and TIMP3 expression in placentas from PE reclassified into EOPE, LOPE, and term PE. We identified significant differentially methylated probes at the TIMP3 promoter in PE (28), EOPE (38), LOPE (20), and term PE (4) compared to controls, and in EOPE vs. LOPE (8). Moreover, we found a hypomethylation >70% in all groups (except EOPE vs. LOPE) and an increased TIMP3 expression in corresponding placental samples from PE, EOPE and LOPE compared to controls (p<0.05). Our findings highlight the role of DNAm of the TIMP3 promoter region regarding an epigenetic mechanism in PE.
Collapse
Affiliation(s)
- Juliana de O Cruz
- Genetics Graduate Program, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Izabela M C A Conceição
- Biochemistry and Immunology Graduate Program, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Valeria C Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences, Universidade Estadual Paulista, Botucatu, São Paulo, 18680-000, Brazil
| | - Marcelo R Luizon
- Genetics Graduate Program, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil; Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
24
|
Christians JK. The Placenta's Role in Sexually Dimorphic Fetal Growth Strategies. Reprod Sci 2021; 29:1895-1907. [PMID: 34699045 DOI: 10.1007/s43032-021-00780-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022]
Abstract
Fetal sex affects the risk of pregnancy complications and the long-term effects of prenatal environment on health. Some have hypothesized that growth strategies differ between the sexes, whereby males prioritize growth whereas females are more responsive to their environment. This review evaluates the role of the placenta in such strategies, focusing on (1) mechanisms underlying sexual dimorphism in gene expression, (2) the nature and extent of sexual dimorphism in placental gene expression, (3) sexually dimorphic responses to nutrient supply, and (4) sexual dimorphism in morphology and histopathology. The sex chromosomes contribute to sex differences in placental gene expression, and fetal hormones may play a role later in development. Sexually dimorphic placental gene expression may contribute to differences in the prevalence of complications such as preeclampsia, although this link is not clear. Placental responses to nutrient supply frequently show sexual dimorphism, but there is no consistent pattern where one sex is more responsive. There are sex differences in the prevalence of placental histopathologies, and placental changes in pregnancy complications, but also many similarities. Overall, no clear patterns support the hypothesis that females are more responsive to the maternal environment, or that males prioritize growth. While male fetuses are at greater risk of a variety of complications, total prenatal mortality is higher in females, such that males exposed to early insults may be more likely to survive and be observed in studies of adverse outcomes. Going forward, robust statistical approaches to test for sex-dependent effects must be more widely adopted to reduce the incidence of spurious results.
Collapse
Affiliation(s)
- Julian K Christians
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada. .,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada. .,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada. .,Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, BC, Canada.
| |
Collapse
|
25
|
Inkster AM, Yuan V, Konwar C, Matthews AM, Brown CJ, Robinson WP. A cross-cohort analysis of autosomal DNA methylation sex differences in the term placenta. Biol Sex Differ 2021; 12:38. [PMID: 34044884 PMCID: PMC8162041 DOI: 10.1186/s13293-021-00381-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human placental DNA methylation (DNAme) data is a valuable resource for studying sex differences during gestation, as DNAme profiles after delivery reflect the cumulative effects of gene expression patterns and exposures across gestation. Here, we present an analysis of sex differences in autosomal DNAme in the uncomplicated term placenta (n = 343) using the Illumina 450K array. RESULTS At a false discovery rate < 0.05 and a mean sex difference in DNAme beta value of > 0.10, we identified 162 autosomal CpG sites that were differentially methylated by sex and replicated in an independent cohort of samples (n = 293). Several of these differentially methylated CpG sites were part of larger correlated regions of sex differential DNAme. Although global DNAme levels did not differ by sex, the majority of significantly differentially methylated CpGs were more highly methylated in male placentae, the opposite of what is seen in differential methylation analyses of somatic tissues. Patterns of autosomal DNAme at these 162 CpGs were significantly associated with maternal age (in males) and newborn birthweight standard deviation (in females). CONCLUSIONS Our results provide a comprehensive analysis of sex differences in autosomal DNAme in the term human placenta. We report a list of high-confidence autosomal sex-associated differentially methylated CpGs and identify several key features of these loci that suggest their relevance to sex differences observed in normative and complicated pregnancies.
Collapse
Affiliation(s)
- Amy M. Inkster
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
| | - Victor Yuan
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
| | - Chaini Konwar
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Centre for Molecular Medicine and Therapeutics, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
| | - Allison M. Matthews
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
- Centre for Molecular Medicine and Therapeutics, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, V6T 1Z7 Canada
| | - Carolyn J. Brown
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
| | - Wendy P. Robinson
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
| |
Collapse
|