1
|
Loizidou EM, Kyratzi M, Tsiarli MA, Kakouri AC, Charalambidou G, Antoniou S, Pieri S, Veloudi P, Mayrhofer MT, Wutte A, Kozera L, Habermann J, Muller H, Zatloukal K, Sargsyan K, Michaelides A, Papaioannou M, Schizas C, Malatras A, Papagregoriou G, Deltas C. biobank.cy: the Biobank of Cyprus past, present and future. Sci Rep 2024; 14:28517. [PMID: 39557971 PMCID: PMC11574209 DOI: 10.1038/s41598-024-78644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
The Cyprus Biobank collects biosamples, medical and lifestyle information with the aim of reaching 16,500 Cypriots aged ≥ 18-years, by year 2027, as part of a multitasked EU funded project. Volunteers are both from the general population and from disease cohorts of focused research projects, who amongst others will contribute to canvas the architecture of the Cyprus human genome and study the healthy and morbid anatomy of Cypriots. The Cyprus Biobank is a research infrastructure pillar of the biobank.cy Center of Excellence in Biobanking and Biomedical Research. Within 3-years (November 2019-October 2022), 1348 participants of the general population who represent a subset of the Cyprus Biobank recruited individuals, were enrolled in the pilot study. The study did not include individuals from separate disease-specific cohorts. Extensive information was collected from each participant, including biochemistry, complete blood count, physiological, anthropometric, socio-demographic, diet, and lifestyle characteristics. Prevalent health conditions along with medication use and family history were recorded, including 58 biomarkers based on blood and urine samples. With a systematic recruitment campaign, the Biobank is continuously increasing the number of individuals in the general population cohort and is developing separate disease cohorts of the Cypriot population. The pilot study enrolled 579 men and 769 women, aged between 18 and 85 years (median 48-years). The enrollment takes 40 min on average, including the collection of biological samples and phenotypic information. More than half (n = 733, 55%) of the participants are educated to college level or above. Statistically significant differences were found between men and women regarding their education level (p < 0.001), marital status (p = 0.01) and employment status (p < 0.001) but not their age (p = 0.29). The most prevalent medical conditions recorded are hypertension (17.2%), osteoporosis (6.9%) and diabetes (6.0%). In conclusion, the Cyprus biobanking pilot study has successfully collected extensive baseline information from enrolled participants. The Biobank will comprise a rich data resource used to examine the major risk factors leading to public health burdens and develop strategies for disease prevention.
Collapse
Affiliation(s)
- Eleni M Loizidou
- biobank.cy, Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia, Cyprus
| | - Maria Kyratzi
- biobank.cy, Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia, Cyprus
| | - Maria A Tsiarli
- biobank.cy, Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia, Cyprus
| | - Andrea C Kakouri
- biobank.cy, Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia, Cyprus
| | - Georgia Charalambidou
- biobank.cy, Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia, Cyprus
| | - Stella Antoniou
- biobank.cy, Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia, Cyprus
| | - Stylianos Pieri
- biobank.cy, Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia, Cyprus
| | - Panagiota Veloudi
- biobank.cy, Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia, Cyprus
| | - Michaela Th Mayrhofer
- Biobanking and BioMolecular Resources Research Infrastructure-European Research Infrastructure Consortium (BBMRI-ERIC), Graz, Austria
| | - Andrea Wutte
- Biobanking and BioMolecular Resources Research Infrastructure-European Research Infrastructure Consortium (BBMRI-ERIC), Graz, Austria
| | - Lukasz Kozera
- Biobanking and BioMolecular Resources Research Infrastructure-European Research Infrastructure Consortium (BBMRI-ERIC), Graz, Austria
| | - Jens Habermann
- Biobanking and BioMolecular Resources Research Infrastructure-European Research Infrastructure Consortium (BBMRI-ERIC), Graz, Austria
| | - Heimo Muller
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Karine Sargsyan
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | | | | | - Apostolos Malatras
- biobank.cy, Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia, Cyprus
| | - Gregory Papagregoriou
- biobank.cy, Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia, Cyprus
| | - Constantinos Deltas
- biobank.cy, Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia, Cyprus.
- School of Medicine, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus.
| |
Collapse
|
2
|
Navarro-López B, .Baeta M, Moreno-López O, Kleinbielen T, Raffone C, Granizo-Rodríguez E, Ferragut J, Alvarez-Gila O, Barbaro A, Picornell A, de Pancorbo E M. Y-chromosome analysis recapitulates key events of Mediterranean populations. Heliyon 2024; 10:e35329. [PMID: 39220888 PMCID: PMC11365299 DOI: 10.1016/j.heliyon.2024.e35329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The remarkable geographical situation of the Mediterranean region, located between Europe, Africa, and Asia, with numerous migratory routes, has made this area a crucible of cultures. Studying the Y-chromosome variability is a very performant tool to explore the genetic ancestry and evaluate scenarios that may explain the current Mediterranean gene pool. Here, six Mediterranean populations, including three Balearic Islands (Ibiza, Majorca, and Minorca) and three Southern Italian regions (Catanzaro, Cosenza, and Reggio di Calabria) were typed using 23 Y-STR loci and up to 39 Y-SNPs and compared to geographically targeted key reference populations to explore their genetic relationship and provide an overview of Y-chromosome variation across the Mediterranean basin. Pairwise RST genetic distances calculated with STRs markers and Y-haplogroups mirror the West to East geographic distribution of European and Asian Mediterranean populations, highlighting the North-South division of Italy, with a higher Eastern Mediterranean component in Southern Italian populations. In contrast, the African populations from the Southern coast of the Mediterranean clustered separately. Overall, these results support the notion that migrations from Magna Graecia or the Byzantine Empire, which followed similar Neolithic and post-Neolithic routes into Southern Italy, may have contributed to maintaining and/or reinforcing the Eastern Mediterranean genetic component in Southern Italian populations.
Collapse
Affiliation(s)
- B. Navarro-López
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - M. .Baeta
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - O. Moreno-López
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - T. Kleinbielen
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - C. Raffone
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - E. Granizo-Rodríguez
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - J.F. Ferragut
- Departament de Biologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) i Laboratori de Genètica, Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
| | - O. Alvarez-Gila
- Department of Medieval, Early Modern and American History, Faculty of Letters, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - A. Barbaro
- Forensic Genetics Section, Studio Indagini Mediche e Forensi (SIMEF), Reggio Calabria, Italy
| | - A. Picornell
- Departament de Biologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) i Laboratori de Genètica, Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
| | - M.M. de Pancorbo E
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| |
Collapse
|
3
|
Le Mort F, Baker JO, Chamel B, Coqueugniot H, Dutour O. Oldest evidence of tuberculosis in the Mediterranean islands: From the mainland to Cyprus. Tuberculosis (Edinb) 2023; 143S:102388. [PMID: 38012923 DOI: 10.1016/j.tube.2023.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 11/29/2023]
Abstract
Recent studies combining macroscopical observations and microCT analysis strongly suggested the diagnosis of tuberculosis for a child from the site of Khirokitia (Cyprus, 7th - early 6th millennium cal. BC), whose age at death is between 5 and 7 years. Many single primary burials were discovered at the site where the dead (MNI = 243) are buried in the same way, whatever their age. Nevertheless, the burial of this child presents a unique feature on the site (a male Ovis trophy marking the limit of the burial pit), probably indicating specific attention for this young deceased. This case is the oldest known in the Mediterranean islands and presents a particular interest from a paleoepidemiological point of view. Indeed, considering, on the one hand, the settlement pattern of the island of Cyprus by migrants from the Near East, and on the other hand, the presence of human tuberculosis in the Near East as early as about 10,500 years BP, it is very likely that the prehistoric migrants brought the disease from mainland to Cyprus.
Collapse
Affiliation(s)
- Françoise Le Mort
- Univ Lyon, Archéorient (UMR 5133 CNRS/Université Lyon 2), Maison de l'Orient et de la Méditerranée - Jean Pouilloux, 7 rue Raulin, 69365, Lyon cedex 07, France.
| | - Joseph Oussama Baker
- Univ Lyon, Archéorient (UMR 5133 CNRS/Université Lyon 2), Maison de l'Orient et de la Méditerranée - Jean Pouilloux, 7 rue Raulin, 69365, Lyon cedex 07, France; École Pratique des Hautes Études, PSL Université, 4-14 rue Ferrus, 75014, Paris, France.
| | - Bérénice Chamel
- Univ Lyon, Archéorient (UMR 5133 CNRS/Université Lyon 2), Maison de l'Orient et de la Méditerranée - Jean Pouilloux, 7 rue Raulin, 69365, Lyon cedex 07, France.
| | - Hélène Coqueugniot
- École Pratique des Hautes Études, PSL Université, 4-14 rue Ferrus, 75014, Paris, France; UMR 5199 - PACEA, Allée Geoffroy St Hilaire, CS 50023, 33615, Pessac Cedex, France.
| | - Olivier Dutour
- École Pratique des Hautes Études, PSL Université, 4-14 rue Ferrus, 75014, Paris, France; UMR 5199 - PACEA, Allée Geoffroy St Hilaire, CS 50023, 33615, Pessac Cedex, France.
| |
Collapse
|
4
|
Neocleous V, Fanis P, Toumba M, Gorka B, Kousiappa I, Tanteles GA, Iasonides M, Nicolaides NC, Christou YP, Michailidou K, Nicolaou S, Papacostas SS, Christoforidis A, Kyriakou A, Vlachakis D, Skordis N, Phylactou LA. Pathogenic and Low-Frequency Variants in Children With Central Precocious Puberty. Front Endocrinol (Lausanne) 2021; 12:745048. [PMID: 34630334 PMCID: PMC8498594 DOI: 10.3389/fendo.2021.745048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Background Central precocious puberty (CPP) due to premature activation of GnRH secretion results in early epiphyseal fusion and to a significant compromise in the achieved final adult height. Currently, few genetic determinants of children with CPP have been described. In this translational study, rare sequence variants in MKRN3, DLK1, KISS1, and KISS1R genes were investigated in patients with CPP. Methods Fifty-four index girls and two index boys with CPP were first tested by Sanger sequencing for the MKRN3 gene. All children found negative (n = 44) for the MKRN3 gene were further investigated by whole exome sequencing (WES). In the latter analysis, the status of variants in genes known to be related with pubertal timing was compared with an in-house Cypriot control cohort (n = 43). The identified rare variants were initially examined by in silico computational algorithms and confirmed by Sanger sequencing. Additionally, a genetic network for the MKRN3 gene, mimicking a holistic regulatory depiction of the crosstalk between MKRN3 and other genes was designed. Results Three previously described pathogenic MKRN3 variants located in the coding region of the gene were identified in 12 index girls with CPP. The most prevalent pathogenic MKRN3 variant p.Gly312Asp was exclusively found among the Cypriot CPP cohort, indicating a founder effect phenomenon. Seven other CPP girls harbored rare likely pathogenic upstream variants in the MKRN3. Among the 44 CPP patients submitted to WES, nine rare DLK1 variants were identified in 11 girls, two rare KISS1 variants in six girls, and two rare MAGEL2 variants in five girls. Interestingly, the frequent variant rs10407968 (p.Gly8Ter) of the KISS1R gene appeared to be less frequent in the cohort of patients with CPP. Conclusion The results of the present study confirm the importance of the MKRN3-imprinted gene in genetics of CPP and its key role in pubertal timing. Overall, the results of the present study have emphasized the importance of an approach that aligns genetics and clinical aspects, which is necessary for the management and treatment of CPP.
Collapse
Affiliation(s)
- Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Meropi Toumba
- Child Endocrine Care, Department of Pediatrics, Aretaeio Hospital, Nicosia, Cyprus
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Barbara Gorka
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Ioanna Kousiappa
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George A Tanteles
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Department of Clinical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Michalis Iasonides
- Department of Pediatrics, Iliaktida Paediatric & Adolescent Medical Centre, Limassol, Cyprus
- University of Nicosia Medical School, Nicosia, Cyprus
| | - Nicolas C Nicolaides
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Yiolanda P Christou
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Stella Nicolaou
- Division of Pediatric Endocrinology, Archbishop Makarios III Hospital, Nicosia, Cyprus
| | - Savvas S Papacostas
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- University of Nicosia Medical School, Nicosia, Cyprus
- Centre for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia, Nicosia, Cyprus
| | - Athanasios Christoforidis
- First Pediatric Department, School of Medicine, Faculty of Medical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Kyriakou
- Division of Pediatric Endocrinology, Archbishop Makarios III Hospital, Nicosia, Cyprus
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
- Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- St George's, University of London Medical School, University of Nicosia, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for specialized Pediatrics, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
5
|
Moutsouri I, Keravnou A, Manoli P, Bertoncini S, Michailidou K, Christofi V, Xenophontos S, Cariolou MA, Bashiardes E. Comparative Y-chromosome analysis among Cypriots in the context of historical events and migrations. PLoS One 2021; 16:e0255140. [PMID: 34424929 PMCID: PMC8382168 DOI: 10.1371/journal.pone.0255140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
Y-chromosome analysis provides valuable information regarding the migration patterns of male ancestors, ranging from the Paleolithic age to the modern humans. STR and SNP genotyping analysis provides data regarding the genetic and geographical ancestry of the populations studied. This study focused on the analysis of the Y-chromosome in Maronite Cypriots and Armenian Cypriots, who came to the island as a result of different historical events. The aim was to provide information on the paternal genetic ancestry of Maronites and Armenians of Cyprus and investigate any affinity with the Greek Cypriots and Turkish Cypriots of the island. Since there is limited information in the current literature, we proceeded and used 23 Y-chromosome STRs and 28 Y-chromosome SNPs to genotype 57 Maronite Cypriots and 56 Armenian Cypriots, which were then compared to data from 344 Greek Cypriots and 380 Turkish Cypriots. All samples were assigned to eight major Y-haplogroups but the most frequent haplogroup among all Cypriots is haplogroup J in the major subclade J2a-L559. The calculated pairwise genetic distances between the populations show that Armenian Cypriots are genetically closer to Greek and Turkish Cypriots compared to Maronite Cypriots. Median Joining Network analysis in 17 Y-STR haplotypes of all Cypriots assigned to J2a-L559, revealed that Cypriots share a common paternal ancestor, prior to the migration of the Armenians and Maronites to Cyprus, estimated in the Late Bronze Age and Early Iron Age.
Collapse
Affiliation(s)
- Irene Moutsouri
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Anna Keravnou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Panayiotis Manoli
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Kyriaki Michailidou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Vasilis Christofi
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Stavroulla Xenophontos
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios A. Cariolou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Evy Bashiardes
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
6
|
Drineas P, Tsetsos F, Plantinga A, Lazaridis I, Yannaki E, Razou A, Kanaki K, Michalodimitrakis M, Perez-Jimenez F, De Silvestro G, Renda MC, Stamatoyannopoulos JA, Kidd KK, Browning BL, Paschou P, Stamatoyannopoulos G. Genetic history of the population of Crete. Ann Hum Genet 2019; 83:373-388. [PMID: 31192450 PMCID: PMC6851683 DOI: 10.1111/ahg.12328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 02/10/2019] [Accepted: 05/01/2019] [Indexed: 01/10/2023]
Abstract
The medieval history of several populations often suffers from scarcity of contemporary records resulting in contradictory and sometimes biased interpretations by historians. This is the situation with the population of the island of Crete, which remained relatively undisturbed until the Middle Ages when multiple wars, invasions, and occupations by foreigners took place. Historians have considered the effects of the occupation of Crete by the Arabs (in the 9th and 10th centuries C.E.) and the Venetians (in the 13th to the 17th centuries C.E.) to the local population. To obtain insights on such effects from a genetic perspective, we studied representative samples from 17 Cretan districts using the Illumina 1 million or 2.5 million arrays and compared the Cretans to the populations of origin of the medieval conquerors and settlers. Highlights of our findings include (1) small genetic contributions from the Arab occupation to the extant Cretan population, (2) low genetic contribution of the Venetians to the extant Cretan population, and (3) evidence of a genetic relationship among the Cretans and Central, Northern, and Eastern Europeans, which could be explained by the settlement in the island of northern origin tribes during the medieval period. Our results show how the interaction between genetics and the historical record can help shed light on the historical record.
Collapse
Affiliation(s)
- Petros Drineas
- Department of Computer Science, Purdue University, West Lafayette, Indiana
| | - Fotis Tsetsos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Anna Plantinga
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Iosif Lazaridis
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Evangelia Yannaki
- Department of Hematology, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Anna Razou
- Department of Forensic Medicine, University of Crete, Heraklion, Crete, Greece
| | - Katerina Kanaki
- Department of Forensic Medicine, University of Crete, Heraklion, Crete, Greece
| | | | | | | | - Maria C Renda
- Unita di Ricerca P. Cutino, Ospedali Riunti Villa Sofia-Cervello, Palermo, Italy
| | | | - Kenneth K Kidd
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Brian L Browning
- Department of Biostatistics, University of Washington, Seattle, Washington.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington
| | - Peristera Paschou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece.,Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | | |
Collapse
|
7
|
Fanis P, Skordis N, Frangos S, Christopoulos G, Spanou-Aristidou E, Andreou E, Manoli P, Mavrommatis M, Nicolaou S, Kleanthous M, Cariolou MA, Christophidou-Anastasiadou V, Tanteles GA, Phylactou LA, Neocleous V. Multiple endocrine neoplasia 2 in Cyprus: evidence for a founder effect. J Endocrinol Invest 2018; 41:1149-1157. [PMID: 29396759 PMCID: PMC6182349 DOI: 10.1007/s40618-018-0841-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/22/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Multiple endocrine neoplasia type 2 (MEN2) affects patients with RET proto-oncogene mutations. This cohort study refers to patients who were diagnosed with familial medullary thyroid carcinoma (MTC) and underwent RET genetic testing in Cyprus between years 2002 and 2017. METHODS AND PATIENTS Forty patients underwent RET testing by Sanger sequencing of exons 10-11 and 13-16. Genotyping with STR genetic markers flanking the RET gene along with Y-chromosome genotyping and haplogroup assignment was also performed. RESULTS RET mutations were identified in 40 patients from 11 apparently unrelated Cypriot families and two non-familial sporadic cases. Nine probands (69.2%) were heterozygous for p.Cys618Arg, one (7.7%) for p.Cys634Phe, one (7.7%) for the somatic delE632-L633 and two (15.4%) for p.Met918Thr mutations. The mean age at MTC diagnosis of patients carrying p.Cys618Arg was 36.8 ± 14.2 years. The age of pheo diagnosis ranged from 26 to 43 years and appeared simultaneously with MTC in 5/36 (13.9%) cases. The high frequency of the p.Cys618Arg mutation suggested a possible ancestral mutational event. Haplotype analysis was performed in families with and without p.Cys618Arg. Six microsatellite markers covering the RET gene and neighboring regions identified one core haplotype associated with all patients carrying p.Cys618Arg mutation. CONCLUSIONS The mutation p.Cys618Arg is by far the most prevalent mutation in Cyprus followed by other reported mutations of variable clinical significance. The provided molecular evidence speculates p.Cys618Arg mutation as an ancestral mutation that has spread in Cyprus due to a possible founder effect.
Collapse
Affiliation(s)
- P Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683, Nicosia, Cyprus
| | - N Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
- St George's, University of London Medical School at the University of Nicosia, Nicosia, Cyprus
| | - S Frangos
- Nuclear Medicine Department, Bank of Cyprus Oncology Center, Nicosia, Cyprus
| | - G Christopoulos
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - E Spanou-Aristidou
- Department of Clinical Genetics, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683, Nicosia, Cyprus
| | - E Andreou
- Dasoupolis Endocrinology Center, Andrea Dimitriou Street Dasoupolis, Nicosia, Cyprus
| | - P Manoli
- Department of Cardiovascular Genetics and the Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - M Mavrommatis
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - S Nicolaou
- Division of Pediatric Endocrinology, Makarios III Hospital, Nicosia, Cyprus
| | - M Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - M A Cariolou
- Department of Cardiovascular Genetics and the Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - V Christophidou-Anastasiadou
- Department of Clinical Genetics, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683, Nicosia, Cyprus
- Department of Clinical Genetics, Makarios III Hospital, Nicosia, Cyprus
| | - G A Tanteles
- Department of Clinical Genetics, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683, Nicosia, Cyprus
| | - L A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683, Nicosia, Cyprus.
- Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| | - V Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683, Nicosia, Cyprus.
| |
Collapse
|
8
|
Grugni V, Raveane A, Mattioli F, Battaglia V, Sala C, Toniolo D, Ferretti L, Gardella R, Achilli A, Olivieri A, Torroni A, Passarino G, Semino O. Reconstructing the genetic history of Italians: new insights from a male (Y-chromosome) perspective. Ann Hum Biol 2018; 45:44-56. [PMID: 29382284 DOI: 10.1080/03014460.2017.1409801] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Due to its central and strategic position in Europe and in the Mediterranean Basin, the Italian Peninsula played a pivotal role in the first peopling of the European continent and has been a crossroad of peoples and cultures since then. AIM This study aims to gain more information on the genetic structure of modern Italian populations and to shed light on the migration/expansion events that led to their formation. SUBJECTS AND METHODS High resolution Y-chromosome variation analysis in 817 unrelated males from 10 informative areas of Italy was performed. Haplogroup frequencies and microsatellite haplotypes were used, together with available data from the literature, to evaluate Mediterranean and European inputs and date their arrivals. RESULTS Fifty-three distinct Y-chromosome lineages were identified. Their distribution is in general agreement with geography, southern populations being more differentiated than northern ones. CONCLUSIONS A complex genetic structure reflecting the multifaceted peopling pattern of the Peninsula emerged: southern populations show high similarity with those from the Middle East and Southern Balkans, while those from Northern Italy are close to populations of North-Western Europe and the Northern Balkans. Interestingly, the population of Volterra, an ancient town of Etruscan origin in Tuscany, displays a unique Y-chromosomal genetic structure.
Collapse
Affiliation(s)
- Viola Grugni
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Alessandro Raveane
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Francesca Mattioli
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Vincenza Battaglia
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Cinzia Sala
- b Divisione di Genetica e Biologia Cellulare , Istituto Scientifico San Raffaele , Milano , Italy
| | - Daniela Toniolo
- b Divisione di Genetica e Biologia Cellulare , Istituto Scientifico San Raffaele , Milano , Italy
| | - Luca Ferretti
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Rita Gardella
- c Dipartimento di Medicina Molecolare e Traslazionale , Università di Brescia , Brescia , Italy
| | - Alessandro Achilli
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Anna Olivieri
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Antonio Torroni
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Giuseppe Passarino
- d Dipartimento di Biologia, Ecologia e Scienze della Terra , Università della Calabria , Arcavacata di Rende , Cosenza , Italy
| | - Ornella Semino
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| |
Collapse
|
9
|
Prehistoric migrations through the Mediterranean basin shaped Corsican Y-chromosome diversity. PLoS One 2018; 13:e0200641. [PMID: 30067762 PMCID: PMC6070208 DOI: 10.1371/journal.pone.0200641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/30/2018] [Indexed: 02/05/2023] Open
Abstract
The rarity of human remains makes it difficult to apprehend the first settlements in Corsica. It is admitted that initial colonization could have occurred during the Mesolithic period when glaciations would have shortened the open water travel distance from the continent. Mesolithic sites in Corsica show relatively short and irregular occupation, and suggest discontinuous settling of very mobile groups probably traveling by boat. Previous genetic studies on Corsican populations showed internal differentiation and a relatively poor genetic relationship with continental populations, despite intense historical contacts, however local Mesolithic-based genetic inheritance has never been properly estimated. The aim of this study was to explore the Corsican genetic profile of Y-chromosomes in order to trace the genetic signatures back to the first migrations to Corsica. This study included 321 samples from men throughout Corsica; samples from Provence and Tuscany were added to the cohort. All samples were typed for 92 Y-SNPs, and Y-STRs were also analyzed. Results revealed highly differentiated haplogroup patterns among Corsican populations. Haplogroup G had the highest frequency in Corsica, mostly displaying a unique Y-STR profile. When compared with Provence and Tuscany, Corsican populations displayed limited genetic proximity. Corsican populations present a remarkable Y-chromosome genetic mixture. Although the Corsican Y-chromosome profile shows similarities with both Provence and to a lesser extent Tuscany, it mainly displays its own specificity. This study confirms the high level of genetic diversity in Corsican populations and backs genetic contributions from prehistoric migrations associated with the Mesolithic, Neolithic and Metal Age eras, rather than from historical movements to Corsica, respectively attested by frequencies and TMRCA of haplogroups G2a-L91 and G2a-P15, J2a-M241 and J2-DYS445 = 6, R1b-U152 and R1b-U106. These results suggest that marine routes to reach the Corsican coast in many different points may have led to such a genetic heterogeneity.
Collapse
|
10
|
A finely resolved phylogeny of Y chromosome Hg J illuminates the processes of Phoenician and Greek colonizations in the Mediterranean. Sci Rep 2018; 8:7465. [PMID: 29748665 PMCID: PMC5945646 DOI: 10.1038/s41598-018-25912-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/25/2018] [Indexed: 11/15/2022] Open
Abstract
In order to improve the phylogeography of the male-specific genetic traces of Greek and Phoenician colonizations on the Northern coasts of the Mediterranean, we performed a geographically structured sampling of seven subclades of haplogroup J in Turkey, Greece and Italy. We resequenced 4.4 Mb of Y-chromosome in 58 subjects, obtaining 1079 high quality variants. We did not find a preferential coalescence of Turkish samples to ancestral nodes, contradicting the simplistic idea of a dispersal and radiation of Hg J as a whole from the Middle East. Upon calibration with an ancient Hg J chromosome, we confirmed that signs of Holocenic Hg J radiations are subtle and date mainly to the Bronze Age. We pinpointed seven variants which could potentially unveil star clusters of sequences, indicative of local expansions. By directly genotyping these variants in Hg J carriers and complementing with published resequenced chromosomes (893 subjects), we provide strong temporal and distributional evidence for markers of the Greek settlement of Magna Graecia (J2a-L397) and Phoenician migrations (rs760148062). Our work generated a minimal but robust list of evolutionarily stable markers to elucidate the demographic dynamics and spatial domains of male-mediated movements across and around the Mediterranean, in the last 6,000 years.
Collapse
|
11
|
Manco L, Albuquerque J, Sousa MF, Martiniano R, de Oliveira RC, Marques S, Gomes V, Amorim A, Alvarez L, Prata MJ. The Eastern side of the Westernmost Europeans: Insights from subclades within Y-chromosome haplogroup J-M304. Am J Hum Biol 2017; 30. [PMID: 29193490 DOI: 10.1002/ajhb.23082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/22/2017] [Accepted: 11/05/2017] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES We examined internal lineages and haplotype diversity in Portuguese samples belonging to J-M304 to improve the spatial and temporal understanding of the introduction of this haplogroup in Iberia, using the available knowledge about the phylogeography of its main branches, J1-M267 and J2-M172. METHODS A total of 110 males of Portuguese descent were analyzed for 17 Y-chromosome bi-allelic markers and seven Y-chromosome short tandem repeats (Y-STR) loci. RESULTS Among J1-M267 individuals (n = 36), five different sub-haplogroups were identified, with the most common being J1a2b2-L147.1 (∼72%), which encompassed the majority of representatives of the J1a2b-P58 subclade. One sample belonged to the rare J1a1-M365.1 lineage and presented a core Y-STR haplotype consistent with the Iberian settlement during the fifth century by the Alans, a people of Iranian heritage. The analysis of J2-M172 Portuguese males (n = 74) enabled the detection of the two main subclades at very dissimilar frequencies, J2a-M410 (∼80%) and J2b-M12 (∼20%), among which the most common branches were J2a1(xJ2a1b,h)-L26 (22.9%), J2a1b(xJ2a1b1)-M67 (20.3%), J2a1h-L24 (27%), and J2b2-M241 (20.3%). CONCLUSIONS While previous inferences based on modern haplogroup J Y-chromosomes implicated a main Neolithic dissemination, here we propose a later arrival of J lineages into Iberia using a combination of novel Portuguese Y-chromosomal data and recent evidence from ancient DNA. Our analysis suggests that a substantial tranche of J1-M267 lineages was likely carried into the Iberian Peninsula as a consequence of the trans-Mediterranean contacts during the first millennium BC, while most of the J2-M172 lineages may be associated with post-Neolithic population movements within Europe.
Collapse
Affiliation(s)
- Licínio Manco
- Research Centre for Anthropology and Health (CIAS), University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Joana Albuquerque
- Research Centre for Anthropology and Health (CIAS), University of Coimbra, Coimbra, Portugal
| | - Maria Francisca Sousa
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Rui Martiniano
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambs CB10 1SA, United Kingdom
| | | | - Sofia Marques
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Verónica Gomes
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - António Amorim
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences of the University of Porto (FCUP), Porto, Portugal
| | - Luís Alvarez
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Maria João Prata
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences of the University of Porto (FCUP), Porto, Portugal
| |
Collapse
|
12
|
A glimpse at the intricate mosaic of ethnicities from Mesopotamia: Paternal lineages of the Northern Iraqi Arabs, Kurds, Syriacs, Turkmens and Yazidis. PLoS One 2017; 12:e0187408. [PMID: 29099847 PMCID: PMC5669434 DOI: 10.1371/journal.pone.0187408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/09/2017] [Indexed: 01/22/2023] Open
Abstract
Widely considered as one of the cradles of human civilization, Mesopotamia is largely situated in the Republic of Iraq, which is also the birthplace of the Sumerian, Akkadian, Assyrian and Babylonian civilizations. These lands were subsequently ruled by the Persians, Greeks, Romans, Arabs, Mongolians, Ottomans and finally British prior to the independence. As a direct consequence of this rich history, the contemporary Iraqi population comprises a true mosaic of different ethnicities, which includes Arabs, Kurds, Turkmens, Assyrians, and Yazidis among others. As such, the genetics of the contemporary Iraqi populations are of anthropological and forensic interest. In an effort to contribute to a better understanding of the genetic basis of this ethnic diversity, a total of 500 samples were collected from Northern Iraqi volunteers belonging to five major ethnic groups, namely: Arabs (n = 102), Kurds (n = 104), Turkmens (n = 102), Yazidis (n = 106) and Syriacs (n = 86). 17-loci Y-STR analyses were carried out using the AmpFlSTR Yfiler system, and subsequently in silico haplogroup assignments were made to gain insights from a molecular anthropology perspective. Systematic comparisons of the paternal lineages of these five Northern Iraqi ethnic groups, not only among themselves but also in the context of the larger genetic landscape of the Near East and beyond, were then made through the use of two different genetic distance metric measures and the associated data visualization methods. Taken together, results from the current study suggested the presence of intricate Y-chromosomal lineage patterns among the five ethic groups analyzed, wherein both interconnectivity and independent microvariation were observed in parallel, albeit in a differential manner. Notably, the novel Y-STR data on Turkmens, Syriacs and Yazidis from Northern Iraq constitute the first of its kind in the literature. Data presented herein is expected to contribute to further population and forensic investigations in Northern Iraq in particular and the Near East in general.
Collapse
|
13
|
Heraclides A, Bashiardes E, Fernández-Domínguez E, Bertoncini S, Chimonas M, Christofi V, King J, Budowle B, Manoli P, Cariolou MA. Y-chromosomal analysis of Greek Cypriots reveals a primarily common pre-Ottoman paternal ancestry with Turkish Cypriots. PLoS One 2017; 12:e0179474. [PMID: 28622394 PMCID: PMC5473566 DOI: 10.1371/journal.pone.0179474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/31/2017] [Indexed: 12/15/2022] Open
Abstract
Genetics can provide invaluable information on the ancestry of the current inhabitants of Cyprus. A Y-chromosome analysis was performed to (i) determine paternal ancestry among the Greek Cypriot (GCy) community in the context of the Central and Eastern Mediterranean and the Near East; and (ii) identify genetic similarities and differences between Greek Cypriots (GCy) and Turkish Cypriots (TCy). Our haplotype-based analysis has revealed that GCy and TCy patrilineages derive primarily from a single gene pool and show very close genetic affinity (low genetic differentiation) to Calabrian Italian and Lebanese patrilineages. In terms of more recent (past millennium) ancestry, as indicated by Y-haplotype sharing, GCy and TCy share much more haplotypes between them than with any surrounding population (7-8% of total haplotypes shared), while TCy also share around 3% of haplotypes with mainland Turks, and to a lesser extent with North Africans. In terms of Y-haplogroup frequencies, again GCy and TCy show very similar distributions, with the predominant haplogroups in both being J2a-M410, E-M78, and G2-P287. Overall, GCy also have a similar Y-haplogroup distribution to non-Turkic Anatolian and Southwest Caucasian populations, as well as Cretan Greeks. TCy show a slight shift towards Turkish populations, due to the presence of Eastern Eurasian (some of which of possible Ottoman origin) Y-haplogroups. Overall, the Y-chromosome analysis performed, using both Y-STR haplotype and binary Y-haplogroup data puts Cypriot in the middle of a genetic continuum stretching from the Levant to Southeast Europe and reveals that despite some differences in haplotype sharing and haplogroup structure, Greek Cypriots and Turkish Cypriots share primarily a common pre-Ottoman paternal ancestry.
Collapse
Affiliation(s)
- Alexandros Heraclides
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia, Cyprus
| | - Evy Bashiardes
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | - Marios Chimonas
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Vasilis Christofi
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Jonathan King
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Bruce Budowle
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Panayiotis Manoli
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios A. Cariolou
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
14
|
Voskarides K. Y chromosome and cardiovascular risk: What are we missing? Atherosclerosis 2017; 259:97-98. [PMID: 28279402 DOI: 10.1016/j.atherosclerosis.2017.02.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 11/16/2022]
|
15
|
Genetic differentiation between upland and lowland populations shapes the Y-chromosomal landscape of West Asia. Hum Genet 2017; 136:437-450. [DOI: 10.1007/s00439-017-1770-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 02/20/2017] [Indexed: 12/22/2022]
|
16
|
Type 2 Diabetes Susceptibility in the Greek-Cypriot Population: Replication of Associations with TCF7L2, FTO, HHEX, SLC30A8 and IGF2BP2 Polymorphisms. Genes (Basel) 2017; 8:genes8010016. [PMID: 28067832 PMCID: PMC5295011 DOI: 10.3390/genes8010016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/13/2016] [Accepted: 12/30/2016] [Indexed: 01/17/2023] Open
Abstract
Type 2 diabetes (T2D) has been the subject of numerous genetic studies in recent years which revealed associations of the disease with a large number of susceptibility loci. We hereby initiate the evaluation of T2D susceptibility loci in the Greek-Cypriot population by performing a replication case-control study. One thousand and eighteen individuals (528 T2D patients, 490 controls) were genotyped at 21 T2D susceptibility loci, using the allelic discrimination method. Statistically significant associations of T2D with five of the tested single nucleotide polymorphisms (SNPs) (TCF7L2 rs7901695, FTO rs8050136, HHEX rs5015480, SLC30A8 rs13266634 and IGF2BP2 rs4402960) were observed in this study population. Furthermore, 14 of the tested SNPs had odds ratios (ORs) in the same direction as the previously published studies, suggesting that these variants can potentially be used in the Greek-Cypriot population for predictive testing of T2D. In conclusion, our findings expand the genetic assessment of T2D susceptibility loci and reconfirm five of the worldwide established loci in a distinct, relatively small, newly investigated population.
Collapse
|