1
|
Xu H, Jiang Y, Wen Y, Liu Q, Du HG, Jin X. Identification of copper death-associated molecular clusters and immunological profiles for lumbar disc herniation based on the machine learning. Sci Rep 2024; 14:19294. [PMID: 39164344 PMCID: PMC11336120 DOI: 10.1038/s41598-024-69700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Lumbar disc herniation (LDH) is a common clinical spinal disorder, yet its etiology remains unclear. We aimed to explore the role of cuproptosis-related genes (CRGs) and identify potential diagnostic biomarkers. Our analysis involved interrogating the GSE124272 and GSE150408 datasets for differential gene expression profiles associated with CRGs and immune characteristics. Molecular clustering was performed on LDH samples, followed by expression and immune infiltration analyses. Using the WGCNA algorithm, specific genes within CRG clusters were identified. After selecting the most predictive genes from the optimal model, four machine learning models were constructed and validated. This study identified nine CRGs associated with copper-regulated cell death. Two copper-containing molecular clusters linked to death were detected in LDH samples. Elevated expression and immune infiltration levels were found in LDH patients, particularly in CRG cluster C2. Utilizing XGB, five genes were identified for constructing a diagnostic model, achieving an area under the curve values of 0.715. In conclusion, this research provides valuable insights into the association between LDH and copper-regulated cell death, alongside proposing a promising predictive model.
Collapse
Affiliation(s)
- Haipeng Xu
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310000, China
| | - Yaheng Jiang
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310000, China
| | - Ya Wen
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310000, China
| | - Qianqian Liu
- Respiratory Department, The First People's Hospital of Lanzhou, Lanzhou, Gansu, China
| | - Hong-Gen Du
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310000, China.
| | - Xin Jin
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310000, China.
| |
Collapse
|
2
|
Gao J, Sterling E, Hankin R, Sikal A, Yao Y. Therapeutics Targeting Skeletal Muscle in Amyotrophic Lateral Sclerosis. Biomolecules 2024; 14:878. [PMID: 39062592 PMCID: PMC11275039 DOI: 10.3390/biom14070878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neuromuscular disease characterized by progressive motor neuron degeneration, neuromuscular junction dismantling, and muscle wasting. The pathological and therapeutic studies of ALS have long been neurocentric. However, recent insights have highlighted the significance of peripheral tissue, particularly skeletal muscle, in disease pathology and treatment. This is evidenced by restricted ALS-like muscle atrophy, which can retrogradely induce neuromuscular junction and motor neuron degeneration. Moreover, therapeutics targeting skeletal muscles can effectively decelerate disease progression by modulating muscle satellite cells for muscle repair, suppressing inflammation, and promoting the recovery or regeneration of the neuromuscular junction. This review summarizes and discusses therapeutic strategies targeting skeletal muscles for ALS treatment. It aims to provide a comprehensive reference for the development of novel therapeutics targeting skeletal muscles, potentially ameliorating the progression of ALS.
Collapse
Affiliation(s)
| | | | | | | | - Yao Yao
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Science, University of Georgia, Athens, GA 30602, USA (E.S.)
| |
Collapse
|
3
|
Rodríguez MP, Cabello-Verrugio C. Soluble Factors Associated with Denervation-induced Skeletal Muscle Atrophy. Curr Protein Pept Sci 2024; 25:189-199. [PMID: 38018212 DOI: 10.2174/0113892037189827231018092036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 11/30/2023]
Abstract
Skeletal muscle tissue has the critical function of mechanical support protecting the body. In addition, its functions are strongly influenced by the balanced synthesis and degradation processes of structural and regulatory proteins. The inhibition of protein synthesis and/or the activation of catabolism generally determines a pathological state or condition called muscle atrophy, a reduction in muscle mass that results in partial or total loss of function. It has been established that many pathophysiological conditions can cause a decrease in muscle mass. Skeletal muscle innervation involves stable and functional neural interactions with muscles via neuromuscular junctions and is essential for maintaining normal muscle structure and function. Loss of motor innervation induces rapid skeletal muscle fiber degeneration with activation of atrophy-related signaling and subsequent disassembly of sarcomeres, altering normal muscle function. After denervation, an inflammation stage is characterized by the increased expression of pro-inflammatory cytokines that determine muscle atrophy. In this review, we highlighted the impact of some soluble factors on the development of muscle atrophy by denervation.
Collapse
Affiliation(s)
- Marianny Portal Rodríguez
- Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
4
|
Zhang M, Lin Y, Chen R, Yu H, Li Y, Chen M, Dou C, Yin P, Zhang L, Tang P. Ghost messages: cell death signals spread. Cell Commun Signal 2023; 21:6. [PMID: 36624476 PMCID: PMC9830882 DOI: 10.1186/s12964-022-01004-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023] Open
Abstract
Cell death is a mystery in various forms. Whichever type of cell death, this is always accompanied by active or passive molecules release. The recent years marked the renaissance of the study of these molecules showing they can signal to and communicate with recipient cells and regulate physio- or pathological events. This review summarizes the defined forms of messages cells could spread while dying, the effects of these signals on the target tissue/cells, and how these types of communications regulate physio- or pathological processes. By doing so, this review hopes to identify major unresolved questions in the field, formulate new hypothesis worthy of further investigation, and when possible, provide references for the search of novel diagnostic/therapeutics agents. Video abstract.
Collapse
Affiliation(s)
- Mingming Zhang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Yuan Lin
- grid.412463.60000 0004 1762 6325Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang People’s Republic of China
| | - Ruijing Chen
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Haikuan Yu
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Yi Li
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Ming Chen
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Ce Dou
- grid.410570.70000 0004 1760 6682Department of Orthopedics, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Pengbin Yin
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Licheng Zhang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Peifu Tang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| |
Collapse
|
5
|
TNF-α Suppresses Apelin Receptor Expression in Mouse Quadriceps Femoris-Derived Cells. Curr Issues Mol Biol 2022; 44:3146-3155. [PMID: 35877441 PMCID: PMC9315797 DOI: 10.3390/cimb44070217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Expression of the apelin receptor, APJ, in skeletal muscle (SM) is known to decrease with age, but the underlying mechanism remains unclear. Increased tumor necrosis factor (TNF)-α levels are observed in SM with age and are associated with muscle atrophy. To investigate the possible interconnection between TNF-α elevation and APJ reduction with aging, we investigated the effect of TNF-α on APJ expression in cells derived from the quadriceps femoris of C57BL/6J mice. Expression of Tnfa and Apj in the quadriceps femoris was compared between 4- (young) and 24-month-old (old) C57BL/6J mice (n = 10 each) using qPCR. Additionally, APJ-positive cells and TNF-α protein were analyzed by flow cytometry and Western blotting, respectively. Further, quadricep-derived cells were exposed to 0 (control) or 25 ng/mL TNF-α, and the effect on Apj expression was examined by qRT-PCR. Apj expression and the ratio of APJ-positive cells among quadricep cells were significantly lower in old compared to young mice. In contrast, levels of Tnfa mRNA and TNF-α protein were significantly elevated in old compared to young mice. Exposing young and old derived quadricep cells to TNF-α for 8 and 24 h caused Apj levels to significantly decrease. TNF-α suppresses APJ expression in muscle cells in vitro. The increase in TNF-α observed in SM with age may induce a decrease in APJ expression.
Collapse
|
6
|
Larouche JA, Fraczek PM, Kurpiers SJ, Yang BA, Davis C, Castor-Macias JA, Sabin K, Anderson S, Harrer J, Hall M, Brooks SV, Jang YC, Willett N, Shea LD, Aguilar CA. Neutrophil and natural killer cell imbalances prevent muscle stem cell-mediated regeneration following murine volumetric muscle loss. Proc Natl Acad Sci U S A 2022; 119:e2111445119. [PMID: 35377804 PMCID: PMC9169656 DOI: 10.1073/pnas.2111445119] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
Volumetric muscle loss (VML) overwhelms the innate regenerative capacity of mammalian skeletal muscle (SkM), leading to numerous disabilities and reduced quality of life. Immune cells are critical responders to muscle injury and guide tissue resident stem cell– and progenitor-mediated myogenic repair. However, how immune cell infiltration and intercellular communication networks with muscle stem cells are altered following VML and drive pathological outcomes remains underexplored. Herein, we contrast the cellular and molecular mechanisms of VML injuries that result in the fibrotic degeneration or regeneration of SkM. Following degenerative VML injuries, we observed the heightened infiltration of natural killer (NK) cells as well as the persistence of neutrophils beyond 2 wk postinjury. Functional validation of NK cells revealed an antagonistic role in neutrophil accumulation in part via inducing apoptosis and CCR1-mediated chemotaxis. The persistent infiltration of neutrophils in degenerative VML injuries was found to contribute to impairments in muscle stem cell regenerative function, which was also attenuated by transforming growth factor beta 1 (TGFβ1). Blocking TGFβ signaling reduced neutrophil accumulation and fibrosis and improved muscle-specific force. Collectively, these results enhance our understanding of immune cell–stem cell cross talk that drives regenerative dysfunction and provide further insight into possible avenues for fibrotic therapy exploration.
Collapse
Affiliation(s)
- Jacqueline A. Larouche
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Paula M. Fraczek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Sarah J. Kurpiers
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Benjamin A. Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Carol Davis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Jesus A. Castor-Macias
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Kaitlyn Sabin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Shannon Anderson
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Julia Harrer
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Matthew Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Susan V. Brooks
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Young C. Jang
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Nick Willett
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Carlos A. Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
7
|
Parker E, Khayrullin A, Kent A, Mendhe B, Youssef El Baradie KB, Yu K, Pihkala J, Liu Y, McGee-Lawrence M, Johnson M, Chen J, Hamrick M. Hindlimb Immobilization Increases IL-1β and Cdkn2a Expression in Skeletal Muscle Fibro-Adipogenic Progenitor Cells: A Link Between Senescence and Muscle Disuse Atrophy. Front Cell Dev Biol 2022; 9:790437. [PMID: 35047502 PMCID: PMC8762295 DOI: 10.3389/fcell.2021.790437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022] Open
Abstract
Loss of muscle mass and strength contributes to decreased independence and an increased risk for morbidity and mortality. A better understanding of the cellular and molecular mechanisms underlying muscle atrophy therefore has significant clinical and therapeutic implications. Fibro-adipogenic progenitors (FAPs) are a skeletal muscle resident stem cell population that have recently been shown to play vital roles in muscle regeneration and muscle hypertrophy; however, the role that these cells play in muscle disuse atrophy is not well understood. We investigated the role of FAPs in disuse atrophy in vivo utilizing a 2-week single hindlimb immobilization model. RNA-seq was performed on FAPs isolated from the immobilized and non-immobilized limb. The RNAseq data show that IL-1β is significantly upregulated in FAPs following 2 weeks of immobilization, which we confirmed using droplet-digital PCR (ddPCR). We further validated the RNA-seq and ddPCR data from muscle in situ using RNAscope technology. IL-1β is recognized as a key component of the senescence-associated secretory phenotype, or SASP. We then tested the hypothesis that FAPs from the immobilized limb would show elevated senescence measured by cyclin-dependent kinase inhibitor 2A (Cdkn2a) expression as a senescence marker. The ddPCR and RNAscope data both revealed increased Cdkn2a expression in FAPs with immobilization. These data suggest that the gene expression profile of FAPs is significantly altered with disuse, and that disuse itself may drive senescence in FAPs further contributing to muscle atrophy.
Collapse
Affiliation(s)
- Emily Parker
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Andrew Khayrullin
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Andrew Kent
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Bharati Mendhe
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Khairat Bahgat Youssef El Baradie
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Faculty of Science, Tanta University, Tanta, Egypt
| | - Kanglun Yu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Jeanene Pihkala
- Flow Cytometry Core Facility Research Laboratory Director, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Meghan McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Maribeth Johnson
- Division of Biostatistics and Data Science, DPHS, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Jie Chen
- Division of Biostatistics and Data Science, DPHS, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Mark Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
8
|
Therapeutic Benefit of Galectin-1: Beyond Membrane Repair, a Multifaceted Approach to LGMD2B. Cells 2021; 10:cells10113210. [PMID: 34831431 PMCID: PMC8621416 DOI: 10.3390/cells10113210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Two of the main pathologies characterizing dysferlinopathies are disrupted muscle membrane repair and chronic inflammation, which lead to symptoms of muscle weakness and wasting. Here, we used recombinant human Galectin-1 (rHsGal-1) as a therapeutic for LGMD2B mouse and human models. Various redox and multimerization states of Gal-1 show that rHsGal-1 is the most effective form in both increasing muscle repair and decreasing inflammation, due to its monomer-dimer equilibrium. Dose-response testing shows an effective 25-fold safety profile between 0.54 and 13.5 mg/kg rHsGal-1 in Bla/J mice. Mice treated weekly with rHsGal-1 showed downregulation of canonical NF-κB inflammation markers, decreased muscle fat deposition, upregulated anti-inflammatory cytokines, increased membrane repair, and increased functional movement compared to non-treated mice. Gal-1 treatment also resulted in a positive self-upregulation loop of increased endogenous Gal-1 expression independent of NF-κB activation. A similar reduction in disease pathologies in patient-derived human cells demonstrates the therapeutic potential of Gal-1 in LGMD2B patients.
Collapse
|
9
|
Wang HY, Chen XC, Yan ZH, Tu F, He T, Gopinath SCB, Rui XH, Cao FT. Human neutrophil peptide 1 promotes immune sterilization in vivo by reducing the virulence of multidrug-resistant Klebsiella pneumoniae and increasing the ability of macrophages. Biotechnol Appl Biochem 2021; 69:2091-2101. [PMID: 34664729 DOI: 10.1002/bab.2270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022]
Abstract
By studying the expression in patients and cell modeling in vitro, antimicrobial peptides for Klebsiella were screened. Killing curve and membrane permeability experiments are used to study the antibacterial effect of antimicrobial peptides in vitro. Cytotoxicity-related indicators including lipopolysaccharide (LPS), capsule polysaccharide (CPS), and outer membrane protein expression were measured. Intranasal inoculation of pneumoconiosis was used to construct a mouse infection model, and the survival rate and cytokine expression level were tested. Human neutrophil peptide 1 (HNP-1) showed a significant antibacterial effect, which improved the permeability of the outer membrane of K. pneumoniae. Moreover, HNP-1 decreased LPS, CPS content, and outer membrane proteins. K. pneumoniae infection decreased antimicrobial peptide, oxidative stress, and autophagy-related genes, while HNP-1 increased these genes. After coculture with macrophages, the endocytosis of macrophages is enhanced and the bacterial load is greater in the K. pneumoniae + peptide group. Besides, higher levels of pp38 and pp65 in the K. pneumoniae + peptide group. HNP-1 rescued the cytotoxicity induced by K. pneumoniae. The survival rate is significantly improved after K. pneumoniae is treated by HNP-1. All cytokines in the peptide group were significantly higher. HNP-1 promotes immune sterilization by reducing the virulence of multidrug-resistant K. pneumoniae and increasing the ability of macrophages.
Collapse
Affiliation(s)
- Hui-Yun Wang
- Department of Laboratory Medicine, Jiangyin Traditional Hospital, Wuxi 214005, China
| | - Xiao-Chun Chen
- Department of Laboratory Medicine, Taizhou Second People's Hospital, Jiangyan District, Taizhou City, China
| | - Zhi-Han Yan
- Hepatology Department, Wuxi Fifth People's Hospital, Wuxi, China
| | - Fan Tu
- Department of Laboratory Medicine, Wuxi Fifth People's Hospital, Wuxi, China
| | - Tian He
- Department of Laboratory Medicine, Wuxi Fifth People's Hospital, Wuxi, China
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Xiao-Hong Rui
- Department of Laboratory Medicine, Wuxi Fifth People's Hospital, Wuxi, China
| | - Fu-Tao Cao
- Emergency Department, Wuxi Second People's Hospital, Wuxi, China
| |
Collapse
|
10
|
Schilling BK, Baker JS, Komatsu C, Marra KG. Intramuscular injection of skeletal muscle derived extracellular matrix mitigates denervation atrophy after sciatic nerve transection. J Tissue Eng 2021; 12:20417314211032491. [PMID: 34567507 PMCID: PMC8458676 DOI: 10.1177/20417314211032491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Peripheral nerve injury and the associated muscle atrophy has an estimated annual healthcare burden of $150 billion dollars in the United States. When considering the total annual health-related spending of $3.5 trillion, these pathologies alone occupy about 4.3%. The prevalence of these ailments is rooted, at least in part, in the lack of specific preventative therapies that can be administered to muscle while it remains in the denervated state. To address this, skeletal muscle-derived ECM (skECM) was injected directly in denervated muscle with postoperative analysis performed at 20 weeks, including gait analysis, force production, cytokine quantification, and histological analysis. skECM was shown to be superior against non-injected muscle controls showing no difference in contraction force to uninjured muscle at 20 weeks. Cytokines IL-1β, IL-18, and IFNγ appeared to mediate regeneration with statistical regression implicating these cytokines as strong predictors of muscle contraction, showing significant linear correlation.
Collapse
Affiliation(s)
- Benjamin K Schilling
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jocelyn S Baker
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chiaki Komatsu
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kacey G Marra
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Xing T, Luo D, Zhao X, Xu X, Li J, Zhang L, Gao F. Enhanced cytokine expression and upregulation of inflammatory signaling pathways in broiler chickens affected by wooden breast myopathy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:279-286. [PMID: 32623748 DOI: 10.1002/jsfa.10641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Wooden breast (WB) myopathy in broiler chickens is a growing challenge for the poultry industry. Previous multi-omic data have implied that the pathogenesis of WB is associated with the activation of immune system and inflammatory response. However, the intricate mechanisms are not fully understood. This study was therefore conducted to systematically investigate the morphology, expression of cytokines as well as the underlying signaling pathways regulating the inflammatory response in pectoralis major (PM) muscle of WB myopathic broilers. RESULTS wHistopathological changes, increased plasma creatine kinase and lactate dehydrogenase activities, elevated myeloperoxidase activity and overproduction of nitric oxide in muscle indicated the enhancement of muscle damage and inflammation in WB broilers. The messenger RNA (mRNA) expressions of inflammatory cytokines were dysregulated in PM muscle and contents of interleukin (IL)-1β, IL-8 and tumor necrosis factor-α were increased in serum of WB myopathic broilers, indicating this myopathy was associated with immune disorder and systemic inflammation response. Additionally, toll-like receptor (TLR) levels were upregulated, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway was activated and the mRNA expression levels of downstream inflammatory mediators were enhanced in PM muscle of WB myopathy affected birds. CONCLUSION The results indicated an immune disorder and a systemic inflammation response in WB myopathic broilers, which might be related to a synergetic effect of TLRs and NF-κB pathway. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Dan Luo
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Xue Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Xinglian Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
12
|
Nishikoba N, Kumagai K, Kanmura S, Nakamura Y, Ono M, Eguchi H, Kamibayashiyama T, Oda K, Mawatari S, Tanoue S, Hashimoto S, Tsubouchi H, Ido A. HGF-MET Signaling Shifts M1 Macrophages Toward an M2-Like Phenotype Through PI3K-Mediated Induction of Arginase-1 Expression. Front Immunol 2020; 11:2135. [PMID: 32983173 PMCID: PMC7492554 DOI: 10.3389/fimmu.2020.02135] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/06/2020] [Indexed: 01/01/2023] Open
Abstract
Backgrounds and Aims: Hepatocyte Growth Factor (HGF)-MET signaling is known to promote biological functions such as cell survival, cell motility, and cell proliferation. However, it is unknown if HGF-MET alters the macrophage phenotype. In this study, we aimed to study the effects of HGF-MET signaling on the M1 macrophage phenotype. Methods and Materials: Bone marrow-derived macrophages (BMDMs) isolated from mice were either polarized to an M1 phenotype by IFN-γ and LPS treatment or to an M2 phenotype by IL-4 treatment. Changes in M1 or M2 markers induced by HGF-MET signaling were evaluated. Mechanisms responsible for alternations in the macrophage phenotype and intracellular metabolism were analyzed. Results: c-Met was expressed especially in M1 macrophages polarized by treatment with IFN-γ and LPS. In M1 macrophages, HGF-MET signaling induced the expression of Arg-1 mRNA and secretion of IL-10 and TGF-β1 and downregulated the mRNA expression of iNOS, TNF-α, and IL-6. In addition, activation of the PI3K pathway and inactivation of NFκB were also observed in M1 macrophages treated with HGF. The increased Arg-1 expression and IL-10 secretion were abrogated by PI3K inhibition, whereas, no changes were observed in TNF-α and IL-6 expression. The inactivation of NFκB was found to be independent of the PI3K pathway. HGF-MET signaling shifted the M1 macrophages to an M2-like phenotype, mainly through PI3K-mediated induction of Arg-1 expression. Finally, HGF-MET signaling also shifted the M1 macrophage intracellular metabolism toward an M2 phenotype, especially with respect to fatty acid metabolism. Conclusion: Our results suggested that HGF treatment not only promotes regeneration in epithelial cells, but also leads to tissue repair by altering M1 macrophages to an M2-like phenotype.
Collapse
Affiliation(s)
- Nao Nishikoba
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kotaro Kumagai
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shuji Kanmura
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuko Nakamura
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mayumi Ono
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiromi Eguchi
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomomi Kamibayashiyama
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kohei Oda
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Seiichi Mawatari
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shiroh Tanoue
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shinichi Hashimoto
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hirohito Tsubouchi
- Department of Gastroenterology and Hepatology, Kagoshima City Hospital, Kagoshima, Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
13
|
eATP/P2X7R Axis: An Orchestrated Pathway Triggering Inflammasome Activation in Muscle Diseases. Int J Mol Sci 2020; 21:ijms21175963. [PMID: 32825102 PMCID: PMC7504480 DOI: 10.3390/ijms21175963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
In muscle ATP is primarily known for its function as an energy source and as a mediator of the "excitation-transcription" process, which guarantees muscle plasticity in response to environmental stimuli. When quickly released in massive concentrations in the extracellular space as in presence of muscle membrane damage, ATP acts as a damage-associated molecular pattern molecule (DAMP). In experimental murine models of muscular dystrophies characterized by membrane instability, blockade of eATP/P2X7 receptor (R) purinergic signaling delayed the progression of the dystrophic phenotype dampening the local inflammatory response and inducing Foxp3+ T Regulatory lymphocytes. These discoveries highlighted the relevance of ATP as a harbinger of immune-tissue damage in muscular genetic diseases. Given the interactions between the immune system and muscle regeneration, the comprehension of ATP/purinerigic pathway articulated organization in muscle cells has become of extreme interest. This review explores ATP release, metabolism, feedback control and cross-talk with members of muscle inflammasome in the context of muscular dystrophies.
Collapse
|
14
|
Archacka K, Bem J, Brzoska E, Czerwinska AM, Grabowska I, Kasprzycka P, Hoinkis D, Siennicka K, Pojda Z, Bernas P, Binkowski R, Jastrzebska K, Kupiec A, Malesza M, Michalczewska E, Soszynska M, Ilach K, Streminska W, Ciemerych MA. Beneficial Effect of IL-4 and SDF-1 on Myogenic Potential of Mouse and Human Adipose Tissue-Derived Stromal Cells. Cells 2020; 9:cells9061479. [PMID: 32560483 PMCID: PMC7349575 DOI: 10.3390/cells9061479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Under physiological conditions skeletal muscle regeneration depends on the satellite cells. After injury these cells become activated, proliferate, and differentiate into myofibers reconstructing damaged tissue. Under pathological conditions satellite cells are not sufficient to support regeneration. For this reason, other cells are sought to be used in cell therapies, and different factors are tested as a tool to improve the regenerative potential of such cells. Many studies are conducted using animal cells, omitting the necessity to learn about human cells and compare them to animal ones. Here, we analyze and compare the impact of IL-4 and SDF-1, factors chosen by us on the basis of their ability to support myogenic differentiation and cell migration, at mouse and human adipose tissue-derived stromal cells (ADSCs). Importantly, we documented that mouse and human ADSCs differ in certain reactions to IL-4 and SDF-1. In general, the selected factors impacted transcriptome of ADSCs and improved migration and fusion ability of cells in vitro. In vivo, after transplantation into injured muscles, mouse ADSCs more eagerly participated in new myofiber formation than the human ones. However, regardless of the origin, ADSCs alleviated immune response and supported muscle reconstruction, and cytokine treatment enhanced these effects. Thus, we documented that the presence of ADSCs improves skeletal muscle regeneration and this influence could be increased by cell pretreatment with IL-4 and SDF-1.
Collapse
Affiliation(s)
- Karolina Archacka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Joanna Bem
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Edyta Brzoska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Areta M. Czerwinska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Iwona Grabowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Paulina Kasprzycka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Dzesika Hoinkis
- Intelliseq Ltd., Stanisława Konarskiego 42/13, 30-046 Krakow, Poland;
| | - Katarzyna Siennicka
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, W.K. Roentgena 5, 02-781 Warsaw, Poland; (K.S.); (Z.P.)
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, W.K. Roentgena 5, 02-781 Warsaw, Poland; (K.S.); (Z.P.)
| | - Patrycja Bernas
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Robert Binkowski
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Kinga Jastrzebska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Aleksandra Kupiec
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Malgorzata Malesza
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Emilia Michalczewska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Marta Soszynska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Katarzyna Ilach
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Wladyslawa Streminska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Maria A. Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
- Correspondence: ; Tel.: +48-22-55-42-216
| |
Collapse
|
15
|
Grabowska I, Zimowska M, Maciejewska K, Jablonska Z, Bazga A, Ozieblo M, Streminska W, Bem J, Brzoska E, Ciemerych MA. Adipose Tissue-Derived Stromal Cells in Matrigel Impacts the Regeneration of Severely Damaged Skeletal Muscles. Int J Mol Sci 2019; 20:E3313. [PMID: 31284492 PMCID: PMC6651806 DOI: 10.3390/ijms20133313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
In case of large injuries of skeletal muscles the pool of endogenous stem cells, i.e., satellite cells, might be not sufficient to secure proper regeneration. Such failure in reconstruction is often associated with loss of muscle mass and excessive formation of connective tissue. Therapies aiming to improve skeletal muscle regeneration and prevent fibrosis may rely on the transplantation of different types of stem cell. Among such cells are adipose tissue-derived stromal cells (ADSCs) which are relatively easy to isolate, culture, and manipulate. Our study aimed to verify applicability of ADSCs in the therapies of severely injured skeletal muscles. We tested whether 3D structures obtained from Matrigel populated with ADSCs and transplanted to regenerating mouse gastrocnemius muscles could improve the regeneration. In addition, ADSCs used in this study were pretreated with myoblasts-conditioned medium or anti-TGFβ antibody, i.e., the factors modifying their ability to proliferate, migrate, or differentiate. Analyses performed one week after injury allowed us to show the impact of 3D cultured control and pretreated ADSCs at muscle mass and structure, as well as fibrosis development immune response of the injured muscle.
Collapse
Affiliation(s)
- Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Malgorzata Zimowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Karolina Maciejewska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Zuzanna Jablonska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Bazga
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Michal Ozieblo
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Joanna Bem
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
16
|
Fibroadipogenic progenitors are responsible for muscle loss in limb girdle muscular dystrophy 2B. Nat Commun 2019; 10:2430. [PMID: 31160583 PMCID: PMC6547715 DOI: 10.1038/s41467-019-10438-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/10/2019] [Indexed: 12/30/2022] Open
Abstract
Muscle loss due to fibrotic or adipogenic replacement of myofibers is common in muscle diseases and muscle-resident fibro/adipogenic precursors (FAPs) are implicated in this process. While FAP-mediated muscle fibrosis is widely studied in muscle diseases, the role of FAPs in adipogenic muscle loss is not well understood. Adipogenic muscle loss is a feature of limb girdle muscular dystrophy 2B (LGMD2B) - a disease caused by mutations in dysferlin. Here we show that FAPs cause the adipogenic loss of dysferlin deficient muscle. Progressive accumulation of Annexin A2 (AnxA2) in the myofiber matrix causes FAP differentiation into adipocytes. Lack of AnxA2 prevents FAP adipogenesis, protecting against adipogenic loss of dysferlinopathic muscle while exogenous AnxA2 enhances muscle loss. Pharmacological inhibition of FAP adipogenesis arrests adipogenic replacement and degeneration of dysferlin-deficient muscle. These results demonstrate the pathogenic role of FAPs in LGMD2B and establish these cells as therapeutic targets to ameliorate muscle loss in patients.
Collapse
|
17
|
Tazawa R, Uchida K, Fujimaki H, Miyagi M, Inoue G, Sekiguchi H, Murata K, Takata K, Kawakubo A, Takaso M. Elevated leptin levels induce inflammation through IL-6 in skeletal muscle of aged female rats. BMC Musculoskelet Disord 2019; 20:199. [PMID: 31077169 PMCID: PMC6511122 DOI: 10.1186/s12891-019-2581-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/22/2019] [Indexed: 01/06/2023] Open
Abstract
Background Chronic inflammation with aging contributes to sarcopenia. Previous studies have suggested that the accumulation of adipose tissue in skeletal muscle, referred to as intermuscular adipose tissue (IMAT), increases with age and is associated with inflammation. However, the mechanism governing ectopic inflammation in skeletal muscle due to aging is not fully understood. Leptin, an adipocytokine derived from adipose tissue, is an important mediator of inflammatory processes. We examined changes in leptin levels with age and whether leptin contributes to ectopic inflammation. Methods To evaluate ectopic inflammation in skeletal muscle, we measured alterations to the expression of inflammatory cytokine genes (Il1b, Il6, and Tnfa) and muscle break down-related gene (MuRF1 and Atrogin1) in the quadricep muscles of young (10 weeks) and aged (48 weeks) female rats using quantitative reverse-transcription polymerase chain reaction (Q-RT-PCR). Histological examination was performed to identify the extent of IMAT. Leptin mRNA and leptin protein expression were examined using Q-RT-PCR and enzyme-linked immunosorbent assay, respectively. The effect of leptin on the mRNA expression of Il1b, Il6, and Tnfa in quadricep muscle-derived cells was also examined by stimulating the cells with 0 (control), 1, or 10 μg/mL rat recombinant leptin using Q-RT-PCR. Results Aged rats had significantly higher Il6, MuRF1, and Atrogin1 but not Il1b and Tnfa, expression and greater levels of IMAT in their quadricep muscles than young rats. Aged rats also had significantly higher leptin expression and leptin protein concentration in their quadricep muscles than young rats. The addition of exogenous leptin to quadricep muscle-derived cells significantly increased the gene expression of Il1b and Il6 but not Tnfa. Conclusions Our results suggest that elevated leptin levels due to aging cause ectopic inflammation through IL-6 in the skeletal muscle of aged rats. Electronic supplementary material The online version of this article (10.1186/s12891-019-2581-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryo Tazawa
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan.
| | - Hisako Fujimaki
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Hiroyuki Sekiguchi
- Shonan University of Medical Sciences Research Institute, Nishikubo 500, Chigasaki City, Kanagawa, 253-0083, Japan
| | - Kosuke Murata
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Ken Takata
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Ayumu Kawakubo
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| |
Collapse
|
18
|
Abstract
The immune response to acute muscle damage is important for normal repair. However, in chronic diseases such as many muscular dystrophies, the immune response can amplify pathology and play a major role in determining disease severity. Muscular dystrophies are inheritable diseases that vary tremendously in severity, but share the progressive loss of muscle mass and function that can be debilitating and lethal. Mutations in diverse genes cause muscular dystrophy, including genes that encode proteins that maintain membrane strength, participate in membrane repair, or are components of the extracellular matrix or the nuclear envelope. In this article, we explore the hypothesis that an important feature of many muscular dystrophies is an immune response adapted to acute, infrequent muscle damage that is misapplied in the context of chronic injury. We discuss the involvement of the immune system in the most common muscular dystrophy, Duchenne muscular dystrophy, and show that the immune system influences muscle death and fibrosis as disease progresses. We then present information on immune cell function in other muscular dystrophies and show that for many muscular dystrophies, release of cytosolic proteins into the extracellular space may provide an initial signal, leading to an immune response that is typically dominated by macrophages, neutrophils, helper T-lymphocytes, and cytotoxic T-lymphocytes. Although those features are similar in many muscular dystrophies, each muscular dystrophy shows distinguishing features in the magnitude and type of inflammatory response. These differences indicate that there are disease-specific immunomodulatory molecules that determine response to muscle cell damage caused by diverse genetic mutations. © 2018 American Physiological Society. Compr Physiol 8:1313-1356, 2018.
Collapse
Affiliation(s)
- James G. Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Steven S. Welc
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| |
Collapse
|
19
|
Lehmann S, Esch E, Hartmann P, Goswami A, Nikolin S, Weis J, Beyer C, Johann S. Expression profile of pattern recognition receptors in skeletal muscle of SOD1 (G93A) amyotrophic lateral sclerosis (ALS) mice and sporadic ALS patients. Neuropathol Appl Neurobiol 2018; 44:606-627. [PMID: 29575052 DOI: 10.1111/nan.12483] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 02/20/2018] [Indexed: 12/14/2022]
Abstract
AIMS Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motoneurons and progressive muscle wasting. Inflammatory processes, mediated by non-neuronal cells, such as glial cells, are known to contribute to disease progression. Inflammasomes consist of pattern recognition receptors (PRRs), apoptosis-associated speck-like protein (ASC) and caspase 1 and are essential for interleukin (IL) processing and a rapid immune response after tissue damage. Recently, we described inflammasome activation in the spinal cord of ALS patients and in SOD1(G93A) ALS mice. Since pathological changes in the skeletal muscle are early events in ALS, we hypothesized that PRRs might be abnormally expressed in muscle fibre degeneration. METHODS Western blot analysis, real-time PCR and immunohistochemistry were performed with muscle tissue from presymptomatic and early-symptomatic male SOD1(G93A) mice and with muscle biopsies of control and sporadic ALS (sALS) patients. Analysed PRRs include nucleotide-binding oligomerization domain-like (NOD-like) receptor protein 1 (NLRP1), NLR protein 3 (NLRP3), NLR family CARD domain-containing 4 (NLRC4) and absent in melanoma 2. Additionally, expression levels of ASC, caspase 1, interleukin 1 beta (IL1β) and interleukin 18 (IL18) were evaluated. RESULTS Expression of PRRs and ASC was detected in murine and human tissue. The PRR NLRC4, caspase 1 and IL1β were significantly elevated in denervated muscle of SOD1(G93A) mice and sALS patients. Furthermore, levels of caspase 1 and IL1β were already increased in presymptomatic animals. CONCLUSION Our findings suggest that increased inflammasome activation may be involved in skeletal muscle pathology in ALS. Furthermore, elevated levels of NLRC4, caspase 1 and IL1β reflect early changes in the skeletal muscle and may contribute to the denervation process.
Collapse
Affiliation(s)
- S Lehmann
- Institute of Neuroanatomy, Medical Clinic RWTH Aachen University, Aachen, Germany.,Institute Molecular and Cellular Anatomy (MOCA), Medical Clinic RWTH Aachen University, Aachen, Germany
| | - E Esch
- Institute of Neuroanatomy, Medical Clinic RWTH Aachen University, Aachen, Germany
| | - P Hartmann
- Institute of Neuroanatomy, Medical Clinic RWTH Aachen University, Aachen, Germany
| | - A Goswami
- Institute of Neuropathology, Medical Clinic RWTH Aachen University, Aachen, Germany
| | - S Nikolin
- Institute of Neuropathology, Medical Clinic RWTH Aachen University, Aachen, Germany
| | - J Weis
- Institute of Neuropathology, Medical Clinic RWTH Aachen University, Aachen, Germany
| | - C Beyer
- Institute of Neuroanatomy, Medical Clinic RWTH Aachen University, Aachen, Germany.,JARA - Translational Brain Medicine, Aachen, Germany
| | - S Johann
- Institute of Neuroanatomy, Medical Clinic RWTH Aachen University, Aachen, Germany.,Institute of Anatomy II, Medical Faculty Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
20
|
Baek JH, Many GM, Evesson FJ, Kelley VR. Dysferlinopathy Promotes an Intramuscle Expansion of Macrophages with a Cyto-Destructive Phenotype. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1245-1257. [PMID: 28412297 DOI: 10.1016/j.ajpath.2017.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/14/2017] [Indexed: 01/05/2023]
Abstract
Dysferlinopathies are a group of muscular dystrophies resulting from a genetic deficiency in Dysf. Macrophages, highly plastic cells that mediate tissue repair and destruction, are prominent within dystrophic skeletal muscles of dysferlinopathy patients. We hypothesized that Dysf-deficient muscle promotes recruitment, proliferation, and skewing of macrophages toward a cyto-destructive phenotype in dysferlinopathy. To track macrophage dynamics in dysferlinopathy, we adoptively transferred enhanced green fluorescent protein-labeled monocytes into Dysf-deficient BLA/J mice with age-related (2 to 10 months) muscle disease and Dysf-intact (C57BL/6 [B6]) mice. We detected an age- and disease-related increase in monocyte recruitment into Dysf-deficient muscles. Moreover, macrophages recruited into muscle proliferated locally and were skewed toward a cyto-destructive phenotype. By comparing Dysf-deficient and -intact monocytes, our data showed that Dysf in muscle, but not in macrophages, mediate intramuscle macrophage recruitment and proliferation. To further elucidate macrophage mechanisms related to dysferlinopathy, we investigated in vitro macrophage-myogenic cell interactions and found that Dysf-deficient muscle i) promotes macrophage proliferation, ii) skews macrophages toward a cyto-destructive phenotype, and iii) is more vulnerable to macrophage-mediated apoptosis. Taken together, our data suggest that the loss of Dysf expression in muscle, not macrophages, promotes the intramuscle expansion of cyto-destructive macrophages likely to contribute to dysferlinopathy. Identifying pathways within the Dysf-deficient muscle milieu that regulate cyto-destructive macrophages will potentially uncover therapeutic strategies for dysferlinopathies.
Collapse
Affiliation(s)
- Jea-Hyun Baek
- Laboratory of Molecular Autoimmune Disease, Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Gina M Many
- Laboratory of Molecular Autoimmune Disease, Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Frances J Evesson
- Department of Cell Biology, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Vicki R Kelley
- Laboratory of Molecular Autoimmune Disease, Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
21
|
Potent pro-inflammatory and pro-fibrotic molecules, osteopontin and galectin-3, are not major disease modulators of laminin α2 chain-deficient muscular dystrophy. Sci Rep 2017; 7:44059. [PMID: 28281577 PMCID: PMC5345027 DOI: 10.1038/srep44059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/01/2017] [Indexed: 01/21/2023] Open
Abstract
A large number of human diseases are caused by chronic tissue injury with fibrosis potentially leading to organ failure. There is a need for more effective anti-fibrotic therapies. Congenital muscular dystrophy type 1A (MDC1A) is a devastating form of muscular dystrophy caused by laminin α2 chain-deficiency. It is characterized with early inflammation and build-up of fibrotic lesions, both in patients and MDC1A mouse models (e.g. dy3K/dy3K). Despite the enormous impact of inflammation on tissue remodelling in disease, the inflammatory response in MDC1A has been poorly described. Consequently, a comprehensive understanding of secondary mechanisms (impaired regeneration, enhanced fibrosis) leading to deterioration of muscle phenotype in MDC1A is missing. We have monitored inflammatory processes in dy3K/dy3K muscle and created mice deficient in laminin α2 chain and osteopontin or galectin-3, two pro-inflammatory and pro-fibrotic molecules drastically increased in dystrophic muscle. Surprisingly, deletion of osteopontin worsened the phenotype of dy3K/dy3K mice and loss of galectin-3 did not reduce muscle pathology. Our results indicate that osteopontin could even be a beneficial immunomodulator in MDC1A. This knowledge is essential for the design of future therapeutic interventions for muscular dystrophies that aim at targeting inflammation, especially that osteopontin inhibition has been suggested for Duchenne muscular dystrophy therapy.
Collapse
|
22
|
Cárdenas AM, González-Jamett AM, Cea LA, Bevilacqua JA, Caviedes P. Dysferlin function in skeletal muscle: Possible pathological mechanisms and therapeutical targets in dysferlinopathies. Exp Neurol 2016; 283:246-54. [PMID: 27349407 DOI: 10.1016/j.expneurol.2016.06.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 12/18/2022]
Abstract
Mutations in the dysferlin gene are linked to a group of muscular dystrophies known as dysferlinopathies. These myopathies are characterized by progressive atrophy. Studies in muscle tissue from dysferlinopathy patients or dysferlin-deficient mice point out its importance in membrane repair. However, expression of dysferlin homologous proteins that restore sarcolemma repair function in dysferlinopathy animal models fail to arrest muscle wasting, therefore suggesting that dysferlin plays other critical roles in muscle function. In the present review, we discuss dysferlin functions in the skeletal muscle, as well as pathological mechanisms related to dysferlin mutations. Particular focus is presented related the effect of dysferlin on cell membrane related function, which affect its repair, vesicle trafficking, as well as Ca(2+) homeostasis. Such mechanisms could provide accessible targets for pharmacological therapies.
Collapse
Affiliation(s)
- Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| | - Arlek M González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Luis A Cea
- Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Jorge A Bevilacqua
- Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Pablo Caviedes
- Programa de Farmacología Molecular y Clinica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|