1
|
Tan A, Younis AZ, Evans A, Creighton JV, Coveny C, Boocock DJ, Sale C, Lavery GG, Coutts AS, Doig CL. PARP1 mediated PARylation contributes to myogenic progression and glucocorticoid transcriptional response. Cell Death Discov 2023; 9:133. [PMID: 37087471 PMCID: PMC10121420 DOI: 10.1038/s41420-023-01420-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/24/2023] Open
Abstract
The ADP-ribosyltransferase, PARP1 enzymatically generates and applies the post-translational modification, ADP-Ribose (ADPR). PARP1 roles in genome maintenance are well described, but recent work highlights roles in many fundamental processes including cellular identity and energy homeostasis. Herein, we show in both mouse and human skeletal muscle cells that PARP1-mediated PARylation is a regulator of the myogenic program and the muscle transcriptional response to steroid hormones. Chemical PARP1 modulation impacts the expression of major myocellular proteins, including troponins, key in dictating muscle contractile force. Whilst PARP1 in absence of DNA damage is often assumed to be basally inactive, we show PARylation to be acutely sensitive to extracellular glucose concentrations and the steroid hormone class, glucocorticoids which exert considerable authority over muscle tissue mass. Specifically, we find during myogenesis, a transient and significant rise in PAR. This early-stage differentiation event, if blocked with PARP1 inhibition, reduced the abundance of important muscle proteins in the fully differentiated myotubes. This suggests that PAR targets during early-stage differentiation are central to the proper development of the muscle contractile unit. We also show that reduced PARP1 in myoblasts impacts a variety of metabolic pathways in line with the recorded actions of glucocorticoids. Currently, as both regulators of myogenesis and muscle mass loss, glucocorticoids represent a clinical conundrum. Our work goes on to identify that PARP1 influences transcriptional activation by glucocorticoids of a subset of genes critical to human skeletal muscle pathology. These genes may therefore signify a regulatory battery of targets through which selective glucocorticoid modulation could be achieved. Collectively, our data provide clear links between PARP1-mediated PARylation and skeletal muscle homeostatic mechanisms crucial to tissue mass maintenance and endocrine response.
Collapse
Affiliation(s)
- Arnold Tan
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Awais Z Younis
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Alexander Evans
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Jade V Creighton
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Clare Coveny
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - David J Boocock
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Craig Sale
- Institute of Sport, Manchester Metropolitan University, Manchester, M1 7EL, UK
| | - Gareth G Lavery
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Amanda S Coutts
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Craig L Doig
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
2
|
Cassar-Malek I, Pomiès L, de la Foye A, Tournayre J, Boby C, Hocquette JF. Transcriptome profiling reveals stress-responsive gene networks in cattle muscles. PeerJ 2022; 10:e13150. [PMID: 35411255 PMCID: PMC8994496 DOI: 10.7717/peerj.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 01/12/2023] Open
Abstract
In meat-producing animals, preslaughter operations (e.g., transportation, mixing unfamiliar animals, food and water deprivation) may be a source of stress with detrimental effects on meat quality. The objective of this work was to study the effect of emotional and physical stress by comparing the transcriptomes of two muscles (M. longissimus thoracis, LT and M. semitendinosus, ST) in Normand cows exposed to stress (n = 16) vs. cows handled with limited stress (n = 16). Using a microarray, we showed that exposure to stress resulted in differentially expressed genes (DEGs) in both muscles (62 DEGs in LT and 32 DEGs in ST, of which eight were common transcription factors (TFs)). Promoter analysis of the DEGs showed that 25 cis transcriptional modules were overrepresented, of which nine were detected in both muscles. Molecular interaction networks of the DEGs targeted by the most represented cis modules helped identify common regulators and common targets involved in the response to stress. They provided elements showing that the transcriptional response to stress is likely to (i) be controlled by regulators of energy metabolism, factors involved in the response to hypoxia, and inflammatory cytokines; and (ii) initiate metabolic processes, angiogenesis, corticosteroid response, immune system processes, and satellite cell activation/quiescence. The results of this study demonstrate that exposure to stress induced a core response to stress in both muscles, including changes in the expression of TFs. These factors could relay the physiological adaptive response of cattle muscles to cope with emotional and physical stress. The study provides information to further understand the consequences of these molecular processes on meat quality and find strategies to attenuate them.
Collapse
Affiliation(s)
- Isabelle Cassar-Malek
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Lise Pomiès
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
- Université de Toulouse, INRAE, UR MIAT, Castanet-Tolosan, France
| | - Anne de la Foye
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Jérémy Tournayre
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Céline Boby
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Jean-François Hocquette
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| |
Collapse
|
3
|
AlSudais H, Rajgara R, Saleh A, Wiper-Bergeron N. C/EBPβ promotes the expression of atrophy-inducing factors by tumours and is a central regulator of cancer cachexia. J Cachexia Sarcopenia Muscle 2022; 13:743-757. [PMID: 35014202 PMCID: PMC8818591 DOI: 10.1002/jcsm.12909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor whose high expression in human cancers is associated with tumour aggressiveness and poor outcomes. Most advanced cancer patients will develop cachexia, characterized by loss of skeletal muscle mass. In response to secreted factors from cachexia-inducing tumours, C/EBPβ is stimulated in muscle, leading to both myofibre atrophy and the inhibition of muscle regeneration. Involved in the regulation of immune responses, C/EBPβ induces the expression of many secreted factors, including cytokines. Because tumour-secreted factors drive cachexia and aggressive tumours have higher expression of C/EBPβ, we examined a potential role for C/EBPβ in the expression of tumour-derived cachexia-inducing factors. METHODS We used gain-of-function and loss-of-function approaches in vitro and in vivo to evaluate the role of tumour C/EBPβ expression on the secretion of cachexia-inducing factors. RESULTS We report that C/EBPβ overexpression up-regulates the expression of 260 secreted protein genes, resulting in a secretome that inhibits myogenic differentiation (-31%, P < 0.05) and myotube maturation [-38% (fusion index) and -25% (myotube diameter), P < 0.05]. We find that knockdown of C/EBPβ in cachexia-inducing Lewis lung carcinoma cells restores myogenic differentiation (+25%, P < 0.0001) and myotube diameter (+90%, P < 0.0001) in conditioned medium experiments and, in vivo, prevents muscle wasting (-51% for small myofibres vs. controls, P < 0.01; +140% for large myofibres, P < 0.01). Conversely, overexpression of C/EBPβ in non-cachectic tumours converts their secretome into a cachexia-inducing one, resulting in reduced myotube diameter (-41%, P < 0.0001, EL4 model) and inhibition of differentiation in culture (-26%, P < 0.01, EL4 model) and muscle wasting in vivo (+98% small fibres, P < 0.001; -76% large fibres, P < 0.001). Comparison of the differently expressed transcripts coding for secreted proteins in C/EBPβ-overexpressing myoblasts with the secretome from 27 different types of human cancers revealed ~18% similarity between C/EBPβ-regulated secreted proteins and those secreted by highly cachectic tumours (brain, pancreatic, and stomach cancers). At the protein level, we identified 16 novel secreted factors that are present in human cancer secretomes and are up-regulated by C/EBPβ. Of these, we tested the effect of three factors (SERPINF1, TNFRSF11B, and CD93) on myotubes and found that all had atrophic potential (-33 to -36% for myotube diameter, P < 0.01). CONCLUSIONS We find that C/EBPβ is necessary and sufficient to induce the secretion of cachexia-inducing factors by cancer cells and loss of C/EBPβ in tumours attenuates muscle atrophy in an animal model of cancer cachexia. Our findings establish C/EBPβ as a central regulator of cancer cachexia and an important therapeutic target.
Collapse
Affiliation(s)
- Hamood AlSudais
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Rashida Rajgara
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Aisha Saleh
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Staunton CA, Owen ED, Hemmings K, Vasilaki A, McArdle A, Barrett-Jolley R, Jackson MJ. Skeletal muscle transcriptomics identifies common pathways in nerve crush injury and ageing. Skelet Muscle 2022; 12:3. [PMID: 35093178 PMCID: PMC8800362 DOI: 10.1186/s13395-021-00283-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
Motor unit remodelling involving repeated denervation and re-innervation occurs throughout life. The efficiency of this process declines with age contributing to neuromuscular deficits. This study investigated differentially expressed genes (DEG) in muscle following peroneal nerve crush to model motor unit remodelling in C57BL/6 J mice. Muscle RNA was isolated at 3 days post-crush, RNA libraries were generated using poly-A selection, sequenced and analysed using gene ontology and pathway tools. Three hundred thirty-four DEG were found in quiescent muscle from (26mnth) old compared with (4-6mnth) adult mice and these same DEG were present in muscle from adult mice following nerve crush. Peroneal crush induced 7133 DEG in muscles of adult and 699 DEG in muscles from old mice, although only one DEG (ZCCHC17) was found when directly comparing nerve-crushed muscles from old and adult mice. This analysis revealed key differences in muscle responses which may underlie the diminished ability of old mice to repair following nerve injury.
Collapse
Affiliation(s)
- C A Staunton
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - E D Owen
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - K Hemmings
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - A Vasilaki
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - A McArdle
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - R Barrett-Jolley
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - M J Jackson
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
5
|
AlSudais H, Wiper-Bergeron N. From quiescence to repair: C/EBPβ as a regulator of muscle stem cell function in health and disease. FEBS J 2021; 289:6518-6530. [PMID: 34854237 DOI: 10.1111/febs.16307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/21/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
Abstract
CCAAT/Enhancer Binding protein beta (C/EBPβ) is a transcriptional regulator involved in numerous physiological processes. Herein, we describe a role for C/EBPβ as a regulator of skeletal muscle stem cell function. In particular, C/EBPβ is expressed in muscle stem cells in healthy muscle where it inhibits myogenic differentiation. Downregulation of C/EBPβ expression at the protein and transcriptional level allows for differentiation. Persistence of C/EBPβ promotes stem cell self-renewal and C/EBPβ expression is required for mitotic quiescence in this cell population. As a critical regulator of skeletal muscle homeostasis, C/EBPβ expression is stimulated in pathological conditions such as cancer cachexia, which perturbs muscle regeneration and promotes myofiber atrophy in the context of systemic inflammation. C/EBPβ is also an important regulator of cytokine expression and immune response genes, a mechanism by which it can influence muscle stem cell function. In this viewpoint, we describe a role for C/EBPβ in muscle stem cells and propose a functional intersection between C/EBPβ and NF-kB action in the regulation of cancer cachexia.
Collapse
Affiliation(s)
- Hamood AlSudais
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada
| |
Collapse
|
6
|
Lala-Tabbert N, AlSudais H, Marchildon F, Fu D, Wiper-Bergeron N. CCAAT/enhancer-binding protein beta promotes muscle stem cell quiescence through regulation of quiescence-associated genes. Stem Cells 2020; 39:345-357. [PMID: 33326659 DOI: 10.1002/stem.3319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
Regeneration of skeletal muscle depends on resident muscle stem cells called satellite cells that in healthy, uninjured muscle remain quiescent (noncycling). After activation and expansion of satellite cells postinjury, satellite cell numbers return to uninjured levels and return to mitotic quiescence. Here, we show that the transcription factor CCAAT/enhancer-binding protein beta (C/EBPβ) is required to maintain quiescence of satellite cells in uninjured muscle. We show that C/EBPβ is expressed in quiescent satellite cells in vivo and upregulated in noncycling myoblasts in vitro. Loss of C/EBPβ in satellite cells promotes their premature exit from quiescence resulting in spontaneous activation and differentiation of the stem cell pool. Forced expression of C/EBPβ in myoblasts inhibits proliferation by upregulation of 28 quiescence-associated genes. Furthermore, we find that caveolin-1 is a direct transcriptional target of C/EBPβ and is required for cell cycle exit in muscle satellite cells expressing C/EBPβ. The induction of mitotic quiescence is considered necessary for the long-term maintenance of adult stem cell populations with dysregulation driving increased differentiation of progenitors and depletion of the stem cell pool. Our findings place C/EBPβ as an important transcriptional regulator of muscle satellite cell quiescence.
Collapse
Affiliation(s)
- Neena Lala-Tabbert
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Hamood AlSudais
- Graduate Program in Cellular and Molecular Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - François Marchildon
- Graduate Program in Cellular and Molecular Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York, USA
| | - Dechen Fu
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Tian Y, Li G, Shen J, Tao Z, Chen L, Zeng T, Lu L. Molecular cloning, characterisation, and expression patterns of pigeon CCAAT/enhancer binding protein-α and -β genes. Br Poult Sci 2019; 60:347-356. [PMID: 31064204 DOI: 10.1080/00071668.2019.1614530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. CCAAT/enhancer binding proteins (C/EBPs), as a family of transcription factors, consists of six functionally and structurally related proteins which share a conserved basic leucine zipper (bZIP) DNA-binding domain. The aim of this study was to clone the full-length coding sequences (CDS) of C/EBP-α and -β genes, and determine the abundance of these two genes in various tissues of white king pigeon (C. livia). 2. The complete cDNA sequences of C/EBP-α and -β genes were cloned from pigeons by using PCR combined with rapid amplification of cDNA ends (RACE). The sequences were bioinformatically analysed, and the tissue distribution determined by quantitative real-time RT-PCR (qRT-PCR). 3. The results showed that the full-length cDNA sequences of pigeon C/EBP-α and -β genes were 2,807bp and 1,778bp, respectively. The open reading frames of C/EBP-α (978 bp) and -β (987bp) encoded 325 amino acids and 328 amino acids, respectively. The pigeon C/EBP-α and C/EBP-β proteins were predicted to have a conserved basic leucine zipper (bZIP) domain, which is a common structure feature of the C/EBP family. Multiple sequence alignments indicated that pigeon C/EBP-α and -β shared more than 90% amino-acid identity with their corresponding homologues in other avian species. Phylogenetic analysis revealed that these two proteins were highly conserved across different species and evolutionary processes. QRT-PCR results indicated that the pigeon C/EBP-α and -β mRNA transcripts were expressed in all investigated organs. The mRNA expression levels of pigeon C/EBP-α in descending order, were in spleen, heart, liver, lung, kidney and muscle. The pigeon C/EBP-β gene had the most abundant expression in lung, followed by the kidney, with minimal expression detected in muscle. 4. This study investigated the full-length cDNA sequences, genetic characteristics and tissue distribution of pigeon C/EBP-α and -β genes and found that they may have functions in various tissues of pigeon. This provides a foundation for further study for regulatory mechanisms of these two genes in birds.
Collapse
Affiliation(s)
- Y Tian
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China.,b Key Laboratory of Information Traceability for Agricultural Products , Ministry of Agriculture of China , Hangzhou , China
| | - G Li
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China.,b Key Laboratory of Information Traceability for Agricultural Products , Ministry of Agriculture of China , Hangzhou , China
| | - J Shen
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China
| | - Z Tao
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China
| | - L Chen
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China
| | - T Zeng
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China.,b Key Laboratory of Information Traceability for Agricultural Products , Ministry of Agriculture of China , Hangzhou , China
| | - L Lu
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China.,b Key Laboratory of Information Traceability for Agricultural Products , Ministry of Agriculture of China , Hangzhou , China
| |
Collapse
|
8
|
McQueen C, Hughes GL, Pownall ME. Skeletal muscle differentiation drives a dramatic downregulation of RNA polymerase III activity and differential expression of Polr3g isoforms. Dev Biol 2019; 454:74-84. [PMID: 31173763 DOI: 10.1016/j.ydbio.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/09/2019] [Accepted: 06/03/2019] [Indexed: 12/27/2022]
Abstract
Gene regulatory networks underpinning skeletal muscle determination and differentiation have been extensively investigated, providing molecular insights into how cell lineages are established during development. These studies have exclusively focused on the transcriptome downstream of RNA polymerase II (Pol II). RNA polymerase III (Pol III) drives the production of tRNAs and other small RNAs essential for the flow of genetic information from gene to protein and we have found that a specific isoform of a subunit unique to Pol III is expressed early in the myogenic lineage. This points to the possibility that additional regulatory networks exist to control the production of Pol III transcripts during skeletal muscle differentiation. We describe the differential expression of Polr3g and its alternate isoform Polr3gL during embryonic development and using a custom tRNA microarray, we demonstrate their distinct activity on the synthesis of tRNA isoacceptors. We show that Pol III dependent transcripts are dramatically down-regulated during the differentiation of skeletal muscle, as are mRNAs coding for Pol III associated proteins Brf1 and Brf2, while Polr3gL is up-regulated alongside contractile protein genes. Forcing Polr3g expression in this context results in a partial reversal of myogenic differentiation.
Collapse
Affiliation(s)
- Caitlin McQueen
- Biology Department, University of York, York, YO10 5DD, United Kingdom
| | - Gideon L Hughes
- Biology Department, University of York, York, YO10 5DD, United Kingdom
| | - Mary E Pownall
- Biology Department, University of York, York, YO10 5DD, United Kingdom.
| |
Collapse
|
9
|
AlSudais H, Lala-Tabbert N, Wiper-Bergeron N. CCAAT/Enhancer Binding Protein β inhibits myogenic differentiation via ID3. Sci Rep 2018; 8:16613. [PMID: 30413755 PMCID: PMC6226455 DOI: 10.1038/s41598-018-34871-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/18/2018] [Indexed: 12/04/2022] Open
Abstract
Myogenesis is regulated by the coordinated expression of muscle regulatory factors, a family of transcription factors that includes MYOD, MYF5, myogenin and MRF4. Muscle regulatory factors are basic helix-loop-helix transcription factors that heterodimerize with E proteins to bind the regulatory regions of target genes. Their activity can be inhibited by members of the Inhibitor of DNA binding and differentiation (ID) family, which bind E-proteins with high affinity, thereby preventing muscle regulatory factor-dependent transcriptional responses. CCAAT/Enhancer Binding protein beta (C/EBPβ) is a transcription factor expressed in myogenic precursor cells that acts to inhibit myogenic differentiation, though the mechanism remains poorly understood. We identify Id3 as a novel C/EBPβ target gene that inhibits myogenic differentiation. Overexpression of C/EBPβ stimulates Id3 mRNA and protein expression, and is required for C/EBPβ-mediated inhibition of myogenic differentiation. Misexpression of C/EBPβ in myogenic precursors, such as in models of cancer cachexia, prevents the differentiation of myogenic precursors and we show that loss of Id3 rescues differentiation under these conditions, suggesting that the stimulation of Id3 expression by C/EBPβ is an important mechanism by which C/EBPβ inhibits myogenic differentiation.
Collapse
Affiliation(s)
- Hamood AlSudais
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| | - Neena Lala-Tabbert
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.
| |
Collapse
|
10
|
Andrich DE, Ou Y, Melbouci L, Leduc-Gaudet JP, Auclair N, Mercier J, Secco B, Tomaz LM, Gouspillou G, Danialou G, Comtois AS, St-Pierre DH. Altered Lipid Metabolism Impairs Skeletal Muscle Force in Young Rats Submitted to a Short-Term High-Fat Diet. Front Physiol 2018; 9:1327. [PMID: 30356919 PMCID: PMC6190893 DOI: 10.3389/fphys.2018.01327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Obesity and ensuing disorders are increasingly prevalent in young populations. Prolonged exposure to high-fat diets (HFD) and excessive lipid accumulation were recently suggested to impair skeletal muscle functions in rodents. We aimed to determine the effects of a short-term HFD on skeletal muscle function in young rats. Young male Wistar rats (100–125 g) were fed HFD or a regular chow diet (RCD) for 14 days. Specific force, resistance to fatigue and recovery were tested in extensor digitorum longus (EDL; glycolytic) and soleus (SOL; oxidative) muscles using an ex vivo muscle contractility system. Muscle fiber typing and insulin signaling were analyzed while intramyocellular lipid droplets (LD) were characterized. Expression of key markers of lipid metabolism was also measured. Weight gain was similar for both groups. Specific force was decreased in SOL, but not in EDL of HFD rats. Muscle resistance to fatigue and force recovery were not altered in response to the diets. Similarly, muscle fiber type distribution and insulin signaling were not influenced by HFD. On the other hand, percent area and average size of intramyocellular LDs were significantly increased in the SOL of HFD rats. These effects were consistent with the increased expression of several mediators of lipid metabolism in the SOL muscle. A short-term HFD impairs specific force and alters lipid metabolism in SOL, but not EDL muscles of young rats. This indicates the importance of clarifying the early mechanisms through which lipid metabolism affects skeletal muscle functions in response to obesogenic diets in young populations.
Collapse
Affiliation(s)
- David E Andrich
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montreal, QC, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
| | - Ya Ou
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montreal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada
| | - Lilya Melbouci
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montreal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada
| | - Jean-Philippe Leduc-Gaudet
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montreal, QC, Canada
| | - Nickolas Auclair
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montreal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada
| | - Jocelyne Mercier
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montreal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada
| | - Blandine Secco
- Centre de Recherche de l'Institut de Cardiologie et de Pneumologie de Québec, Ville de Québec, QC, Canada
| | - Luciane Magri Tomaz
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montreal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada
| | - Gilles Gouspillou
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montreal, QC, Canada
| | - Gawiyou Danialou
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Royal Military College Saint-Jean, Saint-Jean-sur-Richelieu, QC, Canada
| | - Alain-Steve Comtois
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montreal, QC, Canada
| | - David H St-Pierre
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montreal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada
| |
Collapse
|
11
|
Fujimaki S, Seko D, Kitajima Y, Yoshioka K, Tsuchiya Y, Masuda S, Ono Y. Notch1 and Notch2 Coordinately Regulate Stem Cell Function in the Quiescent and Activated States of Muscle Satellite Cells. Stem Cells 2017; 36:278-285. [PMID: 29139178 DOI: 10.1002/stem.2743] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 10/26/2017] [Accepted: 10/29/2017] [Indexed: 12/19/2022]
Abstract
Satellite cells, the muscle tissue stem cells, express three Notch receptors (Notch1-3). The function of Notch1 and Notch2 in satellite cells has to date not been fully evaluated. We investigated the role of Notch1 and Notch2 in myogenic progression in adult skeletal muscle using tamoxifen-inducible satellite cell-specific conditional knockout mice for Notch1 (N1-scKO), Notch2 (N2-scKO), and Notch1/Notch2 (scDKO). In the quiescent state, the number of satellite cells was slightly reduced in N2-scKO, but not significantly in N1-scKO, and almost completely depleted in scDKO mice. N1-scKO and N2-scKO mice both exhibited a defect in muscle regeneration induced by cardiotoxin injection, while muscle regeneration was severely compromised with marked fibrosis in scDKO mice. In the activated state, ablation of either Notch1 or Notch2 alone in satellite cells prevented population expansion and self-renewal but induced premature myogenesis. Therefore, our results indicate that Notch1 and Notch2 coordinately maintain the stem-cell pool in the quiescent state by preventing activation and regulate stem-cell-fate decision in the activated state, governing adult muscle regeneration. Stem Cells 2018;36:278-285.
Collapse
Affiliation(s)
- Shin Fujimaki
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Daiki Seko
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Yasuo Kitajima
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Kiyoshi Yoshioka
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Yoshifumi Tsuchiya
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Shinya Masuda
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yusuke Ono
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Division of Regenerative Medicine Research, AMED, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|