1
|
Rall JA. The foundation of excitation-contraction coupling in skeletal muscle: communication between the transverse tubules and sarcoplasmic reticulum. ADVANCES IN PHYSIOLOGY EDUCATION 2024; 48:759-769. [PMID: 39116389 DOI: 10.1152/advan.00086.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
The expression excitation-contraction (EC) coupling in skeletal muscle was coined in 1952 (Sandow A. Yale J Biol Med 25: 176-201, 1952). The term evolved narrowly to include only the processes at the triad that intervene between depolarization of the transverse tubular (T-tubular) membrane and Ca2+ release from the sarcoplasmic reticulum (SR). From 1970 to 1988, the foundation of EC coupling was elucidated. The channel through which Ca2+ was released during activation was located in the SR by its specific binding to the plant insecticide ryanodine. This channel was called the ryanodine receptor (RyR). The RyR contained four subunits that together constituted the "SR foot" structure that traversed the gap between the SR and the T-tubular membrane. Ca2+ channels, also called dihydropyridine receptors (DHPRs), were located in the T-tubular membrane at the triadic junction and shown to be essential for EC coupling. There was a precise relationship between the two channels. Four DHPRs, organized as tetrads, were superimposed on alternate RyRs. This structure was consistent with the proposal that EC coupling was mediated via a movement of intramembrane charge in the T-tubular system. The speculation was that the DHPR acted as a voltage sensor transferring information to the RyRs of the SR by protein-protein interaction causing the release of Ca2+ from the SR. A great deal of progress was made by 1988 toward understanding EC coupling. However, the ultimate question of how voltage sensing is coupled to the opening of the SR Ca2+ release channel remains unresolved.NEW & NOTEWORTHY The least understood part of the series of events in excitation-contraction coupling in skeletal muscle was how information was transmitted from the transverse tubules to the sarcoplasmic (SR) and how Ca2+ was released from the SR. Through an explosion of technical approaches including physiological, biochemical, structural, pharmacological, and molecular genetics, much was discovered between 1970 and 1988. By the end of 1988, the foundation of EC coupling in skeletal muscle was established.
Collapse
Affiliation(s)
- Jack A Rall
- Department of Physiology and Cell Biology, College of MedicineOhio State University, Columbus, Ohio, United States
| |
Collapse
|
2
|
Perry ML, Varney KM, Tiwary P, Weber DJ, Hernández-Ochoa EO. Unveiling the intricate role of S100A1 in regulating RyR1 activity: A commentary on "Structural insights into the regulation of RyR1 by S100A1". Cell Calcium 2024; 123:102947. [PMID: 39226841 DOI: 10.1016/j.ceca.2024.102947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
S100A1, a calcium-binding protein, plays a crucial role in regulating Ca2+ signaling pathways in skeletal and cardiac myocytes via interactions with the ryanodine receptor (RyR) to affect Ca2+ release and contractile performance. Biophysical studies strongly suggest that S100A1 interacts with RyRs but have been inconclusive about both the nature of this interaction and its competition with another important calcium-binding protein, calmodulin (CaM). Thus, high-resolution cryo-EM studies of RyRs in the presence of S100A1, with or without additional CaM, were needed. The elegant work by Weninger et al. demonstrates the interaction between S100A1 and RyR1 through various experiments and confirms that S100A1 activates RyR1 at sub-micromolar Ca2+ concentrations, increasing the open probability of RyR1 channels.
Collapse
Affiliation(s)
- Megan L Perry
- Department of Biochemistry & Molecular Biology School of Medicine University of Maryland, Baltimore, MD, USA
| | - Kristen M Varney
- Department of Biochemistry & Molecular Biology School of Medicine University of Maryland, Baltimore, MD, USA; Center for Biomolecular Therapeutics (CBT), Baltimore, MD, USA; Institute of Bioscience and Biotechnology Research (IBBR), Rockville, MD, USA
| | - Pratyush Tiwary
- Department of Biochemistry & Molecular Biology School of Medicine University of Maryland, Baltimore, MD, USA; Department of Chemistry & Biochemistry and Institute for Physical Science & Technology, University of Maryland, College Park, MD, USA; University of Maryland Institute for Health Computing, Bethesda, MD 20852, USA
| | - David J Weber
- Department of Biochemistry & Molecular Biology School of Medicine University of Maryland, Baltimore, MD, USA; Center for Biomolecular Therapeutics (CBT), Baltimore, MD, USA; Institute of Bioscience and Biotechnology Research (IBBR), Rockville, MD, USA; Department of Chemistry & Biochemistry and Institute for Physical Science & Technology, University of Maryland, College Park, MD, USA
| | - Erick O Hernández-Ochoa
- Department of Biochemistry & Molecular Biology School of Medicine University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
3
|
Dulhunty AF. Biophysical reviews top five: voltage-dependent charge movement in nerve and muscle. Biophys Rev 2023; 15:1903-1907. [PMID: 38192339 PMCID: PMC10771356 DOI: 10.1007/s12551-023-01165-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 01/10/2024] Open
Abstract
The discovery of gating currents and asymmetric charge movement in the early 1970s represented a remarkable leap forward in our understanding of the biophysical basis of voltage-dependent events that underlie electrical signalling that is vital for nerve and muscle function. Gating currents and charge movement reflect a fundamental process in which charged amino acid residues in an ion channel protein move in response to a change in the membrane electrical field and therefore activate the specific voltage-dependent response of that protein. The detection of gating currents and asymmetric charge movement over the past 50 years has been pivotal in unraveling the multiple molecular and intra-molecular processes which lead to action potentials in excitable tissues and excitation-contraction (EC) coupling in skeletal muscle. The recording of gating currents and asymmetric charge movement remains an essential component of investigations into the basic molecular mechanisms of neuronal conduction and muscle contraction.
Collapse
Affiliation(s)
- Angela F. Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, ACT, Canberra, 2601 Australia
| |
Collapse
|
4
|
Nardini L, Brito-Fravallo E, Campagne P, Pain A, Genève C, Vernick KD, Mitri C. The voltage-gated sodium channel, para, limits Anopheles coluzzii vector competence in a microbiota dependent manner. Sci Rep 2023; 13:14572. [PMID: 37666840 PMCID: PMC10477260 DOI: 10.1038/s41598-023-40432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023] Open
Abstract
The voltage-gated sodium channel, para, is a target of DDT and pyrethroid class insecticides. Single nucleotide mutations in para, called knockdown resistant or kdr, which contribute to resistance against DDT and pyrethroid insecticides, have been correlated with increased susceptibility of Anopheles to the human malaria parasite Plasmodium falciparum. However, a direct role of para activity on Plasmodium infection has not yet been established. Here, using RNA-mediated silencing, we provide in vivo direct evidence for the requirement of wild-type (wt) para function for insecticide activity of deltamethrin. Depletion of wt para, which is susceptible to insecticide, causes deltamethrin tolerance, indicating that insecticide-resistant kdr alleles are likely phenocopies of loss of para function. We then show that normal para activity in An. coluzzii limits Plasmodium infection prevalence for both P. falciparum and P. berghei. A transcriptomic analysis revealed that para activity does not modulate the expression of immune genes. However, loss of para function led to enteric dysbiosis with a significant increase in the total bacterial abundance, and we show that para function limiting Plasmodium infection is microbiota dependent. In the context of the bidirectional "enteric microbiota-brain" axis studied in mammals, these results pave the way for studying whether the activity of the nervous system could control Anopheles vector competence.
Collapse
Affiliation(s)
- Luisa Nardini
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France
| | - Emma Brito-Fravallo
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France
| | - Pascal Campagne
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Université de Paris, 75015, Paris, France
| | - Adrien Pain
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France
| | - Corinne Genève
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France
| | - Kenneth D Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France
| | - Christian Mitri
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France.
| |
Collapse
|
5
|
Jaque-Fernandez F, Allard B, Monteiro L, Lafoux A, Huchet C, Jaimovich E, Berthier C, Jacquemond V. Probenecid affects muscle Ca2+ homeostasis and contraction independently from pannexin channel block. J Gen Physiol 2023; 155:e202213203. [PMID: 36820799 PMCID: PMC9998970 DOI: 10.1085/jgp.202213203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/21/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Tight control of skeletal muscle contractile activation is secured by the excitation-contraction (EC) coupling protein complex, a molecular machinery allowing the plasma membrane voltage to control the activity of the ryanodine receptor Ca2+ release channel in the sarcoplasmic reticulum (SR) membrane. This machinery has been shown to be intimately linked to the plasma membrane protein pannexin-1 (Panx1). We investigated whether the prescription drug probenecid, a widely used Panx1 blocker, affects Ca2+ signaling, EC coupling, and muscle force. The effect of probenecid was tested on membrane current, resting Ca2+, and SR Ca2+ release in isolated mouse muscle fibers, using a combination of whole-cell voltage-clamp and Ca2+ imaging, and on electrically triggered contraction of isolated muscles. Probenecid (1 mM) induces SR Ca2+ leak at rest and reduces peak voltage-activated SR Ca2+ release and contractile force by 40%. Carbenoxolone, another Panx1 blocker, also reduces Ca2+ release, but neither a Panx1 channel inhibitory peptide nor a purinergic antagonist affected Ca2+ release, suggesting that probenecid and carbenoxolone do not act through inhibition of Panx1-mediated ATP release and consequently altered purinergic signaling. Probenecid may act by altering Panx1 interaction with the EC coupling machinery, yet the implication of another molecular target cannot be excluded. Since probenecid has been used both in the clinic and as a masking agent for doping in sports, these results should encourage evaluation of possible effects on muscle function in treated individuals. In addition, they also raise the question of whether probenecid-induced altered Ca2+ homeostasis may be shared by other tissues.
Collapse
Affiliation(s)
- Francisco Jaque-Fernandez
- Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène—Pathophysiology and Genetics of Neuron and Muscle, Lyon, France
| | - Bruno Allard
- Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène—Pathophysiology and Genetics of Neuron and Muscle, Lyon, France
| | - Laloé Monteiro
- Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène—Pathophysiology and Genetics of Neuron and Muscle, Lyon, France
| | - Aude Lafoux
- Therassay Platform, CAPACITES, Université de Nantes, Nantes, France
| | - Corinne Huchet
- Therassay Platform, CAPACITES, Université de Nantes, Nantes, France
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, Nantes, France
| | - Enrique Jaimovich
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christine Berthier
- Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène—Pathophysiology and Genetics of Neuron and Muscle, Lyon, France
| | - Vincent Jacquemond
- Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène—Pathophysiology and Genetics of Neuron and Muscle, Lyon, France
| |
Collapse
|
6
|
Szentesi P, Dienes B, Kutchukian C, Czirjak T, Buj-Bello A, Jacquemond V, Csernoch L. Disrupted T-tubular network accounts for asynchronous calcium release in MTM1-deficient skeletal muscle. J Physiol 2023; 601:99-121. [PMID: 36408764 PMCID: PMC10107287 DOI: 10.1113/jp283650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
In mammalian skeletal muscle, the propagation of surface membrane depolarization into the interior of the muscle fibre along the transverse (T) tubular network is essential for the synchronized release of calcium from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) in response to the conformational change in the voltage-sensor dihydropyridine receptors. Deficiency in 3-phosphoinositide phosphatase myotubularin (MTM1) has been reported to disrupt T-tubules, resulting in impaired SR calcium release. Here confocal calcium transients recorded in muscle fibres of MTM1-deficient mice were compared with the results from a model where propagation of the depolarization along the T-tubules was modelled mathematically with disruptions in the network assumed to modify the access and transmembrane resistance as well as the capacitance. If, in simulations, T-tubules were assumed to be partially or completely inaccessible to the depolarization and RyRs at these points to be prime for calcium-induced calcium release, all the features of measured SR calcium release could be reproduced. We conclude that the inappropriate propagation of the depolarization into the fibre interior is the initial critical cause of severely impaired SR calcium release in MTM1 deficiency, while the Ca2+ -triggered opening of RyRs provides an alleviating support to the diseased process. KEY POINTS: Myotubular myopathy is a fatal disease due to genetic deficiency in the phosphoinositide phosphatase MTM1. Although the causes are known and corresponding gene therapy strategies are being developed, there is no mechanistic understanding of the disease-associated muscle function failure. Resolving this issue is of primary interest not only for a fundamental understanding of how MTM1 is critical for healthy muscle function, but also for establishing the related cellular mechanisms most primarily or stringently affected by the disease, which are thus of potential interest as therapy targets. The mathematical modelling approach used in the present work proves that the disease-associated alteration of the plasma membrane invagination network is sufficient to explain the dysfunctions of excitation-contraction coupling, providing the first integrated quantitative framework that explains the associated contraction failure.
Collapse
Affiliation(s)
- Peter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Candice Kutchukian
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène, Lyon, France
| | - Tamas Czirjak
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ana Buj-Bello
- Genethon, Evry, France.,Université Paris-Saclay, Evry, France
| | - Vincent Jacquemond
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène, Lyon, France
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,ELRN-UD Cell Physiology Research Group, Debrecen, Hungary
| |
Collapse
|
7
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Proteomic profiling of impaired excitation-contraction coupling and abnormal calcium handling in muscular dystrophy. Proteomics 2022; 22:e2200003. [PMID: 35902360 PMCID: PMC10078611 DOI: 10.1002/pmic.202200003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
The X-linked inherited neuromuscular disorder Duchenne muscular dystrophy is characterised by primary abnormalities in the membrane cytoskeletal component dystrophin. The almost complete absence of the Dp427-M isoform of dystrophin in skeletal muscles renders contractile fibres more susceptible to progressive degeneration and a leaky sarcolemma membrane. This in turn results in abnormal calcium homeostasis, enhanced proteolysis and impaired excitation-contraction coupling. Biochemical and mass spectrometry-based proteomic studies of both patient biopsy specimens and genetic animal models of dystrophinopathy have demonstrated significant changes in the concentration and/or physiological function of essential calcium-regulatory proteins in dystrophin-lacking voluntary muscles. Abnormalities include dystrophinopathy-associated changes in voltage sensing receptors, calcium release channels, calcium pumps and calcium binding proteins. This review article provides an overview of the importance of the sarcolemmal dystrophin-glycoprotein complex and the wider dystrophin complexome in skeletal muscle and its linkage to depolarisation-induced calcium-release mechanisms and the excitation-contraction-relaxation cycle. Besides chronic inflammation, fat substitution and reactive myofibrosis, a major pathobiochemical hallmark of X-linked muscular dystrophy is represented by the chronic influx of calcium ions through the damaged plasmalemma in conjunction with abnormal intracellular calcium fluxes and buffering. Impaired calcium handling proteins should therefore be included in an improved biomarker signature of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
8
|
Zhang Y, Rabesahala de Meritens C, Beckmann A, Lai FA, Zissimopoulos S. Defective ryanodine receptor N-terminus inter-subunit interaction is a common mechanism in neuromuscular and cardiac disorders. Front Physiol 2022; 13:1032132. [PMID: 36311249 PMCID: PMC9597452 DOI: 10.3389/fphys.2022.1032132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/28/2022] [Indexed: 07/28/2023] Open
Abstract
The ryanodine receptor (RyR) is a homotetrameric channel mediating sarcoplasmic reticulum Ca2+ release required for skeletal and cardiac muscle contraction. Mutations in RyR1 and RyR2 lead to life-threatening malignant hyperthermia episodes and ventricular tachycardia, respectively. In this brief report, we use chemical cross-linking to demonstrate that pathogenic RyR1 R163C and RyR2 R169Q mutations reduce N-terminus domain (NTD) tetramerization. Introduction of positively-charged residues (Q168R, M399R) in the NTD-NTD inter-subunit interface normalizes RyR2-R169Q NTD tetramerization. These results indicate that perturbation of NTD-NTD inter-subunit interactions is an underlying molecular mechanism in both RyR1 and RyR2 pathophysiology. Importantly, our data provide proof of concept that stabilization of this critical RyR1/2 structure-function parameter offers clear therapeutic potential.
Collapse
Affiliation(s)
- Yadan Zhang
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | | | - Astrid Beckmann
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - F. Anthony Lai
- College of Medicine and Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Spyros Zissimopoulos
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| |
Collapse
|
9
|
Melzer W. From α1s splicing to γ1 function: A new twist in subunit modulation of the skeletal muscle L-type Ca2+ channel. J Gen Physiol 2022; 154:213270. [PMID: 35674662 PMCID: PMC9184848 DOI: 10.1085/jgp.202213182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Melzer discusses a recent JGP study showing that alternative splicing of the skeletal muscle L-type calcium channel impacts on a modulatory effect of its γ subunit.
Collapse
Affiliation(s)
- Werner Melzer
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
10
|
Casanova-Vallve N, Duglan D, Vaughan ME, Pariollaud M, Handzlik MK, Fan W, Yu RT, Liddle C, Downes M, Delezie J, Mello R, Chan AB, Westermark PO, Metallo CM, Evans RM, Lamia KA. Daily running enhances molecular and physiological circadian rhythms in skeletal muscle. Mol Metab 2022; 61:101504. [PMID: 35470095 PMCID: PMC9079800 DOI: 10.1016/j.molmet.2022.101504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Exercise is a critical component of a healthy lifestyle and a key strategy for the prevention and management of metabolic disease. Identifying molecular mechanisms underlying adaptation in response to chronic physical activity is of critical interest in metabolic physiology. Circadian rhythms broadly modulate metabolism, including muscle substrate utilization and exercise capacity. Here, we define the molecular and physiological changes induced across the daily cycle by voluntary low intensity daily exercise. Methods Wildtype C57BL6/J male and female mice were housed with or without access to a running wheel for six weeks. Maximum running speed was measured at four different zeitgeber times (ZTs, hours after lights on) using either electrical or manual stimulation to motivate continued running on a motorized treadmill. RNA isolated from plantaris muscles at six ZTs was sequenced to establish the impact of daily activity on genome-wide transcription. Patterns of gene expression were analyzed using Gene Set Enrichment Analysis (GSEA) and Detection of Differential Rhythmicity (DODR). Blood glucose, lactate, and ketones, and muscle and liver glycogen were measured before and after exercise. Results We demonstrate that the use of mild electrical shocks to motivate running negatively impacts maximum running speed in mice, and describe a manual method to motivate running in rodent exercise studies. Using this method, we show that time of day influences the increase in exercise capacity afforded by six weeks of voluntary wheel running: when maximum running speed is measured at the beginning of the nighttime active period in mice, there is no measurable benefit from a history of daily voluntary running, while maximum increase in performance occurs at the end of the night. We show that daily voluntary exercise dramatically remodels the murine muscle circadian transcriptome. Finally, we describe daily rhythms in carbohydrate metabolism associated with the time-dependent response to moderate daily exercise in mice. Conclusions Collectively, these data indicate that chronic nighttime physical activity dramatically remodels daily rhythms of murine muscle gene expression, which in turn support daily fluctuations in exercise performance. Daily voluntary running dramatically remodels the mouse muscle circadian transcriptome. Daily voluntary running maximally increases mouse running speed in the late active period. Muscle and liver glycogen content exhibit robust daily rhythms in laboratory mice. Use of mild electric shocks to motivate running in mice impairs maximum running speed.
Collapse
Affiliation(s)
| | - Drew Duglan
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Megan E Vaughan
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Marie Pariollaud
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Michal K Handzlik
- Department of Bioengineering, University of California, La Jolla, San Diego, CA 92093, USA; Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Weiwei Fan
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and University of Sydney School of Medicine, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Julien Delezie
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Rebecca Mello
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Alanna B Chan
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Pål O Westermark
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Christian M Metallo
- Department of Bioengineering, University of California, La Jolla, San Diego, CA 92093, USA; Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Katja A Lamia
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Wang X, Nawaz M, DuPont C, Myers JH, Burke SR, Bannister RA, Foy BD, Voss AA, Rich MM. The role of action potential changes in depolarization-induced failure of excitation contraction coupling in mouse skeletal muscle. eLife 2022; 11:71588. [PMID: 34985413 PMCID: PMC8730720 DOI: 10.7554/elife.71588] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022] Open
Abstract
Excitation-contraction coupling (ECC) is the process by which electrical excitation of muscle is converted into force generation. Depolarization of skeletal muscle resting potential contributes to failure of ECC in diseases such as periodic paralysis, intensive care unit acquired weakness and possibly fatigue of muscle during vigorous exercise. When extracellular K+ is raised to depolarize the resting potential, failure of ECC occurs suddenly, over a narrow range of resting potentials. Simultaneous imaging of Ca2+ transients and recording of action potentials (APs) demonstrated failure to generate Ca2+ transients when APs peaked at potentials more negative than -30mV. An AP property that closely correlated with failure of the Ca2+ transient was the integral of AP voltage with respect to time. Simultaneous recording of Ca2+ transients and APs with electrodes separated by 1.6mm revealed AP conduction fails when APs peak below -21mV. We hypothesize propagation of APs and generation of Ca2+ transients are governed by distinct AP properties: AP conduction is governed by AP peak, whereas Ca2+ release from the sarcoplasmic reticulum is governed by AP integral. The reason distinct AP properties may govern distinct steps of ECC is the kinetics of the ion channels involved. Na channels, which govern propagation, have rapid kinetics and are insensitive to AP width (and thus AP integral) whereas Ca2+ release is governed by gating charge movement of Cav1.1 channels, which have slower kinetics such that Ca2+ release is sensitive to AP integral. The quantitative relationships established between resting potential, AP properties, AP conduction and Ca2+ transients provide the foundation for future studies of failure of ECC induced by depolarization of the resting potential.
Collapse
Affiliation(s)
- Xueyong Wang
- Wright State University, Department of Neuroscience, Cell Biology, and Physiology, Dayton, United States
| | - Murad Nawaz
- Wright State University, Department of Neuroscience, Cell Biology, and Physiology, Dayton, United States
| | - Chris DuPont
- Wright State University, Department of Neuroscience, Cell Biology, and Physiology, Dayton, United States
| | - Jessica H Myers
- Wright State University, Department of Neuroscience, Cell Biology, and Physiology, Dayton, United States
| | - Steve Ra Burke
- Wright State University, Department of Biological Sciences, Dayton, United States
| | - Roger A Bannister
- University of Maryland School of Medicine, Departments of Pathology/Biochemistry & Molecular Biology, Baltimore, United States
| | - Brent D Foy
- Wright State University, Department of Physics, Dayton, United States
| | - Andrew A Voss
- Wright State University, Department of Biological Sciences, Dayton, United States
| | - Mark M Rich
- Wright State University, Department of Neuroscience, Cell Biology, and Physiology, Dayton, United States
| |
Collapse
|
12
|
Savalli N, Angelini M, Steccanella F, Wier J, Wu F, Quinonez M, DiFranco M, Neely A, Cannon SC, Olcese R. The distinct role of the four voltage sensors of the skeletal CaV1.1 channel in voltage-dependent activation. J Gen Physiol 2021; 153:212652. [PMID: 34546289 PMCID: PMC8460119 DOI: 10.1085/jgp.202112915] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022] Open
Abstract
Initiation of skeletal muscle contraction is triggered by rapid activation of RYR1 channels in response to sarcolemmal depolarization. RYR1 is intracellular and has no voltage-sensing structures, but it is coupled with the voltage-sensing apparatus of CaV1.1 channels to inherit voltage sensitivity. Using an opto-electrophysiological approach, we resolved the excitation-driven molecular events controlling both CaV1.1 and RYR1 activations, reported as fluorescence changes. We discovered that each of the four human CaV1.1 voltage-sensing domains (VSDs) exhibits unique biophysical properties: VSD-I time-dependent properties were similar to ionic current activation kinetics, suggesting a critical role of this voltage sensor in CaV1.1 activation; VSD-II, VSD-III, and VSD-IV displayed faster activation, compatible with kinetics of sarcoplasmic reticulum Ca2+ release. The prominent role of VSD-I in governing CaV1.1 activation was also confirmed using a naturally occurring, charge-neutralizing mutation in VSD-I (R174W). This mutation abolished CaV1.1 current at physiological membrane potentials by impairing VSD-I activation without affecting the other VSDs. Using a structurally relevant allosteric model of CaV activation, which accounted for both time- and voltage-dependent properties of CaV1.1, to predict VSD-pore coupling energies, we found that VSD-I contributed the most energy (~75 meV or ∼3 kT) toward the stabilization of the open states of the channel, with smaller (VSD-IV) or negligible (VSDs II and III) energetic contribution from the other voltage sensors (<25 meV or ∼1 kT). This study settles the longstanding question of how CaV1.1, a slowly activating channel, can trigger RYR1 rapid activation, and reveals a new mechanism for voltage-dependent activation in ion channels, whereby pore opening of human CaV1.1 channels is primarily driven by the activation of one voltage sensor, a mechanism distinct from that of all other voltage-gated channels.
Collapse
Affiliation(s)
- Nicoletta Savalli
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Marina Angelini
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Federica Steccanella
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Julian Wier
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Fenfen Wu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Marbella Quinonez
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Marino DiFranco
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Alan Neely
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stephen C Cannon
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
13
|
Duc P, Vignes M, Hugon G, Sebban A, Carnac G, Malyshev E, Charlot B, Rage F. Human neuromuscular junction on micro-structured microfluidic devices implemented with a custom micro electrode array (MEA). LAB ON A CHIP 2021; 21:4223-4236. [PMID: 34559171 DOI: 10.1039/d1lc00497b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the neuromuscular system, signal transmission from motor neurons (MNs) to innervated muscle fibers is crucial for their synaptic function, viability, and maintenance. In order to better understand human neuromuscular junction (hNMJ) functionality, it is important to develop on-a-chip devices with human cells. To investigate this cell network, microfluidic platforms are useful to grow different cell types in isolated compartments. Such devices have already been developed to study in vitro neuronal circuitry. Here, we combined microfluidics with two techniques: soft lithography and custom microelectrodes array (MEA). Our goal was to create hNMJs on a specific pattern of electrodes to stimulate pre-synaptic axons and record post-synaptic muscle activity. Micromachining was used to create structurations to guide muscle growth above electrodes, without impairing axon propagation, therefore optimizing the effectiveness of activity recording. Electrodes were also arranged to be aligned with the microfluidic chambers in order to specifically stimulate axons that were growing between the two compartments. Isolation of the two cell types allows for the selective treatment of neurons or muscle fibers to assess NMJ functionality hallmarks. Altogether, this microfluidic/microstructured/MEA platform allowed mature and functional in vitro hNMJ modelling. We demonstrate that electrical activation of MNs can trigger recordable extracellular muscle action potentials. This study provides evidence for a physiologically relevant model to mimic a hNMJ that will in the future be a powerful tool, more sensitive than calcium imaging, to better understand and characterize NMJs and their disruption in neurodegenerative diseases.
Collapse
Affiliation(s)
- Pauline Duc
- IGMM, University of Montpellier, CNRS, Montpellier, France.
| | - Michel Vignes
- IBMM UMR5247, University of Montpellier, CNRS, Montpellier, France
| | - Gérald Hugon
- PhyMedExp, INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France
| | - Audrey Sebban
- IES, CNRS University of Montpellier, Montpellier 34095, France
| | - Gilles Carnac
- PhyMedExp, INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France
| | - Eugene Malyshev
- IES, CNRS University of Montpellier, Montpellier 34095, France
| | - Benoît Charlot
- IES, CNRS University of Montpellier, Montpellier 34095, France
| | - Florence Rage
- IGMM, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
14
|
Voltage sensor movements of Ca V1.1 during an action potential in skeletal muscle fibers. Proc Natl Acad Sci U S A 2021; 118:2026116118. [PMID: 34583989 DOI: 10.1073/pnas.2026116118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
The skeletal muscle L-type Ca2+ channel (CaV1.1) works primarily as a voltage sensor for skeletal muscle action potential (AP)-evoked Ca2+ release. CaV1.1 contains four distinct voltage-sensing domains (VSDs), yet the contribution of each VSD to AP-evoked Ca2+ release remains unknown. To investigate the role of VSDs in excitation-contraction coupling (ECC), we encoded cysteine substitutions on each S4 voltage-sensing segment of CaV1.1, expressed each construct via in vivo gene transfer electroporation, and used in cellulo AP fluorometry to track the movement of each CaV1.1 VSD in skeletal muscle fibers. We first provide electrical measurements of CaV1.1 voltage sensor charge movement in response to an AP waveform. Then we characterize the fluorescently labeled channels' VSD fluorescence signal responses to an AP and compare them with the waveforms of the electrically measured charge movement, the optically measured free myoplasmic Ca2+, and the calculated rate of Ca2+ release from the sarcoplasmic reticulum for an AP, the physiological signal for skeletal muscle fiber activation. A considerable fraction of the fluorescence signal for each VSD occurred after the time of peak Ca2+ release, and even more occurred after the earlier peak of electrically measured charge movement during an AP, and thus could not directly reflect activation of Ca2+ release or charge movement, respectively. However, a sizable fraction of the fluorometric signals for VSDs I, II, and IV, but not VSDIII, overlap the rising phase of charge moved, and even more for Ca2+ release, and thus could be involved in voltage sensor rearrangements or Ca2+ release activation.
Collapse
|
15
|
Chatel B, Ducreux S, Harhous Z, Bendridi N, Varlet I, Ogier AC, Bernard M, Gondin J, Rieusset J, Westerblad H, Bendahan D, Gineste C. Impaired aerobic capacity and premature fatigue preceding muscle weakness in the skeletal muscle Tfam-knockout mouse model. Dis Model Mech 2021; 14:272176. [PMID: 34378772 PMCID: PMC8461820 DOI: 10.1242/dmm.048981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/30/2021] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial diseases are genetic disorders that lead to impaired mitochondrial function, resulting in exercise intolerance and muscle weakness. In patients, muscle fatigue due to defects in mitochondrial oxidative capacities commonly precedes muscle weakness. In mice, deletion of the fast-twitch skeletal muscle-specific Tfam gene (Tfam KO) leads to a deficit in respiratory chain activity, severe muscle weakness and early death. Here, we performed a time-course study of mitochondrial and muscular dysfunctions in 11- and 14-week-old Tfam KO mice, i.e. before and when mice are about to enter the terminal stage, respectively. Although force in the unfatigued state was reduced in Tfam KO mice compared to control littermates (wild type) only at 14 weeks, during repeated submaximal contractions fatigue was faster at both ages. During fatiguing stimulation, total phosphocreatine breakdown was larger in Tfam KO muscle than in wild-type muscle at both ages, whereas phosphocreatine consumption was faster only at 14 weeks. In conclusion, the Tfam KO mouse model represents a reliable model of lethal mitochondrial myopathy in which impaired mitochondrial energy production and premature fatigue occur before muscle weakness and early death. Summary: A time-course study of mitochondrial and muscular dysfunctions in a mouse model of mitochondrial myopathy reveals that decreased resistance to fatigue together with decreased oxidative capacities arise ahead of muscle weakness.
Collapse
Affiliation(s)
- Benjamin Chatel
- Aix-Marseille Université, CRMBM UMR CNRS 7339, 13385 Marseille, France.,CellMade, 73370 Le-Bourget-du-Lac, France
| | - Sylvie Ducreux
- CarMeN Laboratory, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310 Pierre-Bénite et F-69500 Bron, France
| | - Zeina Harhous
- CarMeN Laboratory, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310 Pierre-Bénite et F-69500 Bron, France
| | - Nadia Bendridi
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69600 Oullins, France
| | - Isabelle Varlet
- Aix-Marseille Université, CRMBM UMR CNRS 7339, 13385 Marseille, France
| | - Augustin C Ogier
- Aix-Marseille Université, Université de Toulon, CNRS, LIS, 13397 Marseille, France
| | - Monique Bernard
- Aix-Marseille Université, CRMBM UMR CNRS 7339, 13385 Marseille, France
| | - Julien Gondin
- Institut NeuroMyoGène, UMR CNRS 5310 - INSERM U1217, Université Claude Bernard Lyon 1, F-69008 Lyon, France
| | - Jennifer Rieusset
- CarMeN Laboratory, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310 Pierre-Bénite et F-69500 Bron, France
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - David Bendahan
- Aix-Marseille Université, CRMBM UMR CNRS 7339, 13385 Marseille, France
| | - Charlotte Gineste
- Aix-Marseille Université, CRMBM UMR CNRS 7339, 13385 Marseille, France
| |
Collapse
|
16
|
Hostrup M, Cairns SP, Bangsbo J. Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. Compr Physiol 2021; 11:1895-1959. [PMID: 34190344 DOI: 10.1002/cphy.c190024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise causes major shifts in multiple ions (e.g., K+ , Na+ , H+ , lactate- , Ca2+ , and Cl- ) during muscle activity that contributes to development of muscle fatigue. Sarcolemmal processes can be impaired by the trans-sarcolemmal rundown of ion gradients for K+ , Na+ , and Ca2+ during fatiguing exercise, while changes in gradients for Cl- and Cl- conductance may exert either protective or detrimental effects on fatigue. Myocellular H+ accumulation may also contribute to fatigue development by lowering glycolytic rate and has been shown to act synergistically with inorganic phosphate (Pi) to compromise cross-bridge function. In addition, sarcoplasmic reticulum Ca2+ release function is severely affected by fatiguing exercise. Skeletal muscle has a multitude of ion transport systems that counter exercise-related ionic shifts of which the Na+ /K+ -ATPase is of major importance. Metabolic perturbations occurring during exercise can exacerbate trans-sarcolemmal ionic shifts, in particular for K+ and Cl- , respectively via metabolic regulation of the ATP-sensitive K+ channel (KATP ) and the chloride channel isoform 1 (ClC-1). Ion transport systems are highly adaptable to exercise training resulting in an enhanced ability to counter ionic disturbances to delay fatigue and improve exercise performance. In this article, we discuss (i) the ionic shifts occurring during exercise, (ii) the role of ion transport systems in skeletal muscle for ionic regulation, (iii) how ionic disturbances affect sarcolemmal processes and muscle fatigue, (iv) how metabolic perturbations exacerbate ionic shifts during exercise, and (v) how pharmacological manipulation and exercise training regulate ion transport systems to influence exercise performance in humans. © 2021 American Physiological Society. Compr Physiol 11:1895-1959, 2021.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Simeon Peter Cairns
- SPRINZ, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.,Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Melzer W. ECC meets CEU-New focus on the backdoor for calcium ions in skeletal muscle cells. J Gen Physiol 2020; 152:152046. [PMID: 32851409 PMCID: PMC7537343 DOI: 10.1085/jgp.202012679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this issue, Michelucci et al. report the existence of specific sites acting as Ca2+ entry units (CEUs) in fast skeletal muscle of mice lacking calsequestrin (CASQ1), the major Ca2+ binding protein of the SR. The CEU provides constitutive and store-operated Ca2+ entry (SOCE) and resistance to force decline resulting from SR Ca2+ depletion during repetitive muscle activity.
Collapse
Affiliation(s)
- Werner Melzer
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
18
|
Jaque-Fernandez F, Beaulant A, Berthier C, Monteiro L, Allard B, Casas M, Rieusset J, Jacquemond V. Preserved Ca 2+ handling and excitation-contraction coupling in muscle fibres from diet-induced obese mice. Diabetologia 2020; 63:2471-2481. [PMID: 32840676 DOI: 10.1007/s00125-020-05256-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Disrupted intracellular Ca2+ handling is known to play a role in diabetic cardiomyopathy but it has also been postulated to contribute to obesity- and type 2 diabetes-associated skeletal muscle dysfunction. Still, there is so far very limited functional insight into whether, and if so to what extent, muscular Ca2+ homeostasis is affected in this situation, so as to potentially determine or contribute to muscle weakness. In differentiated muscle, force production is under the control of the excitation-contraction coupling process: upon plasma membrane electrical activity, the CaV1.1 voltage sensor/Ca2+ channel in the plasma membrane triggers opening of the ryanodine receptor Ca2+ release channel in the sarcoplasmic reticulum (SR) membrane. Opening of the ryanodine receptor triggers the rise in cytosolic Ca2+, which activates contraction while Ca2+ uptake by the SR ATPase Ca2+-pump promotes relaxation. These are the core mechanisms underlying the tight control of muscle force by neuronal electrical activity. This study aimed at characterising their inherent physiological function in a diet-induced mouse model of obesity and type 2 diabetes. METHODS Intact muscle fibres were isolated from mice fed either with a standard chow diet or with a high-fat, high-sucrose diet generating obesity, insulin resistance and glucose intolerance. Properties of muscle fibres were investigated with a combination of whole-cell voltage-clamp electrophysiology and confocal fluorescence imaging. The integrity and density of the plasma membrane network (transverse tubules) that carries the membrane excitation throughout the muscle fibres was assessed with the dye Di-8-ANEPPS. CaV1.1 Ca2+ channel activity was studied by measuring the changes in current across the plasma membrane elicited by voltage-clamp depolarising pulses of increasing amplitude. SR Ca2+ release through ryanodine receptors was simultaneously detected with the Ca2+-sensitive dye Rhod-2 in the cytosol. CaV1.1 voltage-sensing activity was separately characterised from the properties of intra-plasma-membrane charge movement produced by short voltage-clamp depolarising pulses. Spontaneous Ca2+ release at rest was assessed with the Ca2+-sensitive dye Fluo-4. The rate of SR Ca2+ uptake was assessed from the time course of cytosolic Ca2+ recovery after the end of voltage excitation using the Ca2+-sensitive dye Fluo-4FF. The response to a fatigue-stimulation protocol was determined from the time course of decline of the peak Fluo-4FF Ca2+ transients elicited by 30 trains of 5-ms-long depolarising pulses delivered at 100 Hz. RESULTS The transverse tubule network architecture and density were well preserved in the fibres from the obese mice. The CaV1.1 Ca2+ current and voltage-sensing properties were also largely unaffected with mean values for maximum conductance and maximum amount of charge of 234 ± 12 S/F and 30.7 ± 1.6 nC/μF compared with 196 ± 13 S/F and 32.9 ± 2.0 nC/μF in fibres from mice fed with the standard diet, respectively. Voltage-activated SR Ca2+ release through ryanodine receptors also exhibited very similar properties in the two groups with mean values for maximum rate of Ca2+ release of 76.0 ± 6.5 and 78.1 ± 4.4 μmol l-1 ms-1, in fibres from control and obese mice, respectively. The response to a fatigue protocol was also largely unaffected in fibres from the obese mice, and so were the rate of cytosolic Ca2+ removal and the spontaneous Ca2+ release activity at rest. CONCLUSIONS/INTERPRETATION The functional properties of the main mechanisms involved in the control of muscle Ca2+ homeostasis are well preserved in muscle fibres from obese mice, at the level of both the plasma membrane and of the SR. We conclude that intracellular Ca2+ handling and excitation-contraction coupling in skeletal muscle fibres are not primary targets of obesity and type 2 diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Francisco Jaque-Fernandez
- Institut NeuroMyoGène, UMR CNRS 5310 - Inserm U1217 - Université Claude Bernard Lyon 1 - Univ Lyon, Faculté de Médecine et de Pharmacie, Lyon, France
| | - Agathe Beaulant
- CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1 - Univ Lyon, Pierre-Bénite, France
| | - Christine Berthier
- Institut NeuroMyoGène, UMR CNRS 5310 - Inserm U1217 - Université Claude Bernard Lyon 1 - Univ Lyon, Faculté de Médecine et de Pharmacie, Lyon, France
| | - Laloé Monteiro
- Institut NeuroMyoGène, UMR CNRS 5310 - Inserm U1217 - Université Claude Bernard Lyon 1 - Univ Lyon, Faculté de Médecine et de Pharmacie, Lyon, France
| | - Bruno Allard
- Institut NeuroMyoGène, UMR CNRS 5310 - Inserm U1217 - Université Claude Bernard Lyon 1 - Univ Lyon, Faculté de Médecine et de Pharmacie, Lyon, France
| | - Mariana Casas
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jennifer Rieusset
- CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1 - Univ Lyon, Pierre-Bénite, France
| | - Vincent Jacquemond
- Institut NeuroMyoGène, UMR CNRS 5310 - Inserm U1217 - Université Claude Bernard Lyon 1 - Univ Lyon, Faculté de Médecine et de Pharmacie, Lyon, France.
| |
Collapse
|
19
|
Flucher BE. Skeletal muscle Ca V1.1 channelopathies. Pflugers Arch 2020; 472:739-754. [PMID: 32222817 PMCID: PMC7351834 DOI: 10.1007/s00424-020-02368-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/06/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022]
Abstract
CaV1.1 is specifically expressed in skeletal muscle where it functions as voltage sensor of skeletal muscle excitation-contraction (EC) coupling independently of its functions as L-type calcium channel. Consequently, all known CaV1.1-related diseases are muscle diseases and the molecular and cellular disease mechanisms relate to the dual functions of CaV1.1 in this tissue. To date, four types of muscle diseases are known that can be linked to mutations in the CACNA1S gene or to splicing defects. These are hypo- and normokalemic periodic paralysis, malignant hyperthermia susceptibility, CaV1.1-related myopathies, and myotonic dystrophy type 1. In addition, the CaV1.1 function in EC coupling is perturbed in Native American myopathy, arising from mutations in the CaV1.1-associated protein STAC3. Here, we first address general considerations concerning the possible roles of CaV1.1 in disease and then discuss the state of the art regarding the pathophysiology of the CaV1.1-related skeletal muscle diseases with an emphasis on molecular disease mechanisms.
Collapse
Affiliation(s)
- Bernhard E Flucher
- Department of Physiology and Medical Biophysics, Medical University Innsbruck, Schöpfstraße 41, A6020, Innsbruck, Austria.
| |
Collapse
|
20
|
Sarco-Endoplasmic Reticulum Calcium Release Model Based on Changes in the Luminal Calcium Content. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:337-370. [DOI: 10.1007/978-3-030-12457-1_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Metzger S, Dupont C, Voss AA, Rich MM. Central Role of Subthreshold Currents in Myotonia. Ann Neurol 2019; 87:175-183. [PMID: 31725924 DOI: 10.1002/ana.25646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 01/11/2023]
Abstract
It is generally thought that muscle excitability is almost exclusively controlled by currents responsible for generation of action potentials. We propose that smaller ion channel currents that contribute to setting the resting potential and to subthreshold fluctuations in membrane potential can also modulate excitability in important ways. These channels open at voltages more negative than the action potential threshold and are thus termed subthreshold currents. As subthreshold currents are orders of magnitude smaller than the currents responsible for the action potential, they are hard to identify and easily overlooked. Discovery of their importance in regulation of excitability opens new avenues for improved therapy for muscle channelopathies and diseases of the neuromuscular junction. ANN NEUROL 2020;87:175-183.
Collapse
Affiliation(s)
- Sabrina Metzger
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH
| | - Chris Dupont
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH
| | - Andrew A Voss
- Department of Biology, Wright State University, Dayton, OH
| | - Mark M Rich
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH
| |
Collapse
|
22
|
Murphy S, Zweyer M, Raucamp M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic profiling of the mouse diaphragm and refined mass spectrometric analysis of the dystrophic phenotype. J Muscle Res Cell Motil 2019; 40:9-28. [PMID: 30888583 DOI: 10.1007/s10974-019-09507-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
The diaphragm is a crucial muscle involved in active inspiration and whole body homeostasis. Previous biochemical, immunochemical and cell biological investigations have established the distribution and fibre type-specific expression of key diaphragm proteins. Building on these findings, it was of interest to establish the entire experimentally assessable diaphragm proteome and verify the presence of specific protein isoforms within this specialized subtype of skeletal muscle. A highly sensitive Orbitrap Fusion Tribrid mass spectrometer was used for the systematic identification of the mouse diaphragm-associated protein population. Proteomics established 2925 proteins by high confidence peptide identification. Bioinformatics was used to determine the distribution of the main protein classes, biological processes and subcellular localization within the diaphragm proteome. Following the establishment of the respiratory muscle proteome with special emphasis on protein isoform expression in the contractile apparatus, the extra-sarcomeric cytoskeleton, the extracellular matrix and the excitation-contraction coupling apparatus, the mass spectrometric analysis of the diaphragm was extended to the refined identification of proteome-wide changes in X-linked muscular dystrophy. The comparative mass spectrometric profiling of the dystrophin-deficient diaphragm from the mdx-4cv mouse model of Duchenne muscular dystrophy identified 289 decreased and 468 increased protein species. Bioinformatics was employed to analyse the clustering of changes in protein classes and potential alterations in interaction patterns of proteins involved in metabolism, the contractile apparatus, proteostasis and the extracellular matrix. The detailed pathoproteomic profiling of the mdx-4cv diaphragm suggests highly complex alterations in a variety of crucial cellular processes due to deficiency in the membrane cytoskeletal protein dystrophin.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, 53115, Bonn, Germany
| | - Maren Raucamp
- Institute of Physiology II, University of Bonn, 53115, Bonn, Germany
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, 53115, Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|