1
|
Vranić L, Biloglav Z, Medaković P, Talapko J, Škrlec I. The Effects of a Pulmonary Rehabilitation Programme on Functional Capacity and Strength of Respiratory Muscles in Patients with Post-COVID Syndrome. Zdr Varst 2024; 63:123-131. [PMID: 38881631 PMCID: PMC11178033 DOI: 10.2478/sjph-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/23/2024] [Indexed: 06/18/2024] Open
Abstract
Aim The aim of this study was to estimate the effects of a pulmonary rehabilitation programme (PR) on the functional capacity and respiratory muscle strength of patients with post-COVID syndrome. Methods A cross-sectional study was conducted using hospital data on patients who participated in a pulmonary rehabilitation programme at the Clinic for Lung Diseases, University Hospital Centre Zagreb, Croatia, between January 2021 and December 2022. Data on the spirometry, respiratory muscle strength, and functional exercise capacity of patients were collected at baseline and three weeks after the start of rehabilitation. The study included 80 patients (43 females, 37 males) with a mean age of 51±10 years. Results A significant increase in respiratory muscle strength (P<0.001) was observed after pulmonary rehabilitation, with effect sizes ranging from small to large (Cohen's d from 0.39 to 1.07), whereas the effect for PImax expressed as a percentage was large (Cohen's d=0.99). In addition, the pulmonary rehabilitation programme significantly improved the parameters of the six-minute walk test in patients, and the parameters of lung function, FVC, FEV1, and DLCO also improved significantly after PR (P<0.05). Conclusion The results showed that the pulmonary rehabilitation programme has clinically significant effects on functional capacity and respiratory muscle strength in patients with post-COVID syndrome.
Collapse
Affiliation(s)
- Lana Vranić
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Zrinka Biloglav
- Department of Medical Statistics, Epidemiology and Medical Informatics, School of Public Health Andrija Štampar, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Petar Medaković
- Department of Radiology, Polyclinic Croatia, 10000 Zagreb, Croatia
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| |
Collapse
|
2
|
Pergande MR, Osterbauer KJ, Buck KM, Roberts DS, Wood NN, Balasubramanian P, Mann MW, Rossler KJ, Diffee GM, Colman RJ, Anderson RM, Ge Y. Mass Spectrometry-Based Multiomics Identifies Metabolic Signatures of Sarcopenia in Rhesus Monkey Skeletal Muscle. J Proteome Res 2024; 23:2845-2856. [PMID: 37991985 PMCID: PMC11109024 DOI: 10.1021/acs.jproteome.3c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Sarcopenia is a progressive disorder characterized by age-related loss of skeletal muscle mass and function. Although significant progress has been made over the years to identify the molecular determinants of sarcopenia, the precise mechanisms underlying the age-related loss of contractile function remains unclear. Advances in "omics" technologies, including mass spectrometry-based proteomic and metabolomic analyses, offer great opportunities to better understand sarcopenia. Herein, we performed mass spectrometry-based analyses of the vastus lateralis from young, middle-aged, and older rhesus monkeys to identify molecular signatures of sarcopenia. In our proteomic analysis, we identified proteins that change with age, including those involved in adenosine triphosphate and adenosine monophosphate metabolism as well as fatty acid beta oxidation. In our untargeted metabolomic analysis, we identified metabolites that changed with age largely related to energy metabolism including fatty acid beta oxidation. Pathway analysis of age-responsive proteins and metabolites revealed changes in muscle structure and contraction as well as lipid, carbohydrate, and purine metabolism. Together, this study discovers new metabolic signatures and offers new insights into the molecular mechanisms underlying sarcopenia for the evaluation and monitoring of a therapeutic treatment of sarcopenia.
Collapse
Affiliation(s)
- Melissa R. Pergande
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Katie J. Osterbauer
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kevin M. Buck
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nina N. Wood
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Morgan W. Mann
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kalina J. Rossler
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Gary M. Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ricki J. Colman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rozalyn M. Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
3
|
Jung S, Silva S, Dallal CM, LeBlanc E, Paris K, Shepherd J, Snetselaar LG, Van Horn L, Zhang Y, Dorgan JF. Untargeted serum metabolomic profiles and breast density in young women. Cancer Causes Control 2024; 35:323-334. [PMID: 37737303 DOI: 10.1007/s10552-023-01793-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE OF THE STUDY Breast density is an established risk factor for breast cancer. However, little is known about metabolic influences on breast density phenotypes. We conducted untargeted serum metabolomics analyses to identify metabolic signatures associated with breast density phenotypes among young women. METHODS In a cross-sectional study of 173 young women aged 25-29 who participated in the Dietary Intervention Study in Children 2006 Follow-up Study, 449 metabolites were measured in fasting serum samples using ultra-high-performance liquid chromatography-tandem mass spectrometry. Multivariable-adjusted mixed-effects linear regression identified metabolites associated with magnetic resonance imaging measured breast density phenotypes: percent dense breast volume (%DBV), absolute dense breast volume (ADBV), and absolute non-dense breast volume (ANDBV). Metabolite results were corrected for multiple comparisons using a false discovery rate adjusted p-value (q). RESULTS The amino acids valine and leucine were significantly inversely associated with %DBV. For each 1 SD increase in valine and leucine, %DBV decreased by 20.9% (q = 0.02) and 18.4% (q = 0.04), respectively. ANDBV was significantly positively associated with 16 lipid and one amino acid metabolites, whereas no metabolites were associated with ADBV. Metabolite set enrichment analysis also revealed associations of distinct metabolic signatures with %DBV, ADBV, and ANDBV; branched chain amino acids had the strongest inverse association with %DBV (p = 0.002); whereas, diacylglycerols and phospholipids were positively associated with ANDBV (p ≤ 0.002), no significant associations were observed for ADBV. CONCLUSION Our results suggest an inverse association of branched chain amino acids with %DBV. Larger studies in diverse populations are needed.
Collapse
Affiliation(s)
- Seungyoun Jung
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, South Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Sarah Silva
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cher M Dallal
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, MD, USA
| | - Erin LeBlanc
- Kaiser Permanente Center for Health Research, Portland, OR, USA
| | - Kenneth Paris
- Department of Pediatrics, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - John Shepherd
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Linda Van Horn
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yuji Zhang
- Division of Cancer Epidemiology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, 660 West Redwood St., Howard Hall, Room 102E, Baltimore, MD, 21201, USA
| | - Joanne F Dorgan
- Division of Cancer Epidemiology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, 660 West Redwood St., Howard Hall, Room 102E, Baltimore, MD, 21201, USA.
| |
Collapse
|
4
|
Ribeiro F, Alves PKN, Bechara LRG, Ferreira JCB, Labeit S, Moriscot AS. Small-Molecule Inhibition of MuRF1 Prevents Early Disuse-Induced Diaphragmatic Dysfunction and Atrophy. Int J Mol Sci 2023; 24:ijms24043637. [PMID: 36835047 PMCID: PMC9965746 DOI: 10.3390/ijms24043637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
In clinical conditions such as diaphragm paralysis or mechanical ventilation, disuse-induced diaphragmatic dysfunction (DIDD) is a condition that poses a threat to life. MuRF1 is a key E3-ligase involved in regulating skeletal muscle mass, function, and metabolism, which contributes to the onset of DIDD. We investigated if the small-molecule mediated inhibition of MuRF1 activity (MyoMed-205) protects against early DIDD after 12 h of unilateral diaphragm denervation. Wistar rats were used in this study to determine the compound's acute toxicity and optimal dosage. For potential DIDD treatment efficacy, diaphragm contractile function and fiber cross-sectional area (CSA) were evaluated. Western blotting investigated potential mechanisms underlying MyoMed-205's effects in early DIDD. Our results indicate 50 mg/kg bw MyoMed-205 as a suitable dosage to prevent early diaphragmatic contractile dysfunction and atrophy following 12 h of denervation without detectable signs of acute toxicity. Mechanistically, treatment did not affect disuse-induced oxidative stress (4-HNE) increase, whereas phosphorylation of (ser632) HDAC4 was normalized. MyoMed-205 also mitigated FoxO1 activation, inhibited MuRF2, and increased phospho (ser473) Akt protein levels. These findings may suggest that MuRF1 activity significantly contributes to early DIDD pathophysiology. Novel strategies targeting MuRF1 (e.g., MyoMed-205) have potential therapeutic applications for treating early DIDD.
Collapse
Affiliation(s)
- Fernando Ribeiro
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Paula K. N. Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Luiz R. G. Bechara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Julio C. B. Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Siegfried Labeit
- DZHK Partner Site Mannheim-Heidelberg, Medical Faculty Mannheim, University of Heidelberg, 68169 Mannheim, Germany
- Myomedix GmbH, 69151 Neckargemünd, Germany
| | - Anselmo S. Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence: ; Tel.: +55-11-3091-0946
| |
Collapse
|
5
|
Cacciani N, Skärlén Å, Wen Y, Zhang X, Addinsall AB, Llano-Diez M, Li M, Gransberg L, Hedström Y, Bellander BM, Nelson D, Bergquist J, Larsson L. A prospective clinical study on the mechanisms underlying critical illness myopathy-A time-course approach. J Cachexia Sarcopenia Muscle 2022; 13:2669-2682. [PMID: 36222215 PMCID: PMC9745499 DOI: 10.1002/jcsm.13104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Critical illness myopathy (CIM) is a consequence of modern critical care resulting in general muscle wasting and paralyses of all limb and trunk muscles, resulting in prolonged weaning from the ventilator, intensive care unit (ICU) treatment and rehabilitation. CIM is associated with severe morbidity/mortality and significant negative socioeconomic consequences, which has become increasingly evident during the current COVID-19 pandemic, but underlying mechanisms remain elusive. METHODS Ten neuro-ICU patients exposed to long-term controlled mechanical ventilation were followed with repeated muscle biopsies, electrophysiology and plasma collection three times per week for up to 12 days. Single muscle fibre contractile recordings were conducted on the first and final biopsy, and a multiomics approach was taken to analyse gene and protein expression in muscle and plasma at all collection time points. RESULTS (i) A progressive preferential myosin loss, the hallmark of CIM, was observed in all neuro-ICU patients during the observation period (myosin:actin ratio decreased from 2.0 in the first to 0.9 in the final biopsy, P < 0.001). The myosin loss was coupled to a general transcriptional downregulation of myofibrillar proteins (P < 0.05; absolute fold change >2) and activation of protein degradation pathways (false discovery rate [FDR] <0.1), resulting in significant muscle fibre atrophy and loss in force generation capacity, which declined >65% during the 12 day observation period (muscle fibre cross-sectional area [CSA] and maximum single muscle fibre force normalized to CSA [specific force] declined 30% [P < 0.007] and 50% [P < 0.0001], respectively). (ii) Membrane excitability was not affected as indicated by the maintained compound muscle action potential amplitude upon supramaximal stimulation of upper and lower extremity motor nerves. (iii) Analyses of plasma revealed early activation of inflammatory and proinflammatory pathways (FDR < 0.1), as well as a redistribution of zinc ions from plasma. CONCLUSIONS The mechanical ventilation-induced lung injury with release of cytokines/chemokines and the complete mechanical silencing uniquely observed in immobilized ICU patients affecting skeletal muscle gene/protein expression are forwarded as the dominant factors triggering CIM.
Collapse
Affiliation(s)
- Nicola Cacciani
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Skärlén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ya Wen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Xiang Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alex B Addinsall
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Monica Llano-Diez
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Meishan Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Gransberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yvette Hedström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bo-Michael Bellander
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - David Nelson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Section of Intensive Care, Function Perioperative Medicine and Intensive Care (PMI), Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry-Biomedical Centre, Uppsala University, Uppsala, Sweden.,The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,The Viron Molecular Medicine Institute, Boston, MA, USA
| |
Collapse
|
6
|
Vetrugno L, Orso D, Corradi F, Zani G, Spadaro S, Meroi F, D’Andrea N, Bove T, Cammarota G, De Robertis E, Ferrari S, Guarnieri M, Ajuti M, Fusari M, Grieco DL, Deana C, Boero E, Franchi F, Scolletta S, Maggiore SM, Forfori F. Diaphragm ultrasound evaluation during weaning from mechanical ventilation in COVID-19 patients: a pragmatic, cross-section, multicenter study. Respir Res 2022; 23:210. [PMID: 35989352 PMCID: PMC9392990 DOI: 10.1186/s12931-022-02138-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Diaphragmatic dysfunction is a major factor responsible for weaning failure in patients that underwent prolonged invasive mechanical ventilation for acute severe respiratory failure from COVID-19. This study hypothesizes that ultrasound measured diaphragmatic thickening fraction (DTF) could provide corroborating information for weaning COVID-19 patients from mechanical ventilation.
Methods
This was an observational, pragmatic, cross-section, multicenter study in 6 Italian intensive care units. DTF was assessed in COVID-19 patients undergoing weaning from mechanical ventilation from 1st March 2020 to 30th June 2021. Primary aim was to evaluate whether DTF is a predictive factor for weaning failure.
Results
Fifty-seven patients were enrolled, 25 patients failed spontaneous breathing trial (44%). Median length of invasive ventilation was 14 days (IQR 7–22). Median DTF within 24 h since the start of weaning was 28% (IQR 22–39%), RASS score (− 2 vs − 2; p = 0.031); Kelly-Matthay score (2 vs 1; p = 0.002); inspiratory oxygen fraction (0.45 vs 0.40; p = 0.033). PaO2/FiO2 ratio was lower (176 vs 241; p = 0.032) and length of intensive care stay was longer (27 vs 16.5 days; p = 0.025) in patients who failed weaning. The generalized linear regression model did not select any variables that could predict weaning failure. DTF was correlated with pH (RR 1.56 × 1027; p = 0.002); Kelly-Matthay score (RR 353; p < 0.001); RASS (RR 2.11; p = 0.003); PaO2/FiO2 ratio (RR 1.03; p = 0.05); SAPS2 (RR 0.71; p = 0.005); hospital and ICU length of stay (RR 1.22 and 0.79, respectively; p < 0.001 and p = 0.004).
Conclusions
DTF in COVID-19 patients was not predictive of weaning failure from mechanical ventilation, and larger studies are needed to evaluate it in clinical practice further.
Registered: ClinicalTrial.gov (NCT05019313, 24 August 2021).
Collapse
|
7
|
Lyu Q, Wen Y, He B, Zhang X, Chen J, Sun Y, Zhao Y, Xu L, Xiao Q, Deng H. The ameliorating effects of metformin on disarrangement ongoing in gastrocnemius muscle of sarcopenic and obese sarcopenic mice. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166508. [PMID: 35905940 DOI: 10.1016/j.bbadis.2022.166508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
Sarcopenia and obese sarcopenia are increasingly prevalent chronic diseases with multifactorial pathogenesis, and no approved therapeutic drug to date. In the established sarcopenic mice models, muscle weakness, ectopic lipid deposition, and inflammatory responses in both serum and gastrocnemius muscle were observed, which were even deteriorated in obese sarcopenic models. With metformin intervention for 5 months, metformin exhibited benefits and restoring effects on gastrocnemius muscle of sarcopenic mice, but less effective on that of obese sarcopenic mice, as reflected in the increased percentage of muscle mass and enlarged fiber cross-sectional area, enhanced grip strength and exercise capacities, as well as the ameliorated ectopic lipid deposition and partially restored level of TNF-α, IL-1β, IL-6, MCP-1 and IL-1α, which may be via the activation of phospho-AMPKα (Thr172). The significant up-regulated mRNA and protein level of lipolysis related proteins like hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) may contribute to the ameliorated ectopic lipid deposition with metformin intervention. The uptake of free fatty acid may be also inhibited in obese sarcopenic mice with metformin administration, as reflected in down-regulated mRNA and protein level of fatty acid transporter CD36. Furthermore, NF-κB signaling pathway was involved in the anti-inflammatory effect of metformin. These findings suggest that metformin treatment may be conducive to the prevention of age-related sarcopenia by regulating lipid metabolism in skeletal muscle, i.e. enhanced lipolysis and attenuated hyper-inflammatory responses, which may be AMPK-dependent processes. Moreover, high-fat diet would aggravate the damage to ageing in skeletal muscles and reduced their reactivity to metformin.
Collapse
Affiliation(s)
- Qiong Lyu
- Department of General Practice, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China.
| | - Ya Wen
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77 Stockholm, Sweden
| | - Bin He
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Xiang Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77 Stockholm, Sweden
| | - Jinliang Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Yuxing Zhao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Lingjie Xu
- Department of General Practice, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Huisheng Deng
- Department of General Practice, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| |
Collapse
|
8
|
The Possible Impact of COVID-19 on Respiratory Muscles Structure and Functions: A Literature Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14127446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The impact of SARS-CoV-2 infection on respiratory muscle functions is an important area of recent enquiry. COVID-19 has effects on the respiratory muscles. The diaphragm muscle is perturbed indirectly due to the mechanical-ventilation-induced-disuse, but also by direct mechanisms linked with SARS-CoV-2 viral infection. In this sense, a deeper understanding of the possible links between COVID-19 and alterations in structure and functions of the respiratory muscles may increase the success rate of preventive and supportive strategies. Ultrasound imaging alongside respiratory muscle strength tests and pulmonary function assessment are valid approaches to the screening and monitoring of disease, for mild to severe patients. The aim of the present review is to highlight the current literature regarding the links between COVID-19 and respiratory muscle functions. We examine from the pathophysiological aspects of disease, up to approaches taken to monitor and rehabilitate diseased muscle. We hope this work will add to a greater understanding of the pathophysiology and disease management of respiratory muscle pathology subsequent to SARS-CoV-2 infection.
Collapse
|
9
|
Wen Y, Zhang X, Larsson L. Metabolomic Profiling of Respiratory Muscles and Lung in Response to Long-Term Controlled Mechanical Ventilation. Front Cell Dev Biol 2022; 10:849973. [PMID: 35392172 PMCID: PMC8981387 DOI: 10.3389/fcell.2022.849973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/06/2022] [Indexed: 11/13/2022] Open
Abstract
Critical illness myopathy (CIM) and ventilator-induced diaphragm dysfunction (VIDD) are characterized by severe muscle wasting, muscle paresis, and extubation failure with subsequent increased medical costs and mortality/morbidity rates in intensive care unit (ICU) patients. These negative effects in response to modern critical care have received increasing attention, especially during the current COVID-19 pandemic. Based on experimental and clinical studies from our group, it has been hypothesized that the ventilator-induced lung injury (VILI) and the release of factors systemically play a significant role in the pathogenesis of CIM and VIDD. Our previous experimental/clinical studies have focused on gene/protein expression and the effects on muscle structure and regulation of muscle contraction at the cell and motor protein levels. In the present study, we have extended our interest to alterations at the metabolomic level. An untargeted metabolomics approach was undertaken to study two respiratory muscles (diaphragm and intercostal muscle) and lung tissue in rats exposed to five days controlled mechanical ventilation (CMV). Metabolomic profiles in diaphragm, intercostal muscles and lung tissue were dramatically altered in response to CMV, most metabolites of which belongs to lipids and amino acids. Some metabolites may possess important biofunctions and play essential roles in the metabolic alterations, such as pyruvate, citrate, S-adenosylhomocysteine, alpha-ketoglutarate, glycerol, and cysteine. Metabolic pathway enrichment analysis identified pathway signatures of each tissue, such as decreased metabolites of dipeptides in diaphragm, increased metabolites of branch-chain amino acid metabolism and purine metabolism in intercostals, and increased metabolites of fatty acid metabolism in lung tissue. These metabolite alterations may be associated with an accelerated myofibrillar protein degradation in the two respiratory muscles, an active inflammatory response in all tissues, an attenuated energy production in two respiratory muscles, and enhanced energy production in lung. These results will lay the basis for future clinical studies in ICU patients and hopefully the discovery of biomarkers in early diagnosis and monitoring, as well as the identification of future therapeutic targets.
Collapse
Affiliation(s)
- Ya Wen
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden
| | - Xiang Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Bioclinicum, Stockholm, Sweden
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Bioclinicum, Stockholm, Sweden
| |
Collapse
|