1
|
Shi L, Yu M, Jin Y, Chen P, Mu G, Tam SH, Cho M, Tornetta M, Han C, Fung MC, Chiu ML, Zhang D. A novel monoclonal antibody against human thymic stromal lymphopoietin for the treatment of TSLP-mediated diseases. Front Immunol 2024; 15:1442588. [PMID: 39726595 PMCID: PMC11670205 DOI: 10.3389/fimmu.2024.1442588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Thymic stromal lymphopoietin (TSLP) is a master regulator of allergic inflammation against pathogens at barrier surfaces of the lung, skin, and gut. However, aberrant TSLP activity is implicated in various allergic, chronic inflammation and autoimmune diseases and cancers. Biologics drugs neutralizing excess TSLP activity represented by tezepelumab have been approved for severe asthma and are being evaluated for the treatments of other TSLP-mediated diseases. Methods and results In this study, we discovered and characterized a novel humanized anti-TSLP antibody TAVO101 with high binding affinity to human TSLP, which blocks TSLP binding to its receptor complexes on cell surface. TAVO101 showed potent neutralization of TSLP activities in the TSLP-driven STAT5 reporter assay and cell proliferation assay. Results from ex vivo studies showed that TAVO101 neutralized TSLP-mediated CCL17 release from primary human CD1c+ dendritic cells and proliferation of activated CD4+ T cells. In addition, TAVO101 showed strong efficacy in both TSLP/OVA-induced asthma and imiquimod induced psoriasis models in hTSLP/hTSLPR double knock-in mice. We further conducted Fc engineering to optimize TAVO101 antibody with reduced affinity to Fcγ receptors and C1q protein but with increased affinity to FcRn receptor for half-life extension. Discussion By recognizing a different epitope, similarly potent neutralization of TSLP activities, and longer circulating half-life than tezepelumab, novel anti-TSLP antibody TAVO101 offers a potential best-in class therapeutics for various TSLP-mediated diseases.
Collapse
Affiliation(s)
- Lihua Shi
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Mingcan Yu
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Ying Jin
- Tavotek Biotherapeutics, Inc., Suzhou, Jiangsu, China
| | - Peng Chen
- Tavotek Biotherapeutics, Inc., Suzhou, Jiangsu, China
| | - Guangmao Mu
- Tavotek Biotherapeutics, Inc., Suzhou, Jiangsu, China
| | - Susan H. Tam
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Minseon Cho
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Mark Tornetta
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Chao Han
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Man-Cheong Fung
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Mark L. Chiu
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Di Zhang
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| |
Collapse
|
2
|
Clark JJ, Hoxie I, Adelsberg DC, Sapse IA, Andreata-Santos R, Yong JS, Amanat F, Tcheou J, Raskin A, Singh G, González-Domínguez I, Edgar JE, Bournazos S, Sun W, Carreño JM, Simon V, Ellebedy AH, Bajic G, Krammer F. Protective effect and molecular mechanisms of human non-neutralizing cross-reactive spike antibodies elicited by SARS-CoV-2 mRNA vaccination. Cell Rep 2024; 43:114922. [PMID: 39504245 DOI: 10.1016/j.celrep.2024.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/22/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Neutralizing antibodies correlate with protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection against disease progression. Non-neutralizing antibodies cannot directly protect against infection but may recruit effector cells and thus contribute to the clearance of infected cells. Additionally, they often bind conserved epitopes across multiple variants. Here, we characterize 42 human monoclonal antibodies (mAbs) from coronavirus disease 2019 (COVID-19)-vaccinated individuals. Most of these antibodies exhibit no neutralizing activity in vitro, but several non-neutralizing antibodies provide protection against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs shows a clear dependence on Fc-mediated effector functions. We have determined the structures of three non-neutralizing antibodies, with two targeting the receptor-binding domain and one that binds the subdomain 1 region. Our data confirm the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective.
Collapse
Affiliation(s)
- Jordan J Clark
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Irene Hoxie
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel C Adelsberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Iden A Sapse
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Andreata-Santos
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Retrovirology Laboratory, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP 04023-062, Brazil
| | - Jeremy S Yong
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ariel Raskin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Julia E Edgar
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Rodriguez C, Sarrett SM, Sebastiano J, Delaney S, McGlone SA, Hosny MM, Thau S, Bournazos S, Zeglis BM. Exploring the Interplay Between Radioimmunoconjugates and Fcγ Receptors in Genetically Engineered Mouse Models of Cancer. ACS Pharmacol Transl Sci 2024; 7:3452-3461. [PMID: 39539260 PMCID: PMC11555515 DOI: 10.1021/acsptsci.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Fcγ receptors (FcγR) are responsible for many of the interactions between immunoglobulins (IgG) and immune cells. In biomedicine, this interplay is critical to the activity of several types of immunotherapeutics; however, relatively little is known about how FcγRs affect the in vivo performance of radiolabeled antibodies. A handful of recent preclinical studies suggest that binding by FcγR-and particularly FcγRI-can affect the pharmacokinetic profiles of 89Zr-labeled radioimmunoconjugates, but there are no extant studies in immunocompetent or genetically engineered mouse models of cancer. In the investigation at hand, we synthesized and characterized 89Zr-labeled probes based on wild-type and aglycosylated variants of the CA19-9-targeting antibody 5B1 and evaluated their in vivo behavior in several murine models of cancer, including immunocompetent and FcγR-humanized mice. The aglycosylated desferrioxamine (DFO)-bearing immunoconjugate DFO-N297A5B1 displayed identical binding to CA19-9-expressing cells compared to its wild-type analogue (DFO-5B1) but exhibited dramatically attenuated affinity for several FcγR. Positron emission tomography imaging and biodistribution studies with [89Zr]Zr-DFO-5B1 and [89Zr]Zr-DFO-N297A5B1 were subsequently performed in several strains of mice bearing CA19-9-expressing BxPC3 human pancreatic ductal adenocarcinoma and B16F10-FUT3 murine melanoma xenografts. Significant differences in the pharmacokinetics of the two radioimmunoconjugates were observed in tumor-bearing immunocompromised NSG mice, but these differences failed to materialize in immunocompetent C57BL/6 and FcγR-humanized C57BL/6 mice with B16F10-FUT3 xenografts. We hypothesize that these observations are related to the presence or absence of endogenous IgG. NSG mice completely lack endogenous IgG, and thus their mFcγR are free to bind radioimmunoconjugates and alter their pharmacokinetic behavior. In contrast, C57BL/6 and FcγR-humanized C57BL/6 mice both have endogenous IgG that occupy their FcγR (murine for the former and human for the latter), precluding interactions with radioimmunoconjugates. Ultimately, these data suggest that understanding the interplay between radiolabeled antibodies and FcγR is critical during the preclinical evaluation of radioimmunoconjugates.
Collapse
Affiliation(s)
- Cindy Rodriguez
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United States
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York 10021, New York, United States
- Ph.D.
Program in Chemistry, Graduate Center of
City University of New York, New
York 10021, New York, United States
| | - Samantha M. Sarrett
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United States
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York 10021, New York, United States
- Ph.D.
Program in Biochemistry, Graduate Center
of City University of New York, New York 10021, New
York, United States
| | - Joni Sebastiano
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United States
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York 10021, New York, United States
- Ph.D.
Program in Biochemistry, Graduate Center
of City University of New York, New York 10021, New
York, United States
| | - Samantha Delaney
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United States
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York 10021, New York, United States
- Ph.D.
Program in Biochemistry, Graduate Center
of City University of New York, New York 10021, New
York, United States
| | - Shane A. McGlone
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United States
| | - Meena M. Hosny
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United States
| | - Sarah Thau
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United States
| | - Stylianos Bournazos
- Laboratory
of Molecular Genetics and Immunology, The
Rockefeller University, 1230 York Avenue, New York 10065, New York, United States
| | - Brian M. Zeglis
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United States
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York 10021, New York, United States
- Ph.D.
Program in Chemistry, Graduate Center of
City University of New York, New
York 10021, New York, United States
- Ph.D.
Program in Biochemistry, Graduate Center
of City University of New York, New York 10021, New
York, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York, United States
| |
Collapse
|
4
|
Wei Z, Li B, Wen X, Jakobsson V, Liu P, Chen X, Zhang J. Engineered Antibodies as Cancer Radiotheranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402361. [PMID: 38874523 PMCID: PMC11321656 DOI: 10.1002/advs.202402361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Indexed: 06/15/2024]
Abstract
Radiotheranostics is a rapidly growing approach in personalized medicine, merging diagnostic imaging and targeted radiotherapy to allow for the precise detection and treatment of diseases, notably cancer. Radiolabeled antibodies have become indispensable tools in the field of cancer theranostics due to their high specificity and affinity for cancer-associated antigens, which allows for accurate targeting with minimal impact on surrounding healthy tissues, enhancing therapeutic efficacy while reducing side effects, immune-modulating ability, and versatility and flexibility in engineering and conjugation. However, there are inherent limitations in using antibodies as a platform for radiopharmaceuticals due to their natural activities within the immune system, large size preventing effective tumor penetration, and relatively long half-life with concerns for prolonged radioactivity exposure. Antibody engineering can solve these challenges while preserving the many advantages of the immunoglobulin framework. In this review, the goal is to give a general overview of antibody engineering and design for tumor radiotheranostics. Particularly, the four ways that antibody engineering is applied to enhance radioimmunoconjugates: pharmacokinetics optimization, site-specific bioconjugation, modulation of Fc interactions, and bispecific construct creation are discussed. The radionuclide choices for designed antibody radionuclide conjugates and conjugation techniques and future directions for antibody radionuclide conjugate innovation and advancement are also discussed.
Collapse
Affiliation(s)
- Zhenni Wei
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
| | - Bingyu Li
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
| | - Xuejun Wen
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
| | - Vivianne Jakobsson
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Peifei Liu
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Departments of SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Institute of Molecular and Cell BiologyAgency for ScienceTechnologyand Research (A*STAR)61 Biopolis Drive, ProteosSingapore138673Singapore
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
| |
Collapse
|
5
|
Clark J, Hoxie I, Adelsberg DC, Sapse IA, Andreata-Santos R, Yong JS, Amanat F, Tcheou J, Raskin A, Singh G, González-Domínguez I, Edgar JE, Bournazos S, Sun W, Carreño JM, Simon V, Ellebedy AH, Bajic G, Krammer F. Protective effect and molecular mechanisms of human non-neutralizing cross-reactive spike antibodies elicited by SARS-CoV-2 mRNA vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582613. [PMID: 38464151 PMCID: PMC10925278 DOI: 10.1101/2024.02.28.582613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Neutralizing antibodies correlate with protection against SARS-CoV-2. Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection from disease progression. Non-neutralizing antibodies cannot directly protect from infection but may recruit effector cells thus contribute to the clearance of infected cells. Also, they often bind conserved epitopes across multiple variants. We characterized 42 human mAbs from COVID-19 vaccinated individuals. Most of these antibodies exhibited no neutralizing activity in vitro but several non-neutralizing antibodies protected against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs showed a clear dependence on Fc-mediated effector functions. We determined the structures of three non-neutralizing antibodies with two targeting the RBD, and one that targeting the SD1 region. Our data confirms the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective.
Collapse
Affiliation(s)
- Jordan Clark
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irene Hoxie
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel C. Adelsberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Iden A. Sapse
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Andreata-Santos
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Retrovirology Laboratory, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Jeremy S. Yong
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariel Raskin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Julia E. Edgar
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|