1
|
Fortier C, El-Hage C, Normand C, Hue ES, Sutton G, Marcillaud-Pitel C, Jeffers K, Bamford N, Oden E, Paillot R, Hartley C, Gilkerson J, Pronost S. Detection of Equine Parvovirus-Hepatitis Virus and Equine Hepacivirus in Archived Sera from Horses in France and Australia. Viruses 2024; 16:862. [PMID: 38932156 PMCID: PMC11209535 DOI: 10.3390/v16060862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Reports of newly discovered equine hepatotropic flavi- and parvoviruses have emerged throughout the last decade in many countries, the discovery of which has stimulated a great deal of interest and clinical research. Although commonly detected in horses without signs of disease, equine parvovirus hepatitis (EqPV-H) and equine hepacivirus (EqHV) have been associated with liver disease, including following the administration of contaminated anti-toxin. Our aim was to determine whether EqPV-H and EqHV are present in Australian horses and whether EqPV-H was present in French horses and to examine sequence diversity between strains of both viruses amongst infected horses on either side of the globe. Sera from 188 Australian horses and 256 French horses from horses with and without clinical signs of disease were collected. Twelve out of 256 (4.7%) and 6 out of 188 (3.2%) French and Australian horses, respectively, were positive for the molecular detection of EqPV-H. Five out of 256 (1.9%) and 21 out of 188 (11.2%) French and Australian horses, respectively, were positive for the molecular detection of EqHV. Australian strains for both viruses were genomically clustered, in contrast to strains from French horses, which were more broadly distributed. The findings of this preliminary survey, with the molecular detection of EqHV and EqPV-H in Australia and the latter in France, adds to the growing body of awareness regarding these recently discovered hepatotropic viruses. It has provided valuable information not just in terms of geographic endemicity but will guide equine clinicians, carers, and authorities regarding infectious agents and potential impacts of allogenic tissue contamination. Although we have filled many gaps in the world map regarding equine hepatotropic viruses, further prospective studies in this emerging field may be useful in terms of elucidating risk factors and pathogenesis of these pathogens and management of cases in terms of prevention and diagnosis.
Collapse
Affiliation(s)
- Christine Fortier
- LABÉO, 14280 Saint-Contest, France; (C.F.); (E.S.H.); (G.S.); (E.O.); (R.P.)
- Normandie Université, UNICAEN, Biotargen, 14280 Saint-Contest, France
| | - Charles El-Hage
- Centre for Equine Infectious Diseases, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (C.E.-H.); (K.J.); (N.B.); (C.H.); (J.G.)
| | - Camille Normand
- LABÉO, 14280 Saint-Contest, France; (C.F.); (E.S.H.); (G.S.); (E.O.); (R.P.)
- Normandie Université, UNICAEN, Biotargen, 14280 Saint-Contest, France
| | - Erika S. Hue
- LABÉO, 14280 Saint-Contest, France; (C.F.); (E.S.H.); (G.S.); (E.O.); (R.P.)
- Normandie Université, UNICAEN, Biotargen, 14280 Saint-Contest, France
| | - Gabrielle Sutton
- LABÉO, 14280 Saint-Contest, France; (C.F.); (E.S.H.); (G.S.); (E.O.); (R.P.)
- Cytokines and Adaptive Immunity Lab, Sainte-Justine University Hospital and Research Center, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Microbiology, Infectiology and Immunology Department, Faculty of Medicine, University of Montréal, Montreal, QC H3C 3J7, Canada
| | | | - Kim Jeffers
- Centre for Equine Infectious Diseases, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (C.E.-H.); (K.J.); (N.B.); (C.H.); (J.G.)
| | - Nicholas Bamford
- Centre for Equine Infectious Diseases, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (C.E.-H.); (K.J.); (N.B.); (C.H.); (J.G.)
| | - Elise Oden
- LABÉO, 14280 Saint-Contest, France; (C.F.); (E.S.H.); (G.S.); (E.O.); (R.P.)
| | - Romain Paillot
- LABÉO, 14280 Saint-Contest, France; (C.F.); (E.S.H.); (G.S.); (E.O.); (R.P.)
- Faculty of Science & Engineering, School of Agriculture, Animal & Environmental Sciences, Anglia Ruskin University (ARU Writtle), Lordship Road, Writtle Chelmsford CM1 3RR, UK
| | - Carol Hartley
- Centre for Equine Infectious Diseases, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (C.E.-H.); (K.J.); (N.B.); (C.H.); (J.G.)
| | - James Gilkerson
- Centre for Equine Infectious Diseases, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (C.E.-H.); (K.J.); (N.B.); (C.H.); (J.G.)
| | - Stéphane Pronost
- LABÉO, 14280 Saint-Contest, France; (C.F.); (E.S.H.); (G.S.); (E.O.); (R.P.)
- Normandie Université, UNICAEN, Biotargen, 14280 Saint-Contest, France
| |
Collapse
|
2
|
Nardini R, Pacchiarotti G, Svicher V, Salpini R, Bellocchi MC, Conti R, Sala MG, La Rocca D, Carioti L, Cersini A, Manna G, Scicluna MT. First National Prevalence in Italian Horse Population and Phylogenesis Highlight a Fourth Sub-Type Candidate of Equine Hepacivirus. Viruses 2024; 16:616. [PMID: 38675957 PMCID: PMC11054338 DOI: 10.3390/v16040616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Equine hepacivirus (EqHV, Flaviviridae, hepacivirus) is a small, enveloped RNA virus generally causing sub-clinical hepatitis with occasional fatalities. EqHV is reported in equids worldwide, but for Italy data are limited. To address this, a survey study was set up to estimate prevalence at a national level and among different production categories (equestrian; competition; work and meat; reproduction) and national macro-regions (North, Central, South, and Islands). Data obtained testing 1801 horse serum samples by Real-Time RT PCR were compared within the categories and regions. The NS3 fragment of the PCR-positive samples was sequenced by Sanger protocol for phylogenetic and mutational analysis. The tertiary structure of the NS3 protein was also assessed. The estimated national prevalence was 4.27% [1.97-6.59, 95% CI] and no statistical differences were detected among production categories and macro-regions. The phylogenesis confirmed the distribution in Italy of the three known EqHV subtypes, also suggesting a possible fourth sub-type that, however, requires further confirmation. Mutational profiles that could also affect the NS3 binding affinity to the viral RNA were detected. The present paper demonstrates that EqHV should be included in diagnostic protocols when investigating causes of hepatitis, and in quality control protocols for blood derived products due to its parental transmission.
Collapse
Affiliation(s)
- Roberto Nardini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (G.P.); (R.C.); (M.G.S.); (D.L.R.); (A.C.); (G.M.); (M.T.S.)
| | - Giulia Pacchiarotti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (G.P.); (R.C.); (M.G.S.); (D.L.R.); (A.C.); (G.M.); (M.T.S.)
| | - Valentina Svicher
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (M.C.B.); (L.C.)
| | - Maria Concetta Bellocchi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (M.C.B.); (L.C.)
| | - Raffaella Conti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (G.P.); (R.C.); (M.G.S.); (D.L.R.); (A.C.); (G.M.); (M.T.S.)
| | - Marcello Giovanni Sala
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (G.P.); (R.C.); (M.G.S.); (D.L.R.); (A.C.); (G.M.); (M.T.S.)
| | - Davide La Rocca
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (G.P.); (R.C.); (M.G.S.); (D.L.R.); (A.C.); (G.M.); (M.T.S.)
| | - Luca Carioti
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (M.C.B.); (L.C.)
| | - Antonella Cersini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (G.P.); (R.C.); (M.G.S.); (D.L.R.); (A.C.); (G.M.); (M.T.S.)
| | - Giuseppe Manna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (G.P.); (R.C.); (M.G.S.); (D.L.R.); (A.C.); (G.M.); (M.T.S.)
| | | | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (G.P.); (R.C.); (M.G.S.); (D.L.R.); (A.C.); (G.M.); (M.T.S.)
| |
Collapse
|
3
|
Cavalleri JV, Korbacska‐Kutasi O, Leblond A, Paillot R, Pusterla N, Steinmann E, Tomlinson J. European College of Equine Internal Medicine consensus statement on equine flaviviridae infections in Europe. Vet Med (Auckl) 2022; 36:1858-1871. [DOI: 10.1111/jvim.16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Jessika‐M. V. Cavalleri
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
| | - Orsolya Korbacska‐Kutasi
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
- Department for Animal Breeding, Nutrition and Laboratory Animal Science University of Veterinary Medicine Budapest Hungary
- Hungarian Academy of Sciences—Szent Istvan University (MTA‐SZIE) Large Animal Clinical Research Group Üllő Dóra major Hungary
| | - Agnès Leblond
- EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRAE, VetAgro Sup University of Lyon Marcy l'Etoile France
| | - Romain Paillot
- School of Equine and Veterinary Physiotherapy Writtle University College Chelmsford UK
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine University of California Davis California USA
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Faculty of Medicine Ruhr University Bochum Bochum Germany
| | - Joy Tomlinson
- Baker Institute for Animal Health Cornell University College of Veterinary Medicine Ithaca New York USA
| |
Collapse
|
4
|
Gömer A, Delarocque J, Puff C, Nocke MK, Reinecke B, Baumgärtner W, Cavalleri JMV, Feige K, Steinmann E, Todt D. Dose-Dependent Hepacivirus Infection Reveals Linkage between Infectious Dose and Immune Response. Microbiol Spectr 2022; 10:e0168622. [PMID: 35993785 PMCID: PMC9602444 DOI: 10.1128/spectrum.01686-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/03/2022] [Indexed: 12/31/2022] Open
Abstract
More than 70 million people worldwide are still infected with the hepatitis C virus 30 years after its discovery, underscoring the need for a vaccine. To develop an effective prophylactic vaccine, detailed knowledge of the correlates of protection and an immunocompetent surrogate model are needed. In this study, we describe the minimum dose required for robust equine hepacivirus (EqHV) infection in equids and examined how this relates to duration of infection, seroconversion, and transcriptomic responses. To investigate mechanisms of hepaciviral persistence, immune response, and immune-mediated pathology, we inoculated eight EqHV naive horses with doses ranging from 1-2 copies to 1.3 × 106 RNA copies per inoculation. We characterized infection kinetics, pathology, and transcriptomic responses via next generation sequencing. The minimal infectious dose of EqHV in horses was estimated at 13 RNA copies, whereas 6 to 7 copies were insufficient to cause infection. Peak viremia did not correlate with infectious dose, while seroconversion and duration of infection appeared to be affected. Notably, seroconversion was undetectable in the low-dose infections within the surveillance period (40 to 50 days). In addition, transcriptomic analysis revealed a nearly dose-dependent effect, with greater immune activation and inflammatory response observed in high-dose infections than in low-dose infections. Interestingly, inoculation with 6-7 copies of RNA that did not result in productive infection, but was associated with a strong immune response, similar to that observed in the high-dose infections. IMPORTANCE We demonstrate that the EqHV dose of infection plays an important role for inducing immune responses, possibly linked to early clearance in high-dose and prolonged viremia in low-dose infections. In particular, pathways associated with innate and adaptive immune responses, as well as inflammatory responses, were more strongly upregulated in high-dose infections than in lower doses. Hence, inoculation with low doses may enable EqHV to evade strong immune responses in the early phase and therefore promote robust, long-lasting infection.
Collapse
Affiliation(s)
- André Gömer
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Julien Delarocque
- Clinic for Horses, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Maximilian K. Nocke
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Birthe Reinecke
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hanover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Jessika M. V. Cavalleri
- Clinical Section of Equine Internal Medicine, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| |
Collapse
|
5
|
Pacchiarotti G, Nardini R, Scicluna MT. Equine Hepacivirus: A Systematic Review and a Meta-Analysis of Serological and Biomolecular Prevalence and a Phylogenetic Update. Animals (Basel) 2022; 12:2486. [PMID: 36230228 PMCID: PMC9558973 DOI: 10.3390/ani12192486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Viral hepatitis has recently assumed relevance for equine veterinary medicine since a variety of new viruses have been discovered. Equine Hepacivirus (EqHV) is an RNA virus belonging to the Flaviviridae family that can cause subclinical hepatitis in horses, occasionally evolving into a chronic disease. EqHV, to date, is considered the closest known relative of human HCV. EqHV has been reported worldwide therefore assessing its features is relevant, considering both the wide use of blood products and transfusions in veterinary therapies and its similitude to HCV. The present review resumes the actual knowledge on EqHV epidemiology, risk factors and immunology, together with potential diagnostics and good practices for prevention. Moreover, adhering to PRISMA guidelines for systematic reviews a meta-analysis of serological and biomolecular prevalence and an updated phylogenetic description is presented as a benchmark for further studies.
Collapse
|
6
|
Meister TL, Arroyo LG, Shanahan R, Papapetrou MA, Reinecke B, Brüggemann Y, Todt D, Stang A, Hazlett M, Baird JD, Steinmann E. Infection of young foals with Equine Parvovirus-Hepatitis following a fatal non-biologic case of Theiler's disease. Vet Microbiol 2022; 274:109557. [PMID: 36088712 DOI: 10.1016/j.vetmic.2022.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 10/31/2022]
Abstract
Theiler's disease (TD) is a (sub-)acute hepatitis in adult horses and one of the most common causes of acute hepatic failure. Recent findings indicate that equine parvovirus hepatitis (EqPV-H) likely causes TD and that its transmission occurs via iatrogenic and/or natural routes. Following the death of an EqPV-H positive mare with TD, close-contact mares and foals in the same paddock were monitored to evaluate if there was any evidence of EqPV-H. For this purpose, the serum of close contact horses was examined 6 and 42 days after the mare's death for the presence of EqPV-H DNA and changes in liver-associated serum biochemical parameters. The foals had higher EqPV-H viral loads than the mares. Apart from the mare that was euthanized, none of the horses included in this study showed signs of severe disease and nor did they have particularly elevated liver enzymes. Nucleotide sequence analysis revealed no major differences between the viral DNA detected in the serum of the dead mare and any of the in-contact horses. In conclusion, our data confirmed previous findings that horizontal transmission of EqPV-H may occur through close contact between horses.
Collapse
Affiliation(s)
- Toni Luise Meister
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Luis G Arroyo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Rachel Shanahan
- Port Perry Veterinary Services, 1589 King Street, Prince Albert, Ontario L9L 1C2, Canada
| | - Maria A Papapetrou
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Birthe Reinecke
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany
| | - Yannick Brüggemann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801, Bochum, Germany; European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany
| | - Alexander Stang
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Murray Hazlett
- Animal Health Laboratory, Laboratory Services, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - John D Baird
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801, Bochum, Germany.
| |
Collapse
|
7
|
An Equine Model for Vaccination against a Hepacivirus: Insights into Host Responses to E2 Recombinant Protein Vaccination and Subsequent Equine Hepacivirus Inoculation. Viruses 2022; 14:v14071401. [PMID: 35891381 PMCID: PMC9318657 DOI: 10.3390/v14071401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 12/10/2022] Open
Abstract
Equine hepacivirus (EqHV) is the closest known genetic homologue of hepatitis C virus. An effective prophylactic vaccine is currently not available for either of these hepaciviruses. The equine as potential surrogate model for hepacivirus vaccine studies was investigated, while equine host responses following vaccination with EqHV E2 recombinant protein and subsequent EqHV inoculation were elucidated. Four ponies received prime and booster vaccinations (recombinant protein, adjuvant) four weeks apart (day −55 and −27). Two control ponies received adjuvant only. Ponies were inoculated with EqHV RNA-positive plasma on day 0. Blood samples and liver biopsies were collected over 26 weeks (day −70 to +112). Serum analyses included detection of EqHV RNA, isotypes of E2-specific immunoglobulin G (IgG), nonstructural protein 3-specific IgG, haematology, serum biochemistry, and metabolomics. Liver tissue analyses included EqHV RNA detection, RNA sequencing, histopathology, immunohistochemistry, and fluorescent in situ hybridization. Al-though vaccination did not result in complete protective immunity against experimental EqHV inoculation, the majority of vaccinated ponies cleared the serum EqHV RNA earlier than the control ponies. The majority of vaccinated ponies appeared to recover from the EqHV-associated liver insult earlier than the control ponies. The equine model shows promise as a surrogate model for future hepacivirus vaccine research.
Collapse
|
8
|
Hepatic Enzyme Profile in Horses. Animals (Basel) 2022; 12:ani12070861. [PMID: 35405850 PMCID: PMC8996839 DOI: 10.3390/ani12070861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/29/2022] Open
Abstract
For diagnostic purposes, liver enzymes are usually classified into hepatocellular and cholestatic. These two groups of equine liver-specific enzymes include sorbitol dehydrogenase (SDH), glutamate dehydrogenase (GLDH), γ-glutamyl transferase (GGT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP). SDH and GLDH mostly reflect hepatocellular injury and cholestasis, while GGT expresses high values in biliary necrosis or hyperplasia. Likewise, AST, LDH, and ALP also reflect hepatocellular and biliary disease, but these enzymes are not liver specific. From the clinical point of view of the course of liver or biliary disease, AST and ALP are indicative of chronic disease, whereas SDH, GGT, and GLDH indicate an acute course. The patterns of enzymatic changes at the blood level are associated with different types of liver pathologies (infectious, inflammatory, metabolic, toxic, etc.). Increases in hepatocellular versus biliary enzyme activities are indicative of a particular process. There are different ways to diagnose alterations at the hepatic level. These include the evaluation of abnormalities in the predominant pattern of hepatocellular versus cholestatic enzyme abnormalities, the mild, moderate, or marked (5−10-fold or >10-fold) increase in enzyme abnormality concerning the upper limit of the reference range, the evolution over time (increase or decrease) and the course of the abnormality (acute or chronic).
Collapse
|
9
|
Gömer A, Brown RJP, Pfaender S, Deterding K, Reuter G, Orton R, Seitz S, Bock CT, Cavalleri JMV, Pietschmann T, Wedemeyer H, Steinmann E, Todt D. OUP accepted manuscript. Virus Evol 2022; 8:veac007. [PMID: 35242360 PMCID: PMC8887644 DOI: 10.1093/ve/veac007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Even 30 years after the discovery of the hepatitis C virus (HCV) in humans there is still no vaccine available. Reasons for this include the high mutation rate of HCV, which allows the virus to escape immune recognition and the absence of an immunocompetent animal model for vaccine development. Phylogenetically distinct hepaciviruses (genus Hepacivirus, family Flaviviridae) have been isolated from diverse species, each with a narrow host range: the equine hepacivirus (EqHV) is the closest known relative of HCV. In this study, we used amplicon-based deep-sequencing to investigate the viral intra-host population composition of the genomic regions encoding the surface glycoproteins E1 and E2. Patterns of E1E2 substitutional evolution were compared in longitudinally sampled EqHV-positive sera of naturally and experimentally infected horses and HCV-positive patients. Intra-host virus diversity was higher in chronically than in acutely infected horses, a pattern which was similar in the HCV-infected patients. However, overall glycoprotein variability was higher in HCV compared to EqHV. Additionally, selection pressure in HCV populations was higher, especially within the N-terminal region of E2, corresponding to the hypervariable region 1 (HVR1) in HCV. An alignment of glycoprotein sequences from diverse hepaciviruses identified the HVR1 as a unique characteristic of HCV: hepaciviruses from non-human species lack this region. Together, these data indicate that EqHV infection of horses could represent a powerful surrogate animal model to gain insights into hepaciviral evolution and HCVs HVR1-mediated immune evasion strategy.
Collapse
Affiliation(s)
| | | | - Stephanie Pfaender
- Department for Molecular and Medical Virology, Ruhr University Bochum, Universitätsstr. 150, Bochum 44801, Germany
| | - Katja Deterding
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
- German Center for Infectious Disease Research (DZIF), HepNet Study-House, Hannover 30625, Germany
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., Pécs 7624, Hungary
| | | | - Stefan Seitz
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg 69120, Germany
| | - C- Thomas Bock
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin 13353, Germany
| | - Jessika M V Cavalleri
- Clinical Unit of Equine Internal Medicine, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna 1210, Austria
| | - Thomas Pietschmann
- Twincore, Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, Hannover 30625, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig Site, Hannover 30625, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover 30625, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
- German Center for Infectious Disease Research (DZIF), HepNet Study-House, Hannover 30625, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Universitätsstr. 150, Bochum 44801, Germany
| | | |
Collapse
|
10
|
Yoon J, Park T, Kim A, Song H, Park BJ, Ahn HS, Go HJ, Kim DH, Lee JB, Park SY, Song CS, Lee SW, Choi IS. First report of equine parvovirus-hepatitis and equine hepacivirus coinfection in horses in Korea. Transbound Emerg Dis 2021; 69:2735-2746. [PMID: 34919324 DOI: 10.1111/tbed.14425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 01/11/2023]
Abstract
Equine parvovirus-hepatitis (EqPV-H) and equine hepacivirus (EqHV) are etiologically associated with Theiler's disease (TD), causing fulminant equine hepatitis, but the transmission route and co-infection effect remain unclear. We determined EqPV-H and EqHV prevalence and coinfection rate in 160 serum and 114 faecal samples using nested polymerase chain reaction. Amino acid and nucleotide analyses were performed and phylogenetic trees were constructed. By measuring liver-specific parameters (AST, GGT, TBIL and A/G ratio), hepatopathological changes in viremia status were compared. We found a high prevalence (EqPV-H: 10.6% in serum, 5.3% in faeces; EqHV: 8.1% in serum) and coinfection rate (35.3% in EqPV-H) of TD-causing agents. The newly identified EqPV-H genomes showed high nucleotide and amino acid similarities with previously reported strains in the USA, China and Austria. In phylogenetic tree and recombination analysis, a natural recombination event was confirmed between Chinese and Korean strains. In the EqPV-H or EqHV viremic horses, AST was significantly elevated and at least two liver-specific parameters were outside the reference intervals in 43.5% (10/23) of horses. To our knowledge, this is the first prevalence field study of EqPV-H and EqHV using both serum and faeces, providing further evidence of faecal-oral transmission of TD. These epidemiologic and clinicopathologic analyses specify the risk factors of TD infection and promote disease prevention strategy.
Collapse
Affiliation(s)
- Jungho Yoon
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju, Korea.,Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Taemook Park
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju, Korea
| | - Ahram Kim
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju, Korea
| | - Heeeun Song
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju, Korea
| | - Byung-Joo Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Hee-Seop Ahn
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Hyeon-Jeong Go
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Dong-Hwi Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Joong-Bok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Seung-Yong Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Chang-Seon Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Sang-Won Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| |
Collapse
|
11
|
Tomlinson JE, Wolfisberg R, Fahnøe U, Patel RS, Trivedi S, Kumar A, Sharma H, Nielsen L, McDonough SP, Bukh J, Tennant BC, Kapoor A, Rosenberg BR, Rice CM, Divers TJ, Van de Walle GR, Scheel TK. Pathogenesis, MicroRNA-122 Gene-Regulation, and Protective Immune Responses After Acute Equine Hepacivirus Infection. Hepatology 2021; 74:1148-1163. [PMID: 33713356 PMCID: PMC8435542 DOI: 10.1002/hep.31802] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Equine hepacivirus (EqHV) is phylogenetically the closest relative of HCV and shares genome organization, hepatotropism, transient or persistent infection outcome, and the ability to cause hepatitis. Thus, EqHV studies are important to understand equine liver disease and further as an outbred surrogate animal model for HCV pathogenesis and protective immune responses. Here, we aimed to characterize the course of EqHV infection and associated protective immune responses. APPROACH AND RESULTS Seven horses were experimentally inoculated with EqHV, monitored for 6 months, and rechallenged with the same and, subsequently, a heterologous EqHV. Clearance was the primary outcome (6 of 7) and was associated with subclinical hepatitis characterized by lymphocytic infiltrate and individual hepatocyte necrosis. Seroconversion was delayed and antibody titers waned slowly. Clearance of primary infection conferred nonsterilizing immunity, resulting in shortened duration of viremia after rechallenge. Peripheral blood mononuclear cell responses in horses were minimal, although EqHV-specific T cells were identified. Additionally, an interferon-stimulated gene signature was detected in the liver during EqHV infection, similar to acute HCV in humans. EqHV, as HCV, is stimulated by direct binding of the liver-specific microRNA (miR), miR-122. Interestingly, we found that EqHV infection sequesters enough miR-122 to functionally affect gene regulation in the liver. This RNA-based mechanism thus could have consequences for pathology. CONCLUSIONS EqHV infection in horses typically has an acute resolving course, and the protective immune response lasts for at least a year and broadly attenuates subsequent infections. This could have important implications to achieve the primary goal of an HCV vaccine; to prevent chronicity while accepting acute resolving infection after virus exposure.
Collapse
Affiliation(s)
- Joy E. Tomlinson
- Baker Institute for Animal HealthCornell University College of Veterinary MedicineIthacaNY
| | - Raphael Wolfisberg
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Roosheel S. Patel
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Sheetal Trivedi
- Center for Vaccines and ImmunityResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Arvind Kumar
- Center for Vaccines and ImmunityResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Himanshu Sharma
- Center for Vaccines and ImmunityResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Louise Nielsen
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Sean P. McDonough
- Department of Biomedical SciencesCornell University College of Veterinary MedicineIthacaNY
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Bud C. Tennant
- Department of Clinical SciencesCornell University College of Veterinary MedicineIthacaNY
| | - Amit Kapoor
- Center for Vaccines and ImmunityResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Brad R. Rosenberg
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Charles M. Rice
- Laboratory of Virology and Infectious DiseaseThe Rockefeller UniversityNew YorkNY
| | - Thomas J. Divers
- Department of Clinical SciencesCornell University College of Veterinary MedicineIthacaNY
| | | | - Troels K.H. Scheel
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark,Laboratory of Virology and Infectious DiseaseThe Rockefeller UniversityNew YorkNY
| |
Collapse
|
12
|
Abbadi I, Lkhider M, Kitab B, Jabboua K, Zaidane I, Haddaji A, Nacer S, Matsuu A, Pineau P, Tsukiyama-Kohara K, Benjelloun S, Ezzikouri S. Non-primate hepacivirus transmission and prevalence: Novel findings of virus circulation in horses and dogs in Morocco. INFECTION GENETICS AND EVOLUTION 2021; 93:104975. [PMID: 34175479 DOI: 10.1016/j.meegid.2021.104975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
Non-primate hepacivirus (NPHV) is a homolog of hepatitis C virus and has been isolated from dogs and horses. Data on NPHV prevalence and distribution are not complete, and there is a particular lack of reports from the African continent. The present study represents the first investigation of NPHV prevalence in horses and dogs in North Africa. Blood was collected from 172 horses and 36 dogs at different locations in Morocco, and screened for NPHV RNA using nested PCR targeting 5'UTR and NS3 regions and analyzed for anti-NPHV NS3 antibody using a Gaussia luciferase immunoprecipitation system-to determine seroprevalence. Eight sequences of the NS3 region isolated from positive serum samples were targeted for phylogenetic analysis. Horses and dogs showed respective NPHV RNA positivity rates of 10.5% and 5.5%, and seroprevalences of 65.7% and 8.33%. Juvenile horses appeared more susceptible to infection, with a 23.5% NHPV RNA positivity rate. Seropositivity was more extensive in mares than stallions (77.14% vs. 46.27%, p < 0.0001). Phylogenetically, that NPHV NS3 genes isolated from horses and dog are clustered together. The NPHV strains we detected showed no correlation with geographic location within Morocco. In conclusion, Moroccan horses showed much evidence of previous and/or current NPHV infection, with young age and female sex as noted potential risk factors. Interestingly, NPHV is circulating in dogs as well as horses, suggesting that it has crossed species barriers and that horses and dogs are potential vectors by which an ancestor to hepatitis C virus was transmitted into human populations.
Collapse
Affiliation(s)
- Islam Abbadi
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco; Laboratory of Biosciences, School of Sciences and Technology, Mohammedia, Hassan II University of Casablanca, Morocco
| | - Mustapha Lkhider
- Laboratory of Biosciences, School of Sciences and Technology, Mohammedia, Hassan II University of Casablanca, Morocco
| | - Bouchra Kitab
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | | | - Imane Zaidane
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Asmaa Haddaji
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Sabrine Nacer
- Laboratory of Biosciences, School of Sciences and Technology, Mohammedia, Hassan II University of Casablanca, Morocco
| | - Aya Matsuu
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Pascal Pineau
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, Paris, France
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
| |
Collapse
|
13
|
de Albuquerque PPLF, Santos LHS, Antunes D, Caffarena ER, Figueiredo AS. Structural insights into NS5B protein of novel equine hepaciviruses and pegiviruses complexed with polymerase inhibitors. Virus Res 2020; 278:197867. [PMID: 31972246 DOI: 10.1016/j.virusres.2020.197867] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 01/09/2023]
Abstract
Infections produced by hepaciviruses have been associated with liver disease in horses. Currently, at least three viruses belonging to the Flaviviridae family are capable of producing a chronic infection in equines: non-primate hepacivirus (NPHV), Theiler's disease-associated virus (TDAV), and equine pegivirus (EPgV). The RNA-dependent RNA polymerases of viruses (RdRp) (NS5 protein), from the flavivirus family, use de novo RNA synthesis to initiate synthesis. The two antiviral drugs currently used to treat hepatitis C (HCV), sofosbuvir and dasabuvir, act on the viral NS5B polymerase as nucleoside and non-nucleoside inhibitors, respectively. Both drugs have shown significant clinical inhibition of viral response. In this work, we aimed to model the NS5B polymerase of the equine hepacivirus (EHCV) subtypes 1 and 2, TDAV and EPgV, to assess whether current direct-acting antiviral drugs against HCV interact with these proteins. Crystal structures of HCV-NS5B were used as templates for modeling target sequences in both conformations (open and closed). Also, molecular docking of sofosbuvir and dasabuvir were performed to predict their possible binding modes at the modeled NS5B polymerase binding sites. We observed that the NS5B models of the EHCV and EPgV shared well-conserved 3D structures to HCV-NS5B and other RdRps, suggesting functional conservation. Interactions of EHCV subtypes 1, 2 and TDAV polymerases with sofosbuvir showed a similar molecular interaction pattern compared to HCV-NS5B, while interactions with dasabuvir were less conserved. In silico studies of molecular interactions between these modeled structures and sofosbuvir suggest that this compound could be efficient in combating equine pathogens, thus contributing to animal welfare.
Collapse
Affiliation(s)
| | - Lucianna H S Santos
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Deborah Antunes
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
| | - Ernesto Raul Caffarena
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica, Fiocruz, Rio de Janeiro, Brazil
| | - Andreza Soriano Figueiredo
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Badenhorst M, de Heus P, Auer A, Rümenapf T, Tegtmeyer B, Kolodziejek J, Nowotny N, Steinmann E, Cavalleri JMV. No Evidence of Mosquito Involvement in the Transmission of Equine Hepacivirus (Flaviviridae) in an Epidemiological Survey of Austrian Horses. Viruses 2019; 11:v11111014. [PMID: 31683893 PMCID: PMC6893842 DOI: 10.3390/v11111014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Prevalence studies have demonstrated a global distribution of equine hepacivirus (EqHV), a member of the family Flaviviridae. However, apart from a single case of vertical transmission, natural routes of EqHV transmission remain elusive. Many known flaviviruses are horizontally transmitted between hematophagous arthropods and vertebrate hosts. This study represents the first investigation of potential EqHV transmission by mosquitoes. More than 5000 mosquitoes were collected across Austria and analyzed for EqHV ribonucleic acid (RNA) by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Concurrently, 386 serum samples from horses in eastern Austria were analyzed for EqHV-specific antibodies by luciferase immunoprecipitation system (LIPS) and for EqHV RNA by RT-qPCR. Additionally, liver-specific biochemistry parameters were compared between EqHV RNA-positive horses and EqHV RNA-negative horses. Phylogenetic analysis was conducted in comparison to previously published sequences from various origins. No EqHV RNA was detected in mosquito pools. Serum samples yielded an EqHV antibody prevalence of 45.9% (177/386) and RNA prevalence of 4.15% (16/386). EqHV RNA-positive horses had significantly higher glutamate dehydrogenase (GLDH) levels (p = 0.013) than control horses. Phylogenetic analysis showed high similarity between nucleotide sequences of EqHV in Austrian horses and EqHV circulating in other regions. Despite frequently detected evidence of EqHV infection in Austrian horses, no viral RNA was found in mosquitoes. It is therefore unlikely that mosquitoes are vectors of this flavivirus.
Collapse
Affiliation(s)
- Marcha Badenhorst
- University Equine Clinic - Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Phebe de Heus
- University Equine Clinic - Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Angelika Auer
- Institute of Virology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Till Rümenapf
- Institute of Virology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Birthe Tegtmeyer
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Medical School Hannover (MHH) - Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Strasse 7, 30625 Hannover, Germany.
| | - Jolanta Kolodziejek
- Institute of Virology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14, Dubai Healthcare City, Dubai, UAE.
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Jessika-M V Cavalleri
- University Equine Clinic - Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
15
|
Detection and characterization of a novel hepacivirus in long-tailed ground squirrels (Spermophilus undulatus) in China. Arch Virol 2019; 164:2401-2410. [PMID: 31243554 DOI: 10.1007/s00705-019-04303-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
Rodent populations are known to be reservoirs of viruses with the potential to infect humans. However, a large number of such viruses remain undiscovered. In this study, we investigated the shedding of unknown viruses in long-tailed ground squirrel (Spermophilus undulatus) feces by high-throughput sequencing. A novel and highly divergent virus related to members of the genus Hepacivirus was identified in ground squirrel liver. This virus, tentatively named RHV-GS2015, was found to have a genome organization that is typical of hepaciviruses, including a long open reading frame encoding a polyprotein of 2763 aa. Sequence alignment of RHV-GS2015 with the most closely related hepaciviruses yielded p-distances of the NS3 and NS5B regions of 0.546 and 0.476, respectively, supporting the conclusion that RHV-GS2015 is a member of a new hepacivirus species, which we propose to be named "Hepacivirus P". Phylogenetic analysis of the NS3 and NS5B regions indicated that RHV-GS2015 shares common ancestry with other rodent hepaciviruses (species Hepacivirus E, and species Hepacivirus F), Norway rat hepacivirus 1 (species Hepacivirus G), and Norway rat hepacivirus 2 (species Hepacivirus H). A phylogenetic tree including the seven previously identified rodent hepaciviruses revealed extreme genetic heterogeneity among these viruses. RHV-GS2015 was detected in 7 out of 12 ground squirrel pools and was present in liver, lung, and spleen tissues. Furthermore, livers showed extremely high viral loads of RHV-GS2015, ranging from 2.5 × 106 to 2.0 × 108 copies/g. It is reasonable to assume that this novel virus is hepatotropic, like hepatitis C virus. The discovery of RHV-GS2015 extends our knowledge of the genetic diversity and host range of hepaciviruses, helping to elucidate their origins and evolution.
Collapse
|
16
|
Tomlinson JE, Van de Walle GR, Divers TJ. What Do We Know About Hepatitis Viruses in Horses? Vet Clin North Am Equine Pract 2019; 35:351-362. [PMID: 31084975 DOI: 10.1016/j.cveq.2019.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Theiler disease (serum hepatitis or idiopathic acute hepatic necrosis) has long been suspected to have a viral etiology. Four viruses have been described in association with hepatitis in horses. Further investigation suggests equine pegivirus and Theiler disease-associated virus (a second pegivirus) are neither hepatotropic nor pathogenic. Nonprimate hepacivirus (NPHV) causes subclinical disease in experimental models and has been associated with hepatitis in some clinical cases. Equine parvovirus-hepatitis (EqPV-H) experimentally causes subclinical-to-clinical liver disease and is found in the vast majority of Theiler disease cases. EqPV-H is likely of clinical significance, whereas the significance of NPHV is unknown.
Collapse
Affiliation(s)
- Joy E Tomlinson
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, 235 Hungerford Hill Road, Ithaca, NY 14853, USA.
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, 235 Hungerford Hill Road, Ithaca, NY 14853, USA
| | - Thomas J Divers
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, 930 Campus Road, Box25, Ithaca, NY 14853, USA
| |
Collapse
|
17
|
Figueiredo AS, de Moraes MVDS, Soares CC, Chalhoub FLL, de Filippis AMB, Dos Santos DRL, de Almeida FQ, Godoi TLOS, de Souza AM, Burdman TR, de Lemos ERS, Dos Reis JKP, Cruz OG, Pinto MA. First description of Theiler's disease-associated virus infection and epidemiological investigation of equine pegivirus and equine hepacivirus coinfection in Brazil. Transbound Emerg Dis 2019; 66:1737-1751. [PMID: 31017727 DOI: 10.1111/tbed.13210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/31/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023]
Abstract
Recent advances in the study of equine pegivirus (EPgV), Theiler's disease-associated virus (TDAV) and equine hepacivirus (EqHV) highlight their importance to veterinary and human health. To gain some insight into virus distribution, possible risk factors, presence of liver damage and genetic variability of these viruses in Brazil, we performed a cross-sectional study of EPgV and TDAV infections using a simultaneous detection assay, and assessed EqHV coinfection in different horse cohorts. Of the 500 serum samples screened, TDAV, EPgV and EPgV-EqHV were present in 1.6%, 14.2% and 18.3%, respectively. EPgV-positive horses were present in four Brazilian states: Espírito Santo, Mato Grosso do Sul, Minas Gerais and Rio de Janeiro. Serum biochemical alterations were present in 40.4% of EPgV-infected horses, two of them presenting current liver injury. Chance of infection was 2.7 times higher in horses ≤5 years old (p = 0.0008) and 4.9 times higher in horses raised under intensive production systems (p = 0.0009). EPgV-EqHV coinfection was 75% less likely in horses older than 5 years comparatively to those with ≤5 years old (p = 0.047). TDAV-positive animals were detected in different horse categories without biochemical alteration. Nucleotide sequences were highly conserved among isolates from this study and previous field and commercial product isolates (≥88% identity). Tree topology revealed the formation of two clades (pp = 1) for both EPgV and TDAV NS3 partial sequences. In conclusion, the widespread presence of EPgV-RNA suggests an enzootic infection with subclinical viremia in Brazil. Horse management can influence virus spread. This first report of TDAV-infected horses outside the USA reveals the existence of subclinical viremic horses in distant geographical regions. EPgV and TDAV have similar circulating isolates worldwide. These findings contribute to global efforts to understand the epidemiology and pathogenesis of these equine viruses.
Collapse
Affiliation(s)
- Andreza Soriano Figueiredo
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | - Tatianne Leme Oliveira Santos Godoi
- Coordenação de Produção Integrada ao Ensino, Pesquisa e Extensão, Reitoria, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Moreira de Souza
- Laboratório de Pesquisa Clínica e Diagnóstico Molecular Professor Marcílio Dias do Nascimento, Departamento de Patologia e Clínica Veterinária, Faculdade de Veterinária, Universidade Federal Fluminense, Niterói, Brazil
| | - Tatiana Rozental Burdman
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | - Marcelo Alves Pinto
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Tomlinson JE, Kapoor A, Kumar A, Tennant BC, Laverack MA, Beard L, Delph K, Davis E, Schott Ii H, Lascola K, Holbrook TC, Johnson P, Taylor SD, McKenzie E, Carter-Arnold J, Setlakwe E, Fultz L, Brakenhoff J, Ruby R, Trivedi S, Van de Walle GR, Renshaw RW, Dubovi EJ, Divers TJ. Viral testing of 18 consecutive cases of equine serum hepatitis: A prospective study (2014-2018). J Vet Intern Med 2018; 33:251-257. [PMID: 30520162 PMCID: PMC6335536 DOI: 10.1111/jvim.15368] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023] Open
Abstract
Background Three flaviviruses (equine pegivirus [EPgV]; Theiler's disease–associated virus [TDAV]; non‐primate hepacivirus [NPHV]) and equine parvovirus (EqPV‐H) are present in equine blood products; the TDAV, NPHV, and EqPV‐H have been suggested as potential causes of serum hepatitis. Objective To determine the prevalence of these viruses in horses with equine serum hepatitis. Animals Eighteen horses diagnosed with serum hepatitis, enrolled from US referral hospitals. Methods In the prospective case study, liver, serum, or both samples were tested for EPgV, TDAV, NPHV, and EqPV‐H by PCR. Results Both liver tissue and serum were tested for 6 cases, serum only for 8 cases, and liver only for 4 cases. Twelve horses received tetanus antitoxin (TAT) 4‐12.7 weeks (median = 8 weeks), 3 horses received commercial equine plasma 6‐8.6 weeks, and 3 horses received allogenic stem cells 6.4‐7.6 weeks before the onset of hepatic failure. All samples were TDAV negative. Two of 14 serum samples were NPHV‐positive. Six of 14 serum samples were EPgV‐positive. All liver samples were NPHV‐negative and EPgV‐negative. EqPV‐H was detected in the serum (N = 8), liver (N = 4), or both samples (N = 6) of all 18 cases. The TAT of the same lot number was available for virologic testing in 10 of 12 TAT‐associated cases, and all 10 samples were EqPV‐H positive. Conclusions and Clinical Importance We demonstrated EqPV‐H in 18 consecutive cases of serum hepatitis. EPgV, TDAV, and NPHV were not consistently present. This information should encourage blood product manufacturers to test for EqPV‐H and eliminate EqPV‐H–infected horses from their donor herds.
Collapse
Affiliation(s)
- Joy E Tomlinson
- Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Amit Kapoor
- Center for Vaccines and Immunity, Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Arvind Kumar
- Center for Vaccines and Immunity, Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Bud C Tennant
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Melissa A Laverack
- New York State Animal Health Diagnostic Center, Cornell University, Ithaca, New York
| | - Laurie Beard
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Katie Delph
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Elizabeth Davis
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Harold Schott Ii
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Kara Lascola
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Todd C Holbrook
- Department of Veterinary Clinical Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Philip Johnson
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Sandra D Taylor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana
| | - Erica McKenzie
- Department of Clinical Sciences, Oregon State University, Corvallis, Oregon
| | | | | | - Lisa Fultz
- Equine Medicine Specialists of South Florida, Wellington, Florida
| | | | - Rebecca Ruby
- Lloyd Veterinary Medical Center, Iowa State University, Ames, Iowa
| | - Sheetal Trivedi
- Center for Vaccines and Immunity, Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Gerlinde R Van de Walle
- Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Randall W Renshaw
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Edward J Dubovi
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Thomas J Divers
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
19
|
Virus discovery reveals frequent infection by diverse novel members of the Flaviviridae in wild lemurs. Arch Virol 2018; 164:509-522. [PMID: 30460488 DOI: 10.1007/s00705-018-4099-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022]
Abstract
Lemurs are highly endangered mammals inhabiting the forests of Madagascar. In this study, we performed virus discovery on serum samples collected from 84 wild lemurs and identified viral sequence fragments from 4 novel viruses within the family Flaviviridae, including members of the genera Hepacivirus and Pegivirus. The sifaka hepacivirus (SifHV, two genotypes) and pegivirus (SifPgV, two genotypes) were discovered in the diademed sifaka (Propithecus diadema), while other pegiviral fragments were detected in samples from the indri (Indri indri, IndPgV) and the weasel sportive lemur (Lepilemur mustelinus, LepPgV). Although data are preliminary, each viral species appeared host species-specific and frequent infection was detected (18 of 84 individuals were positive for at least one virus). The complete coding sequence and partial 5' and 3' untranslated regions (UTRs) were obtained for SifHV and its genomic organization was consistent with that of other hepaciviruses, with one unique polyprotein and highly structured UTRs. Phylogenetic analyses showed the SifHV belonged to a clade that includes several viral species identified in rodents from Asia and North America, while SifPgV and IndPgV were more closely related to pegiviral species A and C, that include viruses found in humans as well as New- and Old-World monkeys. Our results support the current proposed model of virus-host co-divergence with frequent occurrence of cross-species transmission for these genera and highlight how the discovery of more members of the Flaviviridae can help clarify the ecology and evolutionary history of these viruses. Furthermore, this knowledge is important for conservation and captive management of lemurs.
Collapse
|
20
|
Schlottau K, Fereidouni S, Beer M, Hoffmann B. Molecular identification and characterization of nonprimate hepaciviruses in equines. Arch Virol 2018; 164:391-400. [PMID: 30361815 DOI: 10.1007/s00705-018-4077-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is a positive-sense RNA virus belonging to the genus Hepacivirus, family Flaviviridae. Its genome has a length of 9.6 kb and encodes a single polyprotein flanked by two untranslated regions. HCV can cause liver cirrhosis and hepatocellular carcinoma, and approximately 2% of the world's population is chronically infected. The investigation of pathogenesis is complicated due to the lack of an animal model. The origin of this virus remains unclear, but in the last few years, relatives of HCV were initially identified in dogs and later in horses, rodents, bats and Old World monkeys. Non-primate hepacivirus (NPHV), which infects dogs and horses, is the closest relative to HCV. We established a pan-reactive "panHepaci"-RT-qPCR assay, which is able to detect human HCV as well as equine NPHV, and additionally, an equine-specific "equHepaci"-RT-qPCR for confirmation of positive results. Serum samples from 1158 clinically inconspicuous horses from Germany and several samples from other mammalian species were screened. We found 2.4% of the horses positive for hepacivirus RNA, and furthermore, the "panHepaci"-RT-qPCR assay also detected a hepacivirus in a donkey from Egypt. This virus had only 78% sequence identity in the E2 gene when compared to other known NPHVs. The established method could be useful for screening purposes, since it is likely that related hepaciviruses also occur in other species.
Collapse
Affiliation(s)
- Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | | | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
21
|
Badenhorst M, Tegtmeyer B, Todt D, Guthrie A, Feige K, Campe A, Steinmann E, Cavalleri JMV. First detection and frequent occurrence of Equine Hepacivirus in horses on the African continent. Vet Microbiol 2018; 223:51-58. [PMID: 30173752 DOI: 10.1016/j.vetmic.2018.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 01/30/2023]
Abstract
Since the discovery of equine hepacivirus (EqHV) in 2011, the virus has been detected in horse populations from more than twelve countries across five continents. EqHV seroprevalence has been reported to be as high as 61.8% and EqHV ribonucleic acid (RNA) prevalence to range between 0.9% and 34.1%. Molecular and serological indications of EqHV infection have never been reported in equids on the African continent. Therefore, investigation of EqHV prevalence in South African horses and subsequent viral genetic characterization contribute to a better understanding of the global epidemiology of this virus. In a cross-sectional study, serum samples from 454 Thoroughbred foals (aged 58-183 days) were analysed for anti-EqHV non-structural protein 3 (NS3)-specific antibodies (abs) with a luciferase immunoprecipitation system (LIPS) and for EqHV RNA by quantitative real-time polymerase chain reaction (qRT-PCR). Farms of origin (n = 26) were situated in South Africa's Western Cape Province. The associations between EqHV infection state and farm of origin, foal gender and foal age were subsequently described. Furthermore, nested PCRs were performed on parts of the 5'UTR, NS3 and NS5B genes of 17 samples. Samples were sequenced and phylogenetic analyses were conducted. The population's seroprevalence was 83.70% and RNA was detected in 7.93% of samples. Increasing foal age was associated with decreasing ab prevalence and increasing prevalence of EqHV RNA. Sequences from South African EqHV strains did not show in-depth clustering with published sequences of EqHV isolates from particular continents. In conclusion, EqHV is present in the South African Thoroughbred population and appears more prevalent than reported in other horse populations worldwide.
Collapse
Affiliation(s)
- Marcha Badenhorst
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, Pretoria, South Africa; Department for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Birthe Tegtmeyer
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Medical School Hannover (MHH) - Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Strasse 7, 30625, Hannover, Germany
| | - Daniel Todt
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Medical School Hannover (MHH) - Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Strasse 7, 30625, Hannover, Germany; Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Alan Guthrie
- Equine Research Centre, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, Pretoria, South Africa
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany
| | - Amely Campe
- Department of Biometry, Epidemiology and Information Processing (IBEI), WHO-Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Foundation, Bünteweg 2, 30559, Hannover, Germany
| | - Eike Steinmann
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Medical School Hannover (MHH) - Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Strasse 7, 30625, Hannover, Germany; Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801, Bochum, Germany.
| | - Jessika M V Cavalleri
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, Pretoria, South Africa; Department for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210, Vienna, Austria; Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany.
| |
Collapse
|
22
|
Figueiredo AS, Lampe E, de Albuquerque PPLF, Chalhoub FLL, de Filippis AMB, Villar LM, Cruz OG, Pinto MA, de Oliveira JM. Epidemiological investigation and analysis of the NS5B gene and protein variability of non-primate hepacivirus in several horse cohorts in Rio de Janeiro state, Brazil. INFECTION GENETICS AND EVOLUTION 2018; 59:38-47. [PMID: 29413884 DOI: 10.1016/j.meegid.2018.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 01/24/2023]
Abstract
Among the hepacivirus species recently described, the non-primate hepacivirus/hepacivirus A found in horses and donkeys is closely related to the human hepatitis C virus (HCV). Therefore, the equine is an attractive surrogate large animal model for the study of HCV therapy, pathogenesis and prophylaxis. Despite global efforts, epidemiological and genetic studies have not elucidated the risk factors, virus distribution or genetic variability of the hepacivirus A, which are also important issues for the equine welfare. Little information about this background scenery is available in Brazil. The aims of this study were to investigate potential risk factors associated with hepacivirus A infection among different horse cohorts throughout the state of Rio de Janeiro and to evaluate the diversity of the viral NS5B gene and protein. Hepacivirus A RNA was detected in horse cohorts from all geographical mesoregions, independent of horse activity or breed investigated. Statewide prevalence ranged from 4.0% to 27.5%. Potential risk factors such as geographical location and age of female horses were significantly associated with the presence of virus RNA. Phylogenetic analysis revealed the circulation of subtype 2 in all mesoregions. NS5B gene sequences clustered according to geographical origin, while the NS5B fragments did not allow discriminant analysis. The predicted NS5B protein showed marked conservation, especially in the thumb domain. In conclusion, the higher frequency of hepacivirus A RNA detection in horses bred for reproduction purposes as well as in young females suggests a direct link between reproduction practices and the virus's spread. Additional studies are necessary to understand the distribution of this genetically conserved hepacivirus.
Collapse
Affiliation(s)
- Andreza Soriano Figueiredo
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil.
| | - Elisabeth Lampe
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Pedro Pereira Lira Furtado de Albuquerque
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Flávia Löwen Levy Chalhoub
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Ana Maria Bispo de Filippis
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Livia Melo Villar
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Oswaldo Gonçalves Cruz
- Programme of Scientific Computation, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Marcelo Alves Pinto
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Jaqueline Mendes de Oliveira
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| |
Collapse
|