1
|
Yang M, Gu K, Xu Q, Wen R, Li J, Zhou C, Zhao Y, Shi M, Weng Y, Guo B, Lei C, Sun Y, Wang H. Recombinant Lactococcus lactis secreting FliC protein nanobodies for resistance against Salmonella enteritidis invasion in the intestinal tract. J Nanobiotechnology 2024; 22:629. [PMID: 39407284 PMCID: PMC11481460 DOI: 10.1186/s12951-024-02904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Salmonella Enteritidis is a major foodborne pathogen throughout the world and the increase in antibiotic resistance of Salmonella poses a significant threat to public safety. Natural nanobodies exhibit high affinity, thermal stability, ease of production, and notably higher diversity, making them widely applicable for the treatment of viral and bacterial infections. Recombinant expression using Lactococcus lactis leverages both acid resistance and mucosal colonization properties of these bacteria, allowing the effective expression of exogenous proteins for therapeutic effects. In this study, nine specific nanobodies against the flagellar protein FliC were identified and expressed. In vitro experiments demonstrated that FliC-Nb-76 effectively inhibited the motility of S. Enteritidis and inhibited its adhesion to and invasion of HIEC-6, RAW264.7, and chicken intestinal epithelial cells. Additionally, a recombinant L. lactis strain secreting the nanobody, L. lactis-Nb76, was obtained. Animal experiments confirmed that it could significantly reduce the mortality rates of chickens infected with S. Enteritidis, together with alleviating the inflammatory response caused by the pathogen. These results provide a novel strategy for the treatment of antibiotic-resistant S. Enteritidis infection in the intestinal tract.
Collapse
Affiliation(s)
- Ming Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kui Gu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Qiang Xu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Renqiao Wen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jinpeng Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Changyu Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yu Zhao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Miwan Shi
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yuan Weng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Boyan Guo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Rizk SS, Moustafa DM, ElBanna SA, Nour El-Din HT, Attia AS. Nanobodies in the fight against infectious diseases: repurposing nature's tiny weapons. World J Microbiol Biotechnol 2024; 40:209. [PMID: 38771414 PMCID: PMC11108896 DOI: 10.1007/s11274-024-03990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Nanobodies are the smallest known antigen-binding molecules to date. Their small size, good tissue penetration, high stability and solubility, ease of expression, refolding ability, and negligible immunogenicity in the human body have granted them excellence over conventional antibodies. Those exceptional attributes of nanobodies make them promising candidates for various applications in biotechnology, medicine, protein engineering, structural biology, food, and agriculture. This review presents an overview of their structure, development methods, advantages, possible challenges, and applications with special emphasis on infectious diseases-related ones. A showcase of how nanobodies can be harnessed for applications including neutralization of viruses and combating antibiotic-resistant bacteria is detailed. Overall, the impact of nanobodies in vaccine design, rapid diagnostics, and targeted therapies, besides exploring their role in deciphering microbial structures and virulence mechanisms are highlighted. Indeed, nanobodies are reshaping the future of infectious disease prevention and treatment.
Collapse
Affiliation(s)
- Soha S Rizk
- Microbiology and Immunology Postgraduate Program, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Dina M Moustafa
- Department of Medical Sciences, Faculty of Dentistry, The British University in Egypt, El Sherouk City, Cairo, 11837, Egypt
| | - Shahira A ElBanna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Hanzada T Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
3
|
De Greve H, Fioravanti A. Single domain antibodies from camelids in the treatment of microbial infections. Front Immunol 2024; 15:1334829. [PMID: 38827746 PMCID: PMC11140111 DOI: 10.3389/fimmu.2024.1334829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
Infectious diseases continue to pose significant global health challenges. In addition to the enduring burdens of ailments like malaria and HIV, the emergence of nosocomial outbreaks driven by antibiotic-resistant pathogens underscores the ongoing threats. Furthermore, recent infectious disease crises, exemplified by the Ebola and SARS-CoV-2 outbreaks, have intensified the pursuit of more effective and efficient diagnostic and therapeutic solutions. Among the promising options, antibodies have garnered significant attention due to their favorable structural characteristics and versatile applications. Notably, nanobodies (Nbs), the smallest functional single-domain antibodies of heavy-chain only antibodies produced by camelids, exhibit remarkable capabilities in stable antigen binding. They offer unique advantages such as ease of expression and modification and enhanced stability, as well as improved hydrophilicity compared to conventional antibody fragments (antigen-binding fragments (Fab) or single-chain variable fragments (scFv)) that can aggregate due to their low solubility. Nanobodies directly target antigen epitopes or can be engineered into multivalent Nbs and Nb-fusion proteins, expanding their therapeutic potential. This review is dedicated to charting the progress in Nb research, particularly those derived from camelids, and highlighting their diverse applications in treating infectious diseases, spanning both human and animal contexts.
Collapse
Affiliation(s)
- Henri De Greve
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Antonella Fioravanti
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
- Fondazione ParSeC – Parco delle Scienze e della Cultura, Prato, Italy
| |
Collapse
|
4
|
Breine A, Van Holsbeeck K, Martin C, Gonzalez S, Mannes M, Pardon E, Steyaert J, Remaut H, Ballet S, Van der Henst C. Bypassing the Need for Cell Permeabilization: Nanobody CDR3 Peptide Improves Binding on Living Bacteria. Bioconjug Chem 2023. [PMID: 37418494 PMCID: PMC10360062 DOI: 10.1021/acs.bioconjchem.3c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Membrane interaction constitutes to be an essential parameter in the mode of action of entities such as proteins, as well as cell-penetrating and antimicrobial peptides, resulting in noninvasive or lytic activities depending on the membrane compositions and interactions. Recently, a nanobody able to interact with the top priority, multidrug-resistant bacterial pathogen Acinetobacter baumannii was discovered, although binding took place with fixed cells only. To potentially overcome this limitation, linear peptides corresponding to the complementarity-determining regions (CDR) were synthesized and fluorescently labeled. Microscopy data indicated clear membrane interactions of the CDR3 sequence with living A. baumannii cells, indicating both the importance of the CDR3 as part of the parent nanobody paratope and the improved binding ability and thus avoiding the need for permeabilization of the cells. In addition, cyclization of the peptide with an additionally introduced rigidifying 1,2,3-triazole bridge retains its binding ability while proteolytically protecting the peptide. Overall, this study resulted in the discovery of novel peptides binding a multidrug-resistant pathogen.
Collapse
Affiliation(s)
- A Breine
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - K Van Holsbeeck
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - C Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - S Gonzalez
- CNRS, BioCIS, CY Cergy-Paris Université, 95000 Neuville sur Oise, France
| | - M Mannes
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - E Pardon
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - J Steyaert
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - H Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium
| | - S Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - C Van der Henst
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
5
|
Petersson M, Thrane SW, Gram L, Muyldermans S, Laustsen AH. Orally delivered single-domain antibodies against gastrointestinal pathogens. Trends Biotechnol 2023; 41:875-886. [PMID: 36774206 DOI: 10.1016/j.tibtech.2023.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023]
Abstract
Single-domain antibodies (sdAbs) are exceptionally stable fragments derived from the antigen-binding domains of immunoglobulins. They can withstand extreme pH, high temperature, and proteolysis, making them suitable for controlling gastrointestinal (GI) infections in humans and animals. sdAbs may function in their native soluble form, although different derived protein formats and the use of delivery vehicles can be useful for improved oral delivery. We discuss selected examples of the use of orally delivered sdAbs for protecting humans and animals against GI infections caused by pathogenic bacteria, viruses, and parasites. We finally provide perspectives on how sdAbs may be applied industrially and what challenges should be overcome for orally delivered sdAbs to reach the market.
Collapse
Affiliation(s)
- Marcus Petersson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Bactolife A/S, Copenhagen East, Denmark
| | | | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Serge Muyldermans
- Department of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Bactolife A/S, Copenhagen East, Denmark.
| |
Collapse
|
6
|
Yu S, Zhang L, Wang A, Jin Y, Zhou D. Nanobodies: the Potential Application in Bacterial Treatment and Diagnosis. Biochem Pharmacol 2023:115640. [PMID: 37315818 DOI: 10.1016/j.bcp.2023.115640] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
An infection caused by bacteria is one of the main factors that poses a threat to human health. A recent report from the World Health Organization (WHO) has highlighted that bacteria that cause blood infections have become increasingly drug-resistant. Therefore, it is crucial to research and develop new techniques for detecting and treating these infections. Since their discovery, nanobodies have exhibited numerous outstanding biological properties. They are easy to express, modify, and have high stability, robust permeability and low immunogenicity, all of which indicate their potential as a substitute. Nanobodies have been utilized in a variety of studies on viruses and cancer. This article primarily focuses on nanobodies and introduces their characteristics and application in the diagnosis and treatment of bacterial infections.
Collapse
Affiliation(s)
- Siyuan Yu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Lu Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, China; Department of Animal Engineering, Yangling Vocational&Technical College, Xianyang, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, China.
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| |
Collapse
|
7
|
Gelfat I, Aqeel Y, Tremblay JM, Jaskiewicz JJ, Shrestha A, Lee JN, Hu S, Qian X, Magoun L, Sheoran A, Bedenice D, Giem C, Manjula-Basavanna A, Pulsifer AR, Tu HX, Li X, Minus ML, Osburne MS, Tzipori S, Shoemaker CB, Leong JM, Joshi NS. Single domain antibodies against enteric pathogen virulence factors are active as curli fiber fusions on probiotic E. coli Nissle 1917. PLoS Pathog 2022; 18:e1010713. [PMID: 36107831 PMCID: PMC9477280 DOI: 10.1371/journal.ppat.1010713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
Enteric microbial pathogens, including Escherichia coli, Shigella and Cryptosporidium species, take a particularly heavy toll in low-income countries and are highly associated with infant mortality. We describe here a means to display anti-infective agents on the surface of a probiotic bacterium. Because of their stability and versatility, VHHs, the variable domains of camelid heavy-chain-only antibodies, have potential as components of novel agents to treat or prevent enteric infectious disease. We isolated and characterized VHHs targeting several enteropathogenic E. coli (EPEC) virulence factors: flagellin (Fla), which is required for bacterial motility and promotes colonization; both intimin and the translocated intimin receptor (Tir), which together play key roles in attachment to enterocytes; and E. coli secreted protein A (EspA), an essential component of the type III secretion system (T3SS) that is required for virulence. Several VHHs that recognize Fla, intimin, or Tir blocked function in vitro. The probiotic strain E. coli Nissle 1917 (EcN) produces on the bacterial surface curli fibers, which are the major proteinaceous component of E. coli biofilms. A subset of Fla-, intimin-, or Tir-binding VHHs, as well as VHHs that recognize either a T3SS of another important bacterial pathogen (Shigella flexneri), a soluble bacterial toxin (Shiga toxin or Clostridioides difficile toxin TcdA), or a major surface antigen of an important eukaryotic pathogen (Cryptosporidium parvum) were fused to CsgA, the major curli fiber subunit. Scanning electron micrographs indicated CsgA-VHH fusions were assembled into curli fibers on the EcN surface, and Congo Red binding indicated that these recombinant curli fibers were produced at high levels. Ectopic production of these VHHs conferred on EcN the cognate binding activity and, in the case of anti-Shiga toxin, was neutralizing. Taken together, these results demonstrate the potential of the curli-based pathogen sequestration strategy described herein and contribute to the development of novel VHH-based gut therapeutics.
Collapse
Affiliation(s)
- Ilia Gelfat
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Yousuf Aqeel
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Jacqueline M. Tremblay
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Justyna J. Jaskiewicz
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Anishma Shrestha
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - James N. Lee
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Shenglan Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Xi Qian
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Loranne Magoun
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Abhineet Sheoran
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Daniela Bedenice
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Colter Giem
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Avinash Manjula-Basavanna
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Amanda R. Pulsifer
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Hann X. Tu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Xiaoli Li
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Marilyn L. Minus
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Marcia S. Osburne
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Charles B. Shoemaker
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Medford, Massachusetts, United States of America
| | - Neel S. Joshi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Mei Y, Chen Y, Sivaccumar JP, An Z, Xia N, Luo W. Research progress and applications of nanobody in human infectious diseases. Front Pharmacol 2022; 13:963978. [PMID: 36034845 PMCID: PMC9411660 DOI: 10.3389/fphar.2022.963978] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 01/18/2023] Open
Abstract
Infectious diseases, caused by pathogenic microorganisms, are capable of affecting crises. In addition to persistent infectious diseases such as malaria and dengue fever, the vicious outbreaks of infectious diseases such as Neocon, Ebola and SARS-CoV-2 in recent years have prompted the search for more efficient and convenient means for better diagnosis and treatment. Antibodies have attracted a lot of attention due to their good structural characteristics and applications. Nanobodies are the smallest functional single-domain antibodies known to be able to bind stably to antigens, with the advantages of high stability, high hydrophilicity, and easy expression and modification. They can directly target antigen epitopes or be constructed as multivalent nanobodies or nanobody fusion proteins to exert therapeutic effects. This paper focuses on the construction methods and potential functions of nanobodies, outlines the progress of their research, and highlights their various applications in human infectious diseases.
Collapse
Affiliation(s)
- Yaxian Mei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Yuanzhi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Jwala P. Sivaccumar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- *Correspondence: Wenxin Luo,
| |
Collapse
|
9
|
de Marco A, Barile L. Good reasons for targeting SARS-CoV-2 by engineered extracellular vesicles. Mol Ther Methods Clin Dev 2022; 25:41-42. [PMID: 35317050 PMCID: PMC8917268 DOI: 10.1016/j.omtm.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale and Faculty of Biomedical Sciences, Università Svizzera italiana, Lugano, Switzerland
| |
Collapse
|
10
|
Gangaiah D, Ryan V, Van Hoesel D, Mane SP, Mckinley ET, Lakshmanan N, Reddy ND, Dolk E, Kumar A. Recombinant
Limosilactobacillus
(
Lactobacillus
) delivering nanobodies against
Clostridium perfringens
NetB and alpha toxin confers potential protection from necrotic enteritis. Microbiologyopen 2022; 11:e1270. [PMID: 35478283 PMCID: PMC8924699 DOI: 10.1002/mbo3.1270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Dharanesh Gangaiah
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| | - Valerie Ryan
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| | - Daphne Van Hoesel
- Division of Nanobody Discovery and Development QVQ Holding BV Utrecht The Netherlands
| | - Shrinivasrao P. Mane
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| | - Enid T. Mckinley
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| | | | - Nandakumar D. Reddy
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| | - Edward Dolk
- Division of Nanobody Discovery and Development QVQ Holding BV Utrecht The Netherlands
| | - Arvind Kumar
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| |
Collapse
|
11
|
Liu CP, Chen ZD, Ye ZY, He DY, Dang Y, Li ZW, Wang L, Ren M, Fan ZJ, Liu HX. Therapeutic Applications of Functional Nanomaterials for Prostatitis. Front Pharmacol 2021; 12:685465. [PMID: 34140892 PMCID: PMC8205439 DOI: 10.3389/fphar.2021.685465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023] Open
Abstract
Prostatitis is a common disease in adult males, with characteristics of a poor treatment response and easy recurrence, which seriously affects the patient's quality of life. The prostate is located deep in the pelvic cavity, and thus a traditional infusion or other treatment methods are unable to easily act directly on the prostate, leading to poor therapeutic effects. Therefore, the development of new diagnostic and treatment strategies has become a research hotspot in the field of prostatitis treatment. In recent years, nanomaterials have been widely used in the diagnosis and treatment of various infectious diseases. Nanotechnology is a promising tool for 1) the accurate diagnosis of diseases; 2) improving the targeting of drug delivery systems; 3) intelligent, controlled drug release; and 4) multimode collaborative treatment, which is expected to be applied in the diagnosis and treatment of prostatitis. Nanotechnology is attracting attention in the diagnosis, prevention and treatment of prostatitis. However, as a new research area, systematic reviews on the application of nanomaterials in the diagnosis and treatment of prostatitis are still lacking. In this mini-review, we will highlight the treatment approaches for and challenges associated with prostatitis and describe the advantages of functional nanoparticles in improving treatment effectiveness and overcoming side effects.
Collapse
Affiliation(s)
- Chun-Ping Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zi-De Chen
- Department of Interventional Radiology, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Zi-Yan Ye
- Department of Interventional Radiology, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Dong-Yue He
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Dang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhe-Wei Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lei Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Ren
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-Jin Fan
- Guangdong Provincial People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hong-Xing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Liu CP, Chen ZD, Ye ZY, He DY, Dang Y, Li ZW, Wang L, Ren M, Fan ZJ, Liu HX. Therapeutic Applications of Functional Nanomaterials for Prostatitis. Front Pharmacol 2021. [DOI: 10.3389/fphar.2021.685465
expr 881861845 + 830625731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Prostatitis is a common disease in adult males, with characteristics of a poor treatment response and easy recurrence, which seriously affects the patient’s quality of life. The prostate is located deep in the pelvic cavity, and thus a traditional infusion or other treatment methods are unable to easily act directly on the prostate, leading to poor therapeutic effects. Therefore, the development of new diagnostic and treatment strategies has become a research hotspot in the field of prostatitis treatment. In recent years, nanomaterials have been widely used in the diagnosis and treatment of various infectious diseases. Nanotechnology is a promising tool for 1) the accurate diagnosis of diseases; 2) improving the targeting of drug delivery systems; 3) intelligent, controlled drug release; and 4) multimode collaborative treatment, which is expected to be applied in the diagnosis and treatment of prostatitis. Nanotechnology is attracting attention in the diagnosis, prevention and treatment of prostatitis. However, as a new research area, systematic reviews on the application of nanomaterials in the diagnosis and treatment of prostatitis are still lacking. In this mini-review, we will highlight the treatment approaches for and challenges associated with prostatitis and describe the advantages of functional nanoparticles in improving treatment effectiveness and overcoming side effects.
Collapse
|
13
|
Van Campenhout R, Muyldermans S, Vinken M, Devoogdt N, De Groof TW. Therapeutic Nanobodies Targeting Cell Plasma Membrane Transport Proteins: A High-Risk/High-Gain Endeavor. Biomolecules 2021; 11:63. [PMID: 33418902 PMCID: PMC7825061 DOI: 10.3390/biom11010063] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023] Open
Abstract
Cell plasma membrane proteins are considered as gatekeepers of the cell and play a major role in regulating various processes. Transport proteins constitute a subclass of cell plasma membrane proteins enabling the exchange of molecules and ions between the extracellular environment and the cytosol. A plethora of human pathologies are associated with the altered expression or dysfunction of cell plasma membrane transport proteins, making them interesting therapeutic drug targets. However, the search for therapeutics is challenging, since many drug candidates targeting cell plasma membrane proteins fail in (pre)clinical testing due to inadequate selectivity, specificity, potency or stability. These latter characteristics are met by nanobodies, which potentially renders them eligible therapeutics targeting cell plasma membrane proteins. Therefore, a therapeutic nanobody-based strategy seems a valid approach to target and modulate the activity of cell plasma membrane transport proteins. This review paper focuses on methodologies to generate cell plasma membrane transport protein-targeting nanobodies, and the advantages and pitfalls while generating these small antibody-derivatives, and discusses several therapeutic nanobodies directed towards transmembrane proteins, including channels and pores, adenosine triphosphate-powered pumps and porters.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium;
| | - Timo W.M. De Groof
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium;
| |
Collapse
|
14
|
Dai L, Sahin O, Grover M, Zhang Q. New and alternative strategies for the prevention, control, and treatment of antibiotic-resistant Campylobacter. Transl Res 2020; 223:76-88. [PMID: 32438073 PMCID: PMC7423705 DOI: 10.1016/j.trsl.2020.04.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/24/2022]
Abstract
Campylobacter is an enteric pathogen and a leading bacterial cause of diarrhea worldwide. It is widely distributed in food animal species and is transmitted to humans primarily through the foodborne route. While generally causing self-limited diarrhea in humans, Campylobacter may induce severe or systemic infections in immunocompromised or young/elderly patients, which often requires antibiotic therapy with the first-line antibiotics including fluoroquinolones and macrolides. Over the past decades, Campylobacter has acquired resistance to these clinically significant antibiotics, compromising the effectiveness of antibiotic treatments. To address this concern, many studies have been conducted to advance novel and alternative measures to control antibiotic-resistant Campylobacter in animal reservoirs and in the human host. Although some of these undertakings have yielded promising results, efficacious and reliable alternative approaches are yet to be developed. In this review article, we will describe Campylobacter-associated disease spectrums and current treatment options, discuss the state of antibiotic resistance and alternative therapies, and provide an evaluation of various approaches that are being developed to control Campylobacter infections in animal reservoirs and the human host.
Collapse
Affiliation(s)
- Lei Dai
- Departments of Veterinary Microbiology and Preventive Medicine
| | - Orhan Sahin
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States 50011
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota, United States 55902
| | - Qijing Zhang
- Departments of Veterinary Microbiology and Preventive Medicine.
| |
Collapse
|
15
|
Rasschaert G, De Zutter L, Herman L, Heyndrickx M. Campylobacter contamination of broilers: the role of transport and slaughterhouse. Int J Food Microbiol 2020; 322:108564. [PMID: 32163798 DOI: 10.1016/j.ijfoodmicro.2020.108564] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/26/2019] [Accepted: 02/16/2020] [Indexed: 01/06/2023]
Abstract
Campylobacter is one of the most important causative agents of foodborne illnesses worldwide. The poultry reservoir is the main source of Campylobacter. Within the broiler production chain, campylobacters can only multiply in the chicken's intestinal tract. Intervention at farm level to reduce Campylobacter is thus preferred, but despite extensive study, no highly effective solutions have been found to combat Campylobacter at farm level. Slaughterhouses are experiencing great pressure to deliver carcasses with low Campylobacter contamination even when they receive and slaughter Campylobacter colonized flocks. Since 2018, a process hygiene criterion (EU 2017/1495) with the critical limit of <1000 cfu/g neck skin has been implemented in EU Member States based on the calculation done at the time of the study that human campylobacteriosis cases could be halved if all carcasses would comply with a criterion of <1000 cfu/g neck skin. This review covers Campylobacter contamination of broiler carcasses from transport through the different slaughter steps. Possible intervention methods during slaughter are discussed with a focus on the European situation, where chemicals are not allowed to disinfect carcasses.
Collapse
Affiliation(s)
- Geertrui Rasschaert
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium.
| | - Lieven De Zutter
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lieve Herman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium; Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
16
|
Šikić Pogačar M, Langerholc T, Mičetić-Turk D, Možina SS, Klančnik A. Effect of Lactobacillus spp. on adhesion, invasion, and translocation of Campylobacter jejuni in chicken and pig small-intestinal epithelial cell lines. BMC Vet Res 2020; 16:34. [PMID: 32013961 PMCID: PMC6998324 DOI: 10.1186/s12917-020-2238-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/09/2020] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Campylobacter spp. are a major cause of bacterial food-borne diarrhoeal disease. This mainly arises through contamination of meat products during processing. For infection, Campylobacter spp. must adhere to epithelial cells of the mucus layer, survive conditions of the gastrointestinal tract, and colonise the intestine of the host. Addition of probiotic bacteria might promote competitive adhesion to epithelial cells, consequently reducing Campylobacter jejuni colonisation. Effect of Lactobacillus spp. (PCS20, PCS22, PCS25, LGG, PCK9) on C. jejuni adhesion, invasion and translocation in pig (PSI cl.1) and chicken (B1OXI) small-intestine cell lines, as well as pig enterocytes (CLAB) was investigated. RESULTS Overall, in competitive adhesion assays with PSI cl.1 and CLAB cell monolayers, the addition of Lactobacillus spp. reduced C. jejuni adherence to the cell surface, and negatively affected the C. jejuni invasion. Interestingly, Lactobacillus spp. significantly impaired C. jejuni adhesion in three-dimensional functional PSI cl.1 and B1OXI cell models. Also, C. jejuni did not translocate across PSI cl.1 and B1OXI cell monolayers when co-incubated with probiotics. Among selected probiotics, Lactobacillus rhamnosus LGG was the strain that reduced adhesion efficacy of C. jejuni most significantly under co-culture conditions. CONCLUSION The addition of Lactobacillus spp. to feed additives in livestock nutrition might be an effective novel strategy that targets Campylobacter adhesion to epithelial cells, and thus prevents colonisation, reduces the transmission, and finally lowers the incidence of human campylobacteriosis.
Collapse
Affiliation(s)
| | - Tomaž Langerholc
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Science, University of Maribor, 2311, Hoče, Slovenia
| | | | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW This review highlights recent developments in the development of monoclonal antibodies to treat bacterial disease, including preclinical advances and the status of current clinical trials. RECENT FINDINGS Monoclonal antibody (mAb) therapy is becoming increasingly promising in the infectious disease field. Though bacterial exotoxins continue to be a mainstay of mAb targets, searches for protein targets on the surface of bacteria have uncovered new mechanisms of antibody-mediated action against bacteria. Additionally, surveys of the polysaccharide serotype prevalence among antibiotic-resistant bacterial populations have yielded opportunities to leverage human selective pressures to our clinical advantage. Several mAb candidates are progressing through clinical development with great promise, especially those with structures altered to provide maximum benefit. Although other clinical trials have recently proved unsuccessful, these failures and lessons from immune profiling provide opportunities to understand how vulnerabilities of certain targets may change in different disease states. SUMMARY Despite the hurdles of identifying effective targets and understanding how mAbs provide protection within different infections, we show that the progress made in these fields is a positive indication of mAbs becoming more widely accepted as the future for treating bacterial infections.
Collapse
Affiliation(s)
- Michael P Motley
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
| | - Kasturi Banerjee
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
| | - Bettina C. Fries
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
18
|
Vanmarsenille C, Elseviers J, Yvanoff C, Hassanzadeh-Ghassabeh G, Garcia Rodriguez G, Martens E, Depicker A, Martel A, Haesebrouck F, Pasmans F, Hernalsteens JP, De Greve H. In planta expression of nanobody-based designer chicken antibodies targeting Campylobacter. PLoS One 2018; 13:e0204222. [PMID: 30260981 PMCID: PMC6160005 DOI: 10.1371/journal.pone.0204222] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 09/05/2018] [Indexed: 12/28/2022] Open
Abstract
Campylobacteriosis is a widespread infectious disease, leading to a major health and economic burden. Chickens are considered as the most common infection source for humans. Campylobacter mainly multiplies in the mucus layer of their caeca. No effective control measures are currently available, but passive immunisation of chickens with pathogen-specific maternal IgY antibodies, present in egg yolk of immunised chickens, reduces Campylobacter colonisation. To explore this strategy further, anti-Campylobacter nanobodies, directed against the flagella and major outer membrane proteins, were fused to the constant domains of chicken IgA and IgY, combining the benefits of nanobodies and the effector functions of the Fc-domains. The designer chimeric antibodies were effectively produced in leaves of Nicotiana benthamiana and seeds of Arabidopsis thaliana. Stable expression of the chimeric antibodies in seeds resulted in production levels between 1% and 8% of the total soluble protein. These in planta produced antibodies do not only bind to their purified antigens but also to Campylobacter bacterial cells. In addition, the anti-flagellin chimeric antibodies are reducing the motility of Campylobacter bacteria. These antibody-containing Arabidopsis seeds can be tested for oral passive immunisation of chickens and, if effective, the chimeric antibodies can be produced in crop seeds.
Collapse
Affiliation(s)
- Charlotte Vanmarsenille
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Viral Genetics, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jelle Elseviers
- VIB Nanobody Core, Vrije Universiteit Brussel, Brussels, Belgium
| | - Charlotte Yvanoff
- ARG VUB-UGent NanoMicrobiology, IJRG VUB-EPFL BioNanotechnology & NanoMedicine, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Gabriela Garcia Rodriguez
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Edo Martens
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ann Depicker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Henri De Greve
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
19
|
Lafaye P, Li T. Use of camel single-domain antibodies for the diagnosis and treatment of zoonotic diseases. Comp Immunol Microbiol Infect Dis 2018; 60:17-22. [PMID: 30396425 PMCID: PMC7112682 DOI: 10.1016/j.cimid.2018.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/01/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022]
Abstract
VHHs provide many advantages over complete IgG in diagnostics and therapy. Toxins and viruses are more efficiently neutralized by multivalent VHHs. Camelids could be a source of broadly neutralizing antibodies (bNAbs) to treat zoonotic diseases.
Camelids produce both conventional heterotetrameric antibodies and homodimeric heavy-chain only antibodies. The antigen-binding region of such homodimeric heavy-chain only antibodies consists of one single domain, called VHH. VHHs provide many advantages over conventional full-sized antibodies and currently used antibody-based fragments (Fab, scFv), including high specificity, stability and solubility, and small size, allowing them to recognize unusual antigenic sites and deeply penetrate tissues. Since their discovery, VHHs have been used extensively in diagnostics and therapy. In recent decades, the number of outbreaks of diseases transmissible from animals to humans has been on the rise. In this review, we evaluate the status of VHHs as diagnostic and therapeutic biomolecular agents for the detection and treatment of zoonotic diseases, such as bacterial, parasitic, and viral zoonosis. VHHs show great adaptability to inhibit or neutralize pathogenic agents for the creation of multifunctional VHH-based diagnostic and therapeutic molecules against zoonotic diseases.
Collapse
Affiliation(s)
- Pierre Lafaye
- Institut Pasteur, Plate forme d'Ingénierie des Anticorps, C2RT, Paris, France.
| | - Tengfei Li
- Université Paris Diderot, Paris 7, France
| |
Collapse
|