1
|
Chu X, Ge S, Zuo Y, Cui J, Sha Z, Han N, Wu B, Ni B, Zhang H, Lv Y, Wang Z, Xiao Y. Thoughts on the research of African swine fever live-attenuated vaccines. Vaccine 2024; 42:126052. [PMID: 38906762 DOI: 10.1016/j.vaccine.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/05/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
African swine fever (ASF) is a contagious and fatal disease caused by the African swine fever virus (ASFV), which can infect pigs of all breeds and ages. Most infected pigs have poor prognosis, leading to substantial economic losses for the global pig industry. Therefore, it is imperative to develop a safe and efficient commercial vaccine against ASF. The development of ASF vaccine can be traced back to 1960. However, because of its large genome, numerous encoded proteins, and complex virus particle structure, currently, no effective commercial vaccine is available. Several strategies have been applied in vaccine design, some of which are potential candidates for vaccine development. This review provides a comprehensive analysis on the safety and effectiveness, suboptimal immunization effects at high doses, absence of standardized evaluation criteria, notable variations among strains of the same genotype, and the substantial impact of animal health on the protective efficacy against viral challenge. All the information will be helpful to the ASF vaccine development.
Collapse
Affiliation(s)
- Xuefei Chu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province 271018, China
| | - Shengqiang Ge
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China; Qingdao Key Laboratory of Modern Bioengineering and Animal Disease Research, Qingdao 266032, China; Key Laboratory of Animal Biosafety Risk Warning Prevention and Control (South China), Ministry of Agriculture and Rural Affairs, Qingdao, Shandong 266032, China
| | - Yuanyuan Zuo
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Jin Cui
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Zhou Sha
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Naijun Han
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Bingrong Wu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province 271018, China
| | - Bo Ni
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Hui Zhang
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Yan Lv
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Zhiliang Wang
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China.
| | - Yihong Xiao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province 271018, China.
| |
Collapse
|
2
|
Pujols J, Blázquez E, Segalés J, Rodríguez F, Chang CY, Argilaguet J, Bosch-Camós L, Rosell R, Pailler-García L, Gavrilov B, Campbell J, Polo J. Feeding Spray-Dried Porcine Plasma to Pigs Improves the Protection Afforded by the African Swine Fever Virus (ASFV) BA71∆CD2 Vaccine Prototype against Experimental Challenge with the Pandemic ASFV-Study 2. Vaccines (Basel) 2023; 11:vaccines11040825. [PMID: 37112737 PMCID: PMC10146001 DOI: 10.3390/vaccines11040825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/06/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to evaluate the effects of feeding spray-dried porcine plasma (SDPP) on the protection afforded by the BA71∆CD2 African swine fever virus (ASFV) vaccine prototype. Two groups of pigs acclimated to diets without or with 8% SDPP were intranasally inoculated with 105 plaque-forming units (PFU) of live attenuated ASFV strain BA71∆CD2 and, three weeks later, left in direct contact with pigs infected with the pandemic Georgia 2007/01 ASFV strain. During the post-exposure (pe) period, 2/6 from the conventional diet group showed a transient peak rectal temperature >40.5 °C before day 20 pe, and some tissue samples collected at 20 d pe from 5/6 were PCR+ for ASFV, albeit showing Ct values much higher than Trojan pigs. Interestingly, the SDPP group did not show fever, neither PCR+ in blood nor rectal swab at any time pe, and none of the postmortem collected tissue samples were PCR+ for ASFV. Differential serum cytokine profiles among groups at vaccination, and a higher number of ASFV-specific IFNϒ-secreting T cells in pigs fed with SDPP soon after the Georgia 2007/01 encounter, confirmed the relevance of Th1-like responses in ASF protection. We believe that our result shows that nutritional interventions might contribute to improving future ASF vaccination strategies.
Collapse
Affiliation(s)
- Joan Pujols
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
| | - Elena Blázquez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- APC Europe, S.L., 08403 Granollers, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Fernando Rodríguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
| | - Chia-Yu Chang
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
| | - Jordi Argilaguet
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
| | - Laia Bosch-Camós
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
| | - Rosa Rosell
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Departament d'Acció Climàtica, Alimentació i Agenda Rural, Generalitat de Catalunya, 08007 Barcelona, Spain
| | - Lola Pailler-García
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
| | - Boris Gavrilov
- Biologics Development, Huvepharma, 3A Nikolay Haytov Street, 1113 Sofia, Bulgaria
| | | | - Javier Polo
- APC Europe, S.L., 08403 Granollers, Spain
- APC, LLC, Ankeny, IA 50021, USA
| |
Collapse
|
3
|
PI3K-Akt pathway-independent PIK3AP1 identified as a replication inhibitor of the African swine fever virus based on iTRAQ proteomic analysis. Virus Res 2023; 327:199052. [PMID: 36775023 DOI: 10.1016/j.virusres.2023.199052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 02/14/2023]
Abstract
African swine fever (ASF) is a severe infectious disease that has a high global prevalence. The fatality rate of pigs infected with ASF virus (ASFV) is close to 100%; in the absence of a safe and reliable commercial vaccine, this poses a threat to the global pig industry and public health. To better understand the interaction of ASFV with its host, isobaric tags for relative and absolute quantitation combined with liquid chromatography-mass spectrometry was used to conduct quantitative proteomic analysis of bone marrow-derived macrophage cells infected with ASFV. Overall, 4579 proteins were identified; 286 of these were significantly upregulated and 69 were significantly downregulated after ASFV infection. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction network analyses were used to obtain insights into the dynamics and complexity of the ASFV-host interaction. In addition, immunoblotting revealed that the expression of PIK3AP1, RNF114, and FABP5 was upregulated and that of TRAM1 was downregulated after ASFV infection. Overexpression of PIK3AP1 and RNF114 significantly inhibited ASFV replication in vitro, but the suppressive effect of PIK3AP1 on ASFV replication was independent of the PI3K-Akt pathway. Further studies confirmed that ASFV MGF360-9L interacts with PIK3AP1 to reduce its protein expression level. Moreover, LY294002, an inhibitor of the PI3K-Akt pathway, inhibited ASFV replication, indicating the importance of the PI3K-Akt pathway in ASFV infection. This study identified the network of interactions between ASFV and host cells and provides a reference for the development of anti-ASFV strategies and for studying the potential mechanisms and pathogenesis of ASFV infection.
Collapse
|
4
|
Wöhnke E, Cackett G, Werner F, Blome S, Mettenleiter TC, Karger A. Proteome Analysis of Swine Macrophages after Infection with Two Genotype II African Swine Fever Isolates of Different Pathogenicity. Viruses 2022; 14:v14102140. [PMID: 36298696 PMCID: PMC9607119 DOI: 10.3390/v14102140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Since the introduction of a highly pathogenic genotype II isolate of the African swine fever virus (ASFV) into Georgia in 2007, African swine fever (ASF) has gone panzootic. Outbreaks have been reported in Europe, Asia and, more recently, Latin America. Thus, ASFV has become a major threat to the pig industry worldwide, as broadly applicable vaccines are not available. While the majority of ASFV strains show high virulence in domestic pigs and wild boar, variations within the ASFV genome have resulted in the emergence of attenuated strains with low or moderate virulence. However, the molecular basis of the differences in virulence has not yet been discovered. To reveal virulence-associated protein expression patterns, we analysed the proteomes of the natural target cells of ASFV, primary porcine macrophages, after infection with two genotype II ASFV strains displaying high (Armenia 2008) and moderate (Estonia 2014) virulence using quantitative mass spectrometry. Very similar expression patterns were observed for the viral genes, and any differences were limited to the deletions within the Estonia 2014 genome. In addition to the canonical ASFV proteins, twelve novel protein products from recently described transcripts were confirmed in both isolates. Pathway analyses showed that both isolates evoked a similar host proteome response, despite their difference in virulence. However, subtle differences in the manipulation of the proteins involved in the proinflammatory response mediated by the MAPK14/p38 signalling cascade were observed.
Collapse
Affiliation(s)
- Elisabeth Wöhnke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany
| | - Gwenny Cackett
- Institute for Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | - Finn Werner
- Institute for Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany
- Correspondence: ; Tel.: +49-38351-7-1247
| |
Collapse
|
5
|
Zajac MD, Sangewar N, Lokhandwala S, Bray J, Sang H, McCall J, Bishop RP, Waghela SD, Kumar R, Kim T, Mwangi W. Adenovirus-Vectored African Swine Fever Virus pp220 Induces Robust Antibody, IFN-γ, and CTL Responses in Pigs. Front Vet Sci 2022; 9:921481. [PMID: 35711803 PMCID: PMC9195138 DOI: 10.3389/fvets.2022.921481] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
African Swine Fever Virus (ASFV) poses a serious threat to the pork industry worldwide; however, there is no safe vaccine or treatment available. The development of an efficacious subunit vaccine will require the identification of protective antigens. The ASFV pp220 polyprotein is essential for virus structural integrity. This polyprotein is processed to generate p5, p34, p14, p37, and p150 individual proteins. Immunization of pigs with a cocktail of adenoviruses expressing the proteins induced significant IgG, IFN-γ-secreting cells, and cytotoxic T lymphocyte responses. Four predicted SLA-I binding nonamer peptides, namely p34161−169, p37859−867, p1501363−1371, and p1501463−1471, recalled strong IFN-γ+ PBMC and splenocyte responses. Notably, peptide p34161−169 was recognized by PBMCs isolated from 7/10 pigs and by splenocytes isolated from 8/10 pigs. Peptides p37859−867 and p1501363−1371 stimulated recall IFN-γ+ responses in PBMCs and splenocytes isolated from 8/10 pigs, whereas peptide p1501463−1471 recalled responses in PBMCs and splenocytes isolated from 7/10 to 9/10 pigs, respectively. The results demonstrate that the pp220 polyprotein contains multiple epitopes that induce robust immune responses in pigs. Importantly, these epitopes are 100% conserved among different ASFV genotypes and were predicted to bind multiple SLA-I alleles. The outcomes suggest that pp220 is a promising candidate for inclusion in a prototype subunit vaccine.
Collapse
Affiliation(s)
- Michelle D. Zajac
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
- *Correspondence: Michelle D. Zajac
| | - Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Shehnaz Lokhandwala
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jocelyne Bray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jayden McCall
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Richard P. Bishop
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Suryakant D. Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Rakshith Kumar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Tae Kim
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
- Waithaka Mwangi
| |
Collapse
|
6
|
Wöhnke E, Fuchs W, Hartmann L, Blohm U, Blome S, Mettenleiter TC, Karger A. Comparison of the Proteomes of Porcine Macrophages and a Stable Porcine Cell Line after Infection with African Swine Fever Virus. Viruses 2021; 13:v13112198. [PMID: 34835004 PMCID: PMC8620826 DOI: 10.3390/v13112198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/28/2023] Open
Abstract
African swine fever virus (ASFV), causing an OIE-notifiable viral disease of swine, is spreading over the Eurasian continent and threatening the global pig industry. Here, we conducted the first proteome analysis of ASFV-infected primary porcine monocyte-derived macrophages (moMΦ). In parallel to moMΦ isolated from different pigs, the stable porcine cell line WSL-R was infected with a recombinant of ASFV genotype IX strain “Kenya1033”. The outcome of the infections was compared via quantitative mass spectrometry (MS)-based proteome analysis. Major differences with respect to the expression of viral proteins or the host cell response were not observed. However, cell-specific expression of some individual viral proteins did occur. The observed modulations of the host proteome were mainly related to cell characteristics and function. Overall, we conclude that both infection models are suitable for use in the study of ASFV infection in vitro.
Collapse
Affiliation(s)
- Elisabeth Wöhnke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (E.W.); (W.F.)
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (E.W.); (W.F.)
| | - Luise Hartmann
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (L.H.); (U.B.)
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (L.H.); (U.B.)
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany;
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany;
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (E.W.); (W.F.)
- Correspondence: ; Tel.: +49-38351-7-1247
| |
Collapse
|
7
|
Ai Q, Lin X, Xie H, Li B, Liao M, Fan H. Proteome Analysis in PAM Cells Reveals That African Swine Fever Virus Can Regulate the Level of Intracellular Polyamines to Facilitate Its Own Replication through ARG1. Viruses 2021; 13:v13071236. [PMID: 34206713 PMCID: PMC8310191 DOI: 10.3390/v13071236] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
In 2018, African swine fever broke out in China, and the death rate after infection was close to 100%. There is no effective and safe vaccine in the world. In order to better characterize and understand the virus–host-cell interaction, quantitative proteomics was performed on porcine alveolar macrophages (PAM) infected with ASFV through tandem mass spectrometry (TMT) technology, high-performance liquid chromatography (HPLC), and mass spectrometry (MS). The proteome difference between the simulated group and the ASFV-infected group was found at 24 h. A total of 4218 proteins were identified, including 306 up-regulated differentially expressed proteins and 238 down-regulated differentially expressed proteins. Western blot analysis confirmed changes in the expression level of the selected protein. Pathway analysis is used to reveal the regulation of protein and interaction pathways after ASFV infection. Functional network and pathway analysis can provide an insight into the complexity and dynamics of virus–host cell interactions. Further study combined with proteomics data found that ARG1 has a very important effect on ASFV replication. It should be noted that the host metabolic pathway of ARG1-polyamine is important for virus replication, revealing that the virus may facilitate its own replication by regulating the level of small molecules in the host cell.
Collapse
Affiliation(s)
- Qiangyun Ai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.A.); (X.L.); (H.X.)
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
| | - Xiwei Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.A.); (X.L.); (H.X.)
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
| | - Hangao Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.A.); (X.L.); (H.X.)
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China;
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.A.); (X.L.); (H.X.)
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Correspondence: (M.L.); (H.F.); Tel.: +86-20-85280240 (M.L.); +86-20-85283309 (H.F.)
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.A.); (X.L.); (H.X.)
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Correspondence: (M.L.); (H.F.); Tel.: +86-20-85280240 (M.L.); +86-20-85283309 (H.F.)
| |
Collapse
|
8
|
Liu J, Cao S, Ding G, Wang B, Li Y, Zhao Y, Shao Q, Feng J, Liu S, Qin L, Xiao Y. The role of 14-3-3 proteins in cell signalling pathways and virus infection. J Cell Mol Med 2021; 25:4173-4182. [PMID: 33793048 PMCID: PMC8093981 DOI: 10.1111/jcmm.16490] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/06/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022] Open
Abstract
14-3-3 proteins are highly conserved in species ranging from yeast to mammals and regulate numerous signalling pathways via direct interactions with proteins carrying phosphorylated 14-3-3-binding motifs. Recent studies have shown that 14-3-3 proteins can also play a role in viral infections. This review summarizes the biological functions of 14-3-3 proteins in protein trafficking, cell-cycle control, apoptosis, autophagy and other cell signal transduction pathways, as well as the associated mechanisms. Recent findings regarding the role of 14-3-3 proteins in viral infection and innate immunity are also reviewed.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Shengliang Cao
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Guofei Ding
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Bin Wang
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Yingchao Li
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Yuzhong Zhao
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Qingyuan Shao
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Jian Feng
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Sidang Liu
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Liting Qin
- Shandong New Hope Liuhe Group Co., Ltd.QingdaoChina
- Qingdao Jiazhi Biotechnology Co., Ltd.QingdaoChina
| | - Yihong Xiao
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| |
Collapse
|
9
|
Sang H, Miller G, Lokhandwala S, Sangewar N, Waghela SD, Bishop RP, Mwangi W. Progress Toward Development of Effective and Safe African Swine Fever Virus Vaccines. Front Vet Sci 2020; 7:84. [PMID: 32154279 PMCID: PMC7047163 DOI: 10.3389/fvets.2020.00084] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 02/03/2020] [Indexed: 12/18/2022] Open
Abstract
African swine fever is a major concern due to its negative impact on pork production in affected regions. Due to lack of treatment and a safe vaccine, it has been extremely difficult to control this devastating disease. The mechanisms of virus entry, replication within the host cells, immune evasion mechanisms, correlates of protection, and antigens that are effective at inducing host immune response, are now gradually being identified. This information is required for rational design of novel disease control strategies. Pigs which recover from infection with less virulent ASFV isolates can be protected from challenge with related virulent isolates. This strongly indicates that an effective vaccine against ASFV could be developed. Nonetheless, it is clear that effective immunity depends on both antibody and cellular immune responses. This review paper summarizes the key studies that have evaluated three major approaches for development of African Swine Fever virus vaccines. Recent immunization strategies have involved development and in vivo evaluation of live attenuated virus, and recombinant protein- and DNA-based and virus-vectored subunit vaccine candidates. The limitations of challenge models for evaluating ASFV vaccine candidates are also discussed.
Collapse
Affiliation(s)
- Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Gabrielle Miller
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Shehnaz Lokhandwala
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Suryakant D. Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Richard P. Bishop
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
10
|
Jiang H, Wei L, Wang D, Wang J, Zhu S, She R, Liu T, Tian J, Quan R, Hou L, Li Z, Chu J, Zhou J, Guo Y, Xi Y, Song H, Yuan F, Liu J. ITRAQ-based quantitative proteomics reveals the first proteome profiles of piglets infected with porcine circovirus type 3. J Proteomics 2019; 212:103598. [PMID: 31785380 DOI: 10.1016/j.jprot.2019.103598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/24/2023]
Abstract
Porcine circovirus type 3 (PCV3) infection induces porcine dermatitis and nephropathy syndrome, reproductive failure, and multisystemic inflammatory lesions in piglets and sows. To better understand the host responses to PCV3 infection, isobaric tags for relative and absolute quantification (iTRAQ) labeling combined with LC-MS/MS analysis was used for quantitative determination of differentially regulated cellular proteins in the lungs of specific-pathogen-free piglets after 4 weeks of PCV3 infection. Totally, 3429 proteins were detected in three independent mass spectrometry analyses, of which 242 differential cellular proteins were significantly regulated, consisting of 100 upregulated proteins and 142 downregulated proteins in PCV3-infected group relative to control group. Bioinformatics analysis revealed that these higher or lower abundant proteins involved primarily metabolic processes, innate immune response, MHC-I and MHC-II components, and phagosome pathways. Ten genes encoding differentially regulated proteins were selected for investigation via real-time RT-PCR. The expression levels of six representative proteins, OAS1, Mx1, ISG15, IFIT3, SOD2, and HSP60, were further confirmed by Western blotting and immunohistochemistry. This study attempted for the first time to investigate the protein profile of PCV3-infected piglets using iTRAQ technology; our findings provide valuable information to better understand the mechanisms underlying the host responses to PCV3 infection in piglets. SIGNIFICANCE: Our study identified differentially abundant proteins related to a variety of potential signaling pathways in the lungs of PCV3-infected piglets. These findings provide valuable information to better understand the mechanisms of host responses to PCV3 infection.
Collapse
Affiliation(s)
- Haijun Jiang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Ruiping She
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Tianlong Liu
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Jijing Tian
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Lei Hou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Zixuan Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jun Chu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Yuxin Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Yanyang Xi
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Huiqi Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Feng Yuan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China.
| |
Collapse
|
11
|
Malogolovkin A, Kolbasov D. Genetic and antigenic diversity of African swine fever virus. Virus Res 2019; 271:197673. [DOI: 10.1016/j.virusres.2019.197673] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 11/28/2022]
|
12
|
Montaner-Tarbes S, Pujol M, Jabbar T, Hawes P, Chapman D, Portillo HD, Fraile L, Sánchez-Cordón PJ, Dixon L, Montoya M. Serum-Derived Extracellular Vesicles from African Swine Fever Virus-Infected Pigs Selectively Recruit Viral and Porcine Proteins. Viruses 2019; 11:v11100882. [PMID: 31547130 PMCID: PMC6832119 DOI: 10.3390/v11100882] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022] Open
Abstract
: African swine fever is a devastating hemorrhagic infectious disease, which affects domestic and wild swines (Susscrofa) of all breeds and ages, with a high lethality of up to 90-100% in naïve animals. The causative agent, African swine fever virus (ASFV), is a large and complex double-stranded DNA arbovirus which is currently spreading worldwide, with serious socioeconomic consequences. There is no treatment or effective vaccine commercially available, and most of the current research is focused on attenuated viral models, with limited success so far. Thus, new strategies are under investigation. Extracellular vesicles (EVs) have proven to be a promising new vaccination platform for veterinary diseases in situations in which conventional approaches have not been completely successful. Here, serum extracellular vesicles from infected pigs using two different ASFV viruses (OURT 88/3 and Benin ΔMGF), corresponding to a naturally attenuated virus and a deletion mutant, respectively, were characterized in order to determine possible differences in the content of swine and viral proteins in EV-enriched fractions. Firstly, EVs were characterized by their CD5, CD63, CD81 and CD163 surface expression. Secondly, ASFV proteins were detected on the surface of EVs from ASFV-infected pig serum. Finally, proteomic analysis revealed few specific proteins from ASFV in the EVs, but 942 swine proteins were detected in all EV preparations (negative controls, and OURT 88/3 and Benin ΔMGF-infected preparations). However, in samples from OURT 88/3-infected animals, only a small number of proteins were differentially identified compared to control uninfected animals. Fifty-six swine proteins (Group Benin) and seven proteins (Group OURT 88/3) were differentially detected on EVs when compared to the EV control group. Most of these were related to coagulation cascades. The results presented here could contribute to a better understanding of ASFV pathogenesis and immune/protective responses in the host.
Collapse
Affiliation(s)
- Sergio Montaner-Tarbes
- Innovex Therapeutics S.L., 08916 Badalona, Barcelona, Spain.
- Departamento de Ciència Animal, Escola Tècnica Superior d'Enginyeria Agrària, Avenida Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| | - Myriam Pujol
- Faculty of Medicine, Universidad de Chile, Santiago 7591538, Chile.
| | - Tamara Jabbar
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| | - Philippa Hawes
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| | - Dave Chapman
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| | | | - Lorenzo Fraile
- Innovex Therapeutics S.L., 08916 Badalona, Barcelona, Spain.
- Departamento de Ciència Animal, Escola Tècnica Superior d'Enginyeria Agrària, Avenida Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| | | | - Linda Dixon
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| | - Maria Montoya
- Innovex Therapeutics S.L., 08916 Badalona, Barcelona, Spain.
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
- Centro de Investigaciones Biológicas (CIB-CSIC), Universidad Complutense de Madrid, Ramiro de Maeztu 9, Madrid 28040, Spain.
| |
Collapse
|
13
|
Karger A, Pérez-Núñez D, Urquiza J, Hinojar P, Alonso C, Freitas FB, Revilla Y, Le Potier MF, Montoya M. An Update on African Swine Fever Virology. Viruses 2019; 11:v11090864. [PMID: 31533244 PMCID: PMC6784044 DOI: 10.3390/v11090864] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
Animal diseases constitute a continuing threat to animal health, food safety, national economy, and the environment. Among those, African swine fever (ASF) is one of the most devastating viruses affecting pigs and wild suids due to the lack of vaccine or effective treatment. ASF is endemic in countries in sub-Saharan Africa, but since its introduction to the Caucasus region in 2007, a highly virulent strain of ASF virus (ASFV) has continued to circulate and spread into Eastern Europe and Russia, and most recently into Western Europe, China, and various countries of Southeast Asia. Given the importance of this disease, this review will highlight recent discoveries in basic virology with special focus on proteomic analysis, replication cycle, and some recent data on genes involved in cycle progression and viral–host interactions, such as I215L (E2 ubiquitin-conjugating enzyme), EP402R (CD2v), A104R (histone-like protein), QP509L, and Q706L (RNA helicases) or P1192R (Topoisomerase II). Taking into consideration the large DNA genome of ASFV and its complex interactions with the host, more studies and new approaches are to be taken to understand the basic virus–host interaction for ASFV. Proteomic studies are just paving the way for future research.
Collapse
Affiliation(s)
- Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich Loeffler Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Daniel Pérez-Núñez
- Virology Department, Centro Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain; (D.P.-N.); (Y.R.)
| | - Jesús Urquiza
- INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain; (J.U.); (P.H.); (C.A.)
| | - Patricia Hinojar
- INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain; (J.U.); (P.H.); (C.A.)
| | - Covadonga Alonso
- INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain; (J.U.); (P.H.); (C.A.)
| | - Ferdinando B. Freitas
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisboa, Portugal;
| | - Yolanda Revilla
- Virology Department, Centro Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain; (D.P.-N.); (Y.R.)
| | - Marie-Frédérique Le Potier
- ANSES, Laboratoire de Ploufragan/Plouzané/Niort, Unité Virologie Immunologie Porcines, Anses, 22440 Ploufragan, France;
| | - Maria Montoya
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
14
|
Pikalo J, Zani L, Hühr J, Beer M, Blome S. Pathogenesis of African swine fever in domestic pigs and European wild boar - Lessons learned from recent animal trials. Virus Res 2019; 271:197614. [PMID: 30953662 DOI: 10.1016/j.virusres.2019.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 02/05/2023]
Abstract
Over the last decade, African swine fever (ASF) has changed from an exotic disease of Sub-Saharan Africa to a considerable and serious threat to pig industry in Central Europe and Asia. With the introduction of genotype II strains into the European Union in 2014, the disease has apparently found a fertile breeding ground in the abundant wild boar population. Upon infection with highly virulent ASF virus (ASFV), a haemorrhagic fever like illness with high lethality is seen in naïve domestic pigs and wild boar. Despite intensive research, virulence factors, host-virus interactions and pathogenesis are still far from being understood, and neither vaccines nor treatment exist. However, to better understand the disease, and to work towards a safe and efficacious vaccine, this information is needed. The presented review targets the knowledge gained over the last five years with regard to ASF pathogenesis in the broader sense but with a focus on the pandemic genotype II strains. In this way, it is designed as an update and supplement to existing review articles on the same topic.
Collapse
Affiliation(s)
- Jutta Pikalo
- Friedrich-Loeffler-Institut, Suedufer 10, 17489 Greifswald, Insel Riems, Germany.
| | - Laura Zani
- Friedrich-Loeffler-Institut, Suedufer 10, 17489 Greifswald, Insel Riems, Germany.
| | - Jane Hühr
- Friedrich-Loeffler-Institut, Suedufer 10, 17489 Greifswald, Insel Riems, Germany.
| | - Martin Beer
- Friedrich-Loeffler-Institut, Suedufer 10, 17489 Greifswald, Insel Riems, Germany.
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Suedufer 10, 17489 Greifswald, Insel Riems, Germany.
| |
Collapse
|