1
|
Li Z, Wang X, Zheng D, Han F, Li Y, Zhou H, Li J, Cui W, Jiang Y, Wang X, Xie W, Tang L. Oral-Delivery Lactococcus lactis expressing cherry fusion lactoferrin peptides against infection of avian pathogenic Escherichia coli in chickens. Poult Sci 2024; 104:104637. [PMID: 39662258 DOI: 10.1016/j.psj.2024.104637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) infections result in significant economic losses and reduced animal welfare. Historically, antibiotics and vaccinations currently control APEC infections in poultry, however, antibiotic-resistant strains and heterologous serotypes limit their effectiveness. Meanwhile, antibiotic-resistant strains can be transmitted to humans via contact with animals, food or their environment. Probiotics and antimicrobial peptides (AMPs) are potential alternatives to antibiotics and represent promising strategies to combat APEC. Bovine lactoferricin and lactoferrampin possess anti-bacterial, anti-inflammatory, and anti-oxidant properties. Lactococcus lactis (L. lactis) is an excellent vector for delivering recombinant proteins. In this research, we generated a recombinant L. lactis strain MG1363 expressing lactoferrin peptides, which was labeled with a fluorescent marker mCherry and lacked an antibiotic resistance gene (LL-EFLmC). Our investigation focused on the impact of LL-EFLmC strain on the gut microbiota composition and avian pathogenic E. coli O78 challenge. Our findings indicate that LL-EFLmC exhibits inhibitory effects against APEC-O78 and Staphylococcus aureus CVCC26003 (S. aureus CVCC26003) in vitro. Furthermore, the inclusion of LL-EFLmC in chicken feed significantly improved the average daily intake and gain to feed ratio. Additionally, LL-EFLmC treatment resulted in a significant increase in serum IgG and intestinal mucus SIgA levels. Administration of LL-EFLmC was found to effectively suppress APEC-O78 infection and mitigate the expression of pro-inflammatory cytokines, including IL-1β, IL-12, IFN-γ, and TNF-α. Additionally, 16S rDNA sequencing data revealed that LL-EFLmC was able to restore the intestinal flora that had been disrupted by APEC-O78. These findings suggest that LL-EFLmC may serve as a promising feed additive and antibiotic alternative in chicken production, due to its potential to enhance immune regulation, promote growth, and confer resistance against APEC-O78 infection.
Collapse
Affiliation(s)
- Zhuoran Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xueying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Dianzhong Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Fuzhen Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yue Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China
| | - Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China.
| |
Collapse
|
2
|
Watts A, Wigley P. Avian Pathogenic Escherichia coli: An Overview of Infection Biology, Antimicrobial Resistance and Vaccination. Antibiotics (Basel) 2024; 13:809. [PMID: 39334984 PMCID: PMC11429189 DOI: 10.3390/antibiotics13090809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Avian Pathogenic Escherichia coli (APEC) is an extraintestinal pathotype of E. coli that leads to a range of clinical manifestations, including respiratory, systemic and reproductive infections of chickens in both egg and meat production. Unlike most E. coli pathotypes, APEC is not defined by specific virulence genes but rather is a collection of several distinct genotypes that can act as both primary and secondary pathogens leading to colibacillosis. Recent measures to reduce antimicrobials both as growth promoters and as flock-level therapeutics are considered to have led to increased numbers of animals affected. Nevertheless, antimicrobial resistance is a considerable problem in APEC, with resistance to third and fourth-generation cephalosporins via extended-spectrum beta-lactamases (ESBLs), fluoroquinolones and colistin seen as a particular concern. The need to control APEC without antimicrobial use at the flock level has seen an increased focus on vaccination. Currently, a few commercial vaccines are already available, and a range of approaches are being applied to develop new vaccines, and other controls, such as bacteriophage or probiotics, are attracting interest. The lack of a single defined APEC genotype presents challenges to these approaches.
Collapse
Affiliation(s)
- Amyleigh Watts
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK;
| | - Paul Wigley
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK
| |
Collapse
|
3
|
Tavassoli A, Soleymani S, Housaindokht MR. Nucleotide sequence characterization, amino acid variations and 3D structural analysis of HN protein of the NDV VIId genotype. Vet Med Sci 2024; 10:e1491. [PMID: 39031626 PMCID: PMC11190948 DOI: 10.1002/vms3.1491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/20/2023] [Accepted: 05/17/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Haemagglutinin-neuraminidase (HN) is one of the membrane proteins of Newcastle disease virus (NDV) that plays a significant role during host viral infection. Therefore, antibodies against HN are vital for the host's ability to protect itself against NDV infection due to their critical functions in viral infection. As a result, HN has been a candidate protein in vaccine development against the Newcastle disease virus. METHODS This report used the full-length sequence of the HN protein of NDV isolated in Iran (VIId subgenotype). We characterize and identify amino acid substitutions in comparison to other more prevalent NDV genotypes, VII subgenotypes and vaccine strains. Furthermore, bioinformatics tools were applied to determine the three-dimensional structure, molecular dynamics simulation and prediction of B-cell antigenic epitopes. RESULTS The results showed that the antigenic regions of our isolate are quite comparable to the other VII subgenotypes of NDV isolated from different geographical places. Moreover, by employing the final 3D structure of our HN protein, the amino acid residues are proposed as a B-cell epitope by epitope prediction servers, which leads to the introduction of linear and conformational antigenic sites. CONCLUSIONS Immunoinformatic vaccine design principles currently exhibit tremendous potential for developing a new generation of candidate vaccines quickly and economically to eradicate infectious viruses, including the NDV. In order to accomplish this, focus is directed on residues that might be considered antigenic.
Collapse
Affiliation(s)
- Amin Tavassoli
- Research and Technology Center of BiomoleculesFaculty of Science, Ferdowsi University of MashhadMashhadIran
- Department of ChemistryFaculty of Sciences, Ferdowsi University of MashhadMashhadIran
| | - Safoura Soleymani
- Research and Technology Center of BiomoleculesFaculty of Science, Ferdowsi University of MashhadMashhadIran
- Department of ChemistryFaculty of Sciences, Ferdowsi University of MashhadMashhadIran
| | - Mohammad Reza Housaindokht
- Research and Technology Center of BiomoleculesFaculty of Science, Ferdowsi University of MashhadMashhadIran
- Department of ChemistryFaculty of Sciences, Ferdowsi University of MashhadMashhadIran
| |
Collapse
|
4
|
Zhang H, Li Z, Li W, Jin Y, Li Y, Xiao Q, Tong D, Zhou J. Comparison of the immune effects of the Chlamydia abortus MOMP antigen displayed in different parts of bacterial ghosts. Front Microbiol 2024; 15:1349746. [PMID: 38389524 PMCID: PMC10883653 DOI: 10.3389/fmicb.2024.1349746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Bacterial ghosts (BGs) are promising vaccine platforms owing to their high adjuvant properties and delivery efficiency. Heterologous antigens can be anchored to different parts of BGs using genetic engineering strategies to prepare vaccines. However, several key issues need to be resolved, including the efficient preparation of BGs and determining the optimal anchoring position of exogenous antigens in the BGs. Here, we prepared an efficient temperature-controlled lysis system using lysis gene E of phage PhiX174 and used the major outer membrane protein (MOMP) of Chlamydia abortus (C. abortus) as a model antigen to explore the optimal display location of exogenous antigens in BGs. We demonstrated that the constructed recombinant temperature-controlled lysis plasmid can still stably inhibit E gene expression at 37°C, and the lysis efficiency of E. coli can reach above 99.9%. Four recombinant MOMP Escherichia coli (E. coli) ghost vaccines were constructed using different anchor sequences. These vaccines all induced strong specific antibody responses and secrete high levels of IFN-γ in immunized mice and significantly increased the clearance of C. abortus in a mouse infection model. Notably, the strongest immune effect was observed when MOMP was displayed on the surface of E. coli ghosts (rECG-InpN-M), which resulted in the clearance of C. abortus in mice 6 days earlier than that with the recombinant MOMP vaccine. Altogether, we constructed an efficient BG temperature-controlled lysis system and provided a feasible strategy for developing a BG delivery platform with enhanced immune effects.
Collapse
Affiliation(s)
- Huaiyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhaocai Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Youshun Jin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yunhui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Xiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jizhang Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
5
|
Wang Z, Zhu D, Zhang Y, Xia F, Zhu J, Dai J, Zhuge X. Extracellular vesicles produced by avian pathogenic Escherichia coli (APEC) activate macrophage proinflammatory response and neutrophil extracellular trap (NET) formation through TLR4 signaling. Microb Cell Fact 2023; 22:177. [PMID: 37689682 PMCID: PMC10492386 DOI: 10.1186/s12934-023-02171-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Avian pathogenic Escherichia coli (APEC) is the major pathogen causing important avian diseases in poultry. As an important subtype of extraintestinal pathogenic E. coli, APEC has zoonotic potential and is considered a foodborne pathogen. APEC extracellular vesicles (EVs) may play vital roles in the interaction of the pathogen with its host cells. However, the precise roles played by APEC EVs are still not completely clear, especially in immune cells. RESULTS In this study, we investigated the relationships between APEC EVs and immune cells. The production and characteristics of the EVs of APEC isolate CT265 were identified. Toll like receptor 4 (TLR4) triggered the cellular immune responses when it interacted with APEC EVs. APEC EVs induced a significant release of proinflammatory cytokines in THP-1 macrophages. APEC EVs induced the macrophage inflammatory response via the TLR4/MYD88/NF-κB signaling pathway, which participated in the activation of the APEC-EV-induced NLRP3 inflammasome. However, the loss of lipopolysaccharide (LPS) from APEC EVs reduced the activation of the NLRP3 inflammasome mediated by TLR4/MYD88/NF-κB signaling. Because APEC EVs activated the macrophage inflammatory response and cytokines release, we speculated that the interaction between APEC EVs and macrophages activated and promoted neutrophil migration during APEC extraintestinal infection. This study is the first to report that APEC EVs induce the formation of neutrophil extracellular traps (NETs) and chicken heterophil extracellular traps. Treatment with APEC EVs induced SAPK/JNK activation in neutrophils. The inhibition of TLR4 signaling suppressed APEC-EV-induced NET formation. However, although APEC EVs activated the immune response of macrophages and initiated NET formation, they also damaged macrophages, causing their apoptosis. The loss of LPS from APEC EVs did not prevent this process. CONCLUSION APEC-derived EVs induced inflammatory responses in macrophages and NETs in neutrophils, and that TLR4 was involved in the APEC-EV-activated inflammatory response. These findings provided a basis for the further study of APEC pathogenesis.
Collapse
Affiliation(s)
- Zhongxing Wang
- Key Lab of Animal Bacteriology, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang road, Nanjing, 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No.9 Seyuan road, Nantong, Jiangsu, 226019, P.R. China
| | - Dongyu Zhu
- Key Lab of Animal Bacteriology, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang road, Nanjing, 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No.9 Seyuan road, Nantong, Jiangsu, 226019, P.R. China
| | - Yuting Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No.9 Seyuan road, Nantong, Jiangsu, 226019, P.R. China
| | - Fufang Xia
- Key Lab of Animal Bacteriology, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang road, Nanjing, 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No.9 Seyuan road, Nantong, Jiangsu, 226019, P.R. China
| | - Jiaying Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jianjun Dai
- Key Lab of Animal Bacteriology, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang road, Nanjing, 210095, China.
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiangkai Zhuge
- Key Lab of Animal Bacteriology, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang road, Nanjing, 210095, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No.9 Seyuan road, Nantong, Jiangsu, 226019, P.R. China.
| |
Collapse
|
6
|
Bagheri S, Mitra T, Paudel S, Abdelhamid MK, Könnyü S, Wijewardana V, Kangethe RT, Cattoli G, Lyrakis M, Hess C, Hess M, Liebhart D. Aerosol vaccination of chicken pullets with irradiated avian pathogenic Escherichia coli induces a local immunostimulatory effect. Front Immunol 2023; 14:1185232. [PMID: 37261344 PMCID: PMC10227613 DOI: 10.3389/fimmu.2023.1185232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
The present study investigated the expression of cytokines and cellular changes in chickens following vaccination with irradiated avian pathogenic Escherichia coli (APEC) and/or challenge. Four groups of 11-week-old pullets, each consisting of 16 birds were kept separately in isolators before they were sham inoculated (N), challenged only (C), vaccinated (V) or vaccinated and challenged (V+C). Vaccination was performed using irradiated APEC applied via aerosol. For challenge, the homologous strain was administered intratracheally. Birds were sacrificed on 3, 7, 14 and 21 days post challenge (dpc) to examine lesions, organ to body weight ratios and bacterial colonization. Lung and spleen were sampled for investigating gene expression of cytokines mediating inflammation by RT-qPCR and changes in the phenotype of subsets of mononuclear cells by flow cytometry. After re-stimulation of immune cells by co-cultivation with the pathogen, APEC-specific IFN-γ producing cells were determined. Challenged only birds showed more severe pathological and histopathological lesions, a higher probability of bacterial re-isolation and higher organ to body weight ratios compared to vaccinated and challenged birds. In the lung, an upregulation of IL-1β and IL-6 following vaccination and/or challenge at 3 dpc was observed, whereas in the spleen IL-1β was elevated. Changes were observed in macrophages and TCR-γδ+ cells within 7 dpc in spleen and lung of challenged birds. Furthermore, an increase of CD4+ cells in spleen and a rise of Bu-1+ cells in lung were present in vaccinated and challenged birds at 3 dpc. APEC re-stimulated lung and spleen mononuclear cells from only challenged pullets showed a significant increase of IFN-γ+CD8α+ and IFN-γ+TCR-γδ+ cells. Vaccinated and challenged chickens responded with a significant increase of IFN-γ+CD8α+ T cells in the lung and IFN-γ+TCR-γδ+ cells in the spleen. Re-stimulation of lung mononuclear cells from vaccinated birds resulted in a significant increase of both IFN-γ+CD8α+ and IFN-γ+TCR-γδ+ cells. In conclusion, vaccination with irradiated APEC caused enhanced pro-inflammatory response as well as the production of APEC-specific IFN-γ-producing γδ and CD8α T cells, which underlines the immunostimulatory effect of the vaccine in the lung. Hence, our study provides insights into the underlying immune mechanisms that account for the defense against APEC.
Collapse
Affiliation(s)
- Sina Bagheri
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Taniya Mitra
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Surya Paudel
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Mohamed Kamal Abdelhamid
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Simon Könnyü
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Viskam Wijewardana
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Richard Thiga Kangethe
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Manolis Lyrakis
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Dieter Liebhart
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
7
|
Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023; 11:344. [PMID: 36838308 PMCID: PMC9965155 DOI: 10.3390/microorganisms11020344] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
Collapse
Affiliation(s)
- Pravil Pokharel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sabin Dhakal
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pasteur Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
8
|
Mu J, Lei L, Zheng Y, Li D, Li J, Fu Y, Wang G, Liu Y. Comparative study of subcutaneous, intramuscular, and oral administration of bovine pathogenic Escherichia coli bacterial ghost vaccine in mice. Front Immunol 2022; 13:1008131. [DOI: 10.3389/fimmu.2022.1008131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
Escherichia coli is one of the most common bacterial pathogens in cattle. Prophylactic vaccines are considered promising strategies with the potential to reduce the incidence of colibacillosis. Some studies suggested that bacterial ghosts may serve as a novel approach for preventing bacterial infections. However, the roles of administration route on vaccine immunogenicity and efficacy have not been investigated. In this study, the efficacy of vaccination via different immune routes in generating humoral and cellular immune response was compared through subcutaneous (SC), intramuscular (IM), and oral (O) administration in female BALB/c mice with bacterial ghosts prepared using wild type Escherichia coli isolates CE9, while phosphate buffer saline (PBS) and inactivated vaccines containing aluminum adjuvants (Killed) were used as control. Our results showed that the plasmid pBV220-E-aa-SNA containing E. coli was efficiently cleaved at 42°C with 94.8% positive ratio as assessed by colony counts. Transmission electron microscopy (TEM) confirmed bacteria retained intact surface structure while devoid of cytoplasmic component. We found that total IgG titers in killed, IM and SC groups showed significant increase on 7, 14, 21 and 28 days post-immunization. The IgA level of the IM group was higher than that of all other groups on the 28th day. Meanwhile, four experimental groups showed a significant difference in IgA levels compared with PBS control. In the IM group, an increase in the relative percentages of CD3+CD4+ T cells was accompanied by an increase in the relative percentages of splenic CD3+CD8+ T cells. In comparison with the inactivated vaccine, intramuscular CE9 ghosts immunization elicited higher levels of IL-1β, IL-2, IL-6 and IL-12. Subcutaneous and intramuscular immunizations were significantly associated with improved survival in comparison with oral route, traditional vaccine and the control. Pathologic assessment revealed that less severe tissue damage and inflammation were found in lung, kidney, and intestine of IM group compared with other groups. The results above demonstrate that immunization of Escherichia coli CE9 ghosts via intramuscular injection elicits a more robust antigen-specific immune response in mice to prevent the Escherichia coli infection.
Collapse
|
9
|
Orlova EG, Maslennikova IL, Pospelova JS, Starčič Erjavec M, Loginova NP, Troinich YN, Kuznetsova MV. The effect of Escherichia coli ŽP strain with a conjugation-based colicin E7 delivery on growth performance, hematological, biochemical, and histological parameters, gut microbiota, and nonspecific immunity of broilers. Can J Microbiol 2022; 68:687-702. [PMID: 36121064 DOI: 10.1139/cjm-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Escherichia coli ŽP strain (ŽP) was constructed based on the known probiotic E. coli strain Nissle 1917. It was genetically modified to carry the colicin E7 synthesis gene encoding DNase on a conjugative plasmid and the colicin E7 immunity gene in the chromosome. The aim of this study was to evaluate the effects of the daily ŽP per oral administration (5 × 108 or 5 × 1010 CFU per bird) on the growth performance, hematological, biochemical, histological parameters, gut microbiota, and nonspecific immunity of the 4-24 days old broilers. The ŽP administration increased the abundance of genera Bacillus, Butyrivibrio, and Clostridium and did not influence the weight gain of 4-16 days old broilers. The biochemical parameters were within normal ranges for poultry in experimental and control groups. The ŽP administration had no effect on the erythrocyte numbers, hemoglobin and immunoglobulin Y concentrations, but significantly increased the serum lysozyme concentration, leukocyte numbers, and reactive oxygen species production by phagocytes compared with the control group. It did not cause inflammatory changes in intestinal mucosa, Peyer's patches, and spleen. Thus, the ŽP had no detrimental effects on broiler health and could be an efficient probiotic for the broiler colibacillosis prophylaxis.
Collapse
Affiliation(s)
- E G Orlova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Science, Perm, Russia
| | - I L Maslennikova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Science, Perm, Russia
| | - J S Pospelova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Science, Perm, Russia
| | | | | | | | - M V Kuznetsova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Science, Perm, Russia.,Perm State Medical University, Perm, Russia
| |
Collapse
|
10
|
Herawati H, Anisa AK, Widiatmoko KD, Alam SSP, Diari IA, Naprila ZH, Kisya RLA, Puspabela A, Permata FS. Effect of red ginger powder (Zingiber officinale var. rubrum) as a feed additive for starter and finisher broiler chicken to increase immunoglobulin A and immunoglobulin Y expression and to prevent intestinal injury due to Salmonella enteritidis infection. Vet World 2022; 15:1506-1514. [PMID: 35993070 PMCID: PMC9375218 DOI: 10.14202/vetworld.2022.1506-1514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background and Aim: Salmonellosis is an infectious disease that often occurs in chickens and is caused by Salmonella enteritidis. The use of antibiotics to prevent this disease can result in the development of resistance in pathogenic bacteria, in addition to the presence of antibiotic residues in consumed carcasses. Red ginger (Zingiber officinale var. rubrum) has active compounds that potentially act as immunomodulators which increase specific and non-specific immune responses through the induction of cytokine production. This study was conducted to determine the effects of red ginger powder mixed in feed for starter and finisher broiler chickens, based on the evaluation of the expression of immunoglobulin A (IgA), histopathologic description of the ileum and cecum, IgA, and immunoglobulin Y (IgY) expression in the spleen, and the isolation count of S. enteritidis in fresh fecal samples. Materials and Methods: A total of 100 starter and 100 finisher Cobb broiler chickens were divided into four groups, designated as T0, T1, T2, and T3, respectively: Group T0 was fed commercial feed with no added 2% red ginger powder or S. enteritidis induction, and served as a negative control; Group T1 was inoculated with a 0.25 mL S. enteritidis oral induction (1 × 107 colony-forming unit [CFU] [0.5 McFarland standard]), and served as a positive control; Group T2 was fed with feed containing 2% red ginger powder; while Group T3 was fed with feed containing 2% red ginger powder and was orally inoculated with S. enteritidis with a dose similar to T1. The normal feed was given on the 1st–7th days. The mixture of 2% red ginger powder was given on the 7th–15th days. The S. enteritidis was induced on the 15th day (1 × 107 CFU). Necropsy was performed on the 16th day and tissues were fixed in 10% formalin and routinely processed for histopathologic and immunohistochemical analyses. The data were analyzed using a one-way analysis of variance test, Tukey’s analysis, and the Mann–Whitney U non-parametric statistical analysis test. Results: The 2% red ginger powder was found to significantly (p < 0.05) increase IgA expression and additionally decrease tissue damage in the cecum and ileum. It also increased IgA and IgY expression in the spleen. In addition, a decrease was observed in the S. enteritidis number isolated from finisher fresh feces, but none was found in the isolated starter fresh feces. Conclusion: These findings indicate that the addition of red ginger powder to chicken feed is a potential natural immunomodulator against S. enteritidis infection.
Collapse
Affiliation(s)
- Herawati Herawati
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, 65151, Indonesia
| | - Agri Kaltaria Anisa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, 65151, Indonesia
| | - Kurnianto Dwi Widiatmoko
- Veterinary Science Undergraduate Program, Faculty of Veterinary Medicine Universitas Brawijaya, Malang, 65151, Indonesia
| | - Setiawan Surya Paku Alam
- Veterinary Science Undergraduate Program, Faculty of Veterinary Medicine Universitas Brawijaya, Malang, 65151, Indonesia
| | - Islah Asyraf Diari
- Veterinary Science Undergraduate Program, Faculty of Veterinary Medicine Universitas Brawijaya, Malang, 65151, Indonesia
| | - Zhella Happy Naprila
- Veterinary Science Undergraduate Program, Faculty of Veterinary Medicine Universitas Brawijaya, Malang, 65151, Indonesia
| | - Rr. Lintan Ayu Kisya
- Veterinary Science Undergraduate Program, Faculty of Veterinary Medicine Universitas Brawijaya, Malang, 65151, Indonesia
| | - Analita Puspabela
- Veterinary Science Undergraduate Program, Faculty of Veterinary Medicine Universitas Brawijaya, Malang, 65151, Indonesia
| | - Fajar Shodiq Permata
- Department of Histology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, 65151, Indonesia
| |
Collapse
|
11
|
Eslaminejad T, Moshafi MH, Hasanpore M, Ayatollahi SA, Ansari M. Evaluation of the anticandidal activity of clotrimazole using Lactobacillus caseie ghosts as biological drug carrier. Daru 2022; 30:67-73. [PMID: 35290650 PMCID: PMC9114249 DOI: 10.1007/s40199-022-00432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/30/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Candida albicans cause oral and vaginal mucosa infections as well as bloodstream and deep-tissue infections. Commonly, clotrimazole as a broad-spectrum antimitotic drug applied for treatment of Candida albicans infections. Bacterial ghosts are dead cells that have the broad potential to target the various body tissues and cells as drug vector. OBJECTIVES We hope to conquest this resistance by using clotrimazole loaded on bacterial ghosts. METHODS Lactobacillus ghosts were produced by using tween 80 and lactic acid according to the protocol and the amount of the DNA and protein in supernatant was measured by Nano-drop spectrophotometry. Ghost's morphological characteristics were detected by using light microscopy, SEM and AFM. Antifungal activities of the synthesized ghosts were measured by plate methods. Three independent vertical Franz cells were used to evaluate drug release profile. BG-clotrimazole was added into cream base and was examined for dispensability as well as uniformity of the formulation on the skin. RESULTS Results of the Nano-drop analysis showed that protein and DNA was seen in supernatant of treatment compared to control groups. AFM results showed well-dispersed and rod-shaped L. casei ghost cells. Lysis pores formation in the L. casei ghosts was indicated by SEM micrographs. BGs represent an excellent drug delivery system because of the high loading capability. Nearly, 50% of clotrimazole was released from BGs during 90 min. Highest anticandidal activity occurred using 100 mg/l clotrimazole-BG, while toxic effects were also seen with 10 mg/l clotrimazole. IC50 clotrimazole-BG was found at 0.001 mg/l. Chemical stability results showed that about 90% of clotrimazole remained in the formulation. CONCLUSION It could be concluded that the bacterial ghosts are very talented to high loading capability, keeping and releasing drug during six months, therefore these could act as an excellent drug delivery system.
Collapse
Affiliation(s)
- Touba Eslaminejad
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of, Medical Sciences, Kerman, Iran.,Departments of Drug and Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hassan Moshafi
- Departments of Drug and Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Matineh Hasanpore
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of, Medical Sciences, Kerman, Iran
| | - Seyed Amin Ayatollahi
- Department of Medical Parasitology and Mycology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ansari
- Departments of Drug and Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran. .,Food and Drug Laboratory Research Center, Food and Drug Administration, MOH & ME, Tehran, Iran.
| |
Collapse
|
12
|
Soleymani S, Tavassoli A, Housaindokht MR. An overview of progress from empirical to rational design in modern vaccine development, with an emphasis on computational tools and immunoinformatics approaches. Comput Biol Med 2022; 140:105057. [PMID: 34839187 DOI: 10.1016/j.compbiomed.2021.105057] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/03/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022]
Abstract
Vaccination remains the most effective strategy for preventing and controlling infectious diseases. Numerous conventional vaccines, especially live attenuated, inactivated (killed) microorganisms and subunit vaccines, lead to an effective induction of protective immune responses, mainly antibody-mediated responses against pathogens. However, it has become known that a wide range of highly dangerous pathogens are uncontrollable via conventional vaccination strategies. Recent advances in molecular biology, immunology, genetics, biochemistry, and bioinformatics have provided new prospects for vaccine development. As a result of these advances, several new strategies for vaccine design, development, and production have appeared. These strategies show advantages over conventional vaccines. In this review, we discuss some of the major novel approaches, including recombinant protein vaccines, live recombinant viral and bacterial vectors, DNA and RNA vaccines, reverse vaccinology and reverse genetics approaches. Moreover, we have described the recent progresses on computational tools and immunoinformatics approaches for identifying, designing, and developing new candidate vaccines.
Collapse
Affiliation(s)
- Safoura Soleymani
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Amin Tavassoli
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Reza Housaindokht
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
13
|
Salem-Bekhit MM, Youssof AME, Alanazi FK, Aleanizy FS, Abdulaziz A, Taha EI, Amara AAAF. Bacteria from Infectious Particles to Cell Based Anticancer Targeted Drug Delivery Systems. Pharmaceutics 2021; 13:1984. [PMID: 34959266 PMCID: PMC8706210 DOI: 10.3390/pharmaceutics13121984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Bacterial ghosts (BGs) are empty cell envelopes of nonliving evacuated bacterial cells. They are free from their cytoplasmic contents; however, they sustain their cellular 3D morphology and antigenic structures, counting on bioadhesive properties. Lately, they have been tested as an advanced drug delivery system (DDS) for different materials like DNA, peptides, or drugs, either single components or combinations. Different studies have revealed that, BG DDS were paid the greatest attention in recent years. The current review explores the impact of BGs on the field of drug delivery and drug targeting. BGs have a varied area of applications, including vaccine and tumor therapy. Moreover, the use of BGs, their synthesis, their uniqueness as a delivery system and application principles in cancer are discussed. Furthermore, the safety issues of BGs and stability aspects of using ghost bacteria as delivery systems are discussed. Future perspective efforts that must be followed for this important system to continue to grow are important and promising.
Collapse
Affiliation(s)
- Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.E.Y.); (F.K.A.); (F.S.A.); (A.A.); (E.I.T.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M. E. Youssof
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.E.Y.); (F.K.A.); (F.S.A.); (A.A.); (E.I.T.)
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fars K. Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.E.Y.); (F.K.A.); (F.S.A.); (A.A.); (E.I.T.)
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.E.Y.); (F.K.A.); (F.S.A.); (A.A.); (E.I.T.)
| | - Alsuwyeh Abdulaziz
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.E.Y.); (F.K.A.); (F.S.A.); (A.A.); (E.I.T.)
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ehab I. Taha
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.E.Y.); (F.K.A.); (F.S.A.); (A.A.); (E.I.T.)
| | - Amro Abd Al Fattah Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt;
| |
Collapse
|
14
|
Chen H, Ji H, Kong X, Lei P, Yang Q, Wu W, Jin L, Sun D. Bacterial Ghosts-Based Vaccine and Drug Delivery Systems. Pharmaceutics 2021; 13:1892. [PMID: 34834306 PMCID: PMC8622331 DOI: 10.3390/pharmaceutics13111892] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial ghosts (BGs) are empty bacterial envelopes of Gram-negative bacteria produced by controlled expressions of cloned gene E, forming a lysis tunnel structure within the envelope of the living bacteria. Globally, BGs have been used as vaccine delivery systems and vaccine adjuvants. There is an increasing interest in the development of novel delivery systems that are based on BGs for biomedical applications. Due to intact reservation of bacterial cell membranes, BGs have an inherent immunogenicity, which enables targeted drug delivery and controlled release. As carrier vehicles, BGs protect drugs from interference by external factors. In recent years, there has been an increasing interest in BG-based delivery systems against tumors, inflammation, and infection, among others. Herein, we reviewed the preparation methods for BGs, interactions between BGs and the host, and further highlighted research progress in BG development.
Collapse
Affiliation(s)
- Haojie Chen
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
| | - Hao Ji
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
| | - Xiangjun Kong
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Pengyu Lei
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
| | - Wei Wu
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
- Key Laboratory for Biorheological Science and Technology of Ministry of Education & State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Libo Jin
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
| | - Da Sun
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
| |
Collapse
|
15
|
Avian Pathogenic Escherichia coli (APEC): An Overview of Virulence and Pathogenesis Factors, Zoonotic Potential, and Control Strategies. Pathogens 2021; 10:pathogens10040467. [PMID: 33921518 PMCID: PMC8069529 DOI: 10.3390/pathogens10040467] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis in avian species, and recent reports have suggested APEC as a potential foodborne zoonotic pathogen. Herein, we discuss the virulence and pathogenesis factors of APEC, review the zoonotic potential, provide the current status of antibiotic resistance and progress in vaccine development, and summarize the alternative control measures being investigated. In addition to the known virulence factors, several other factors including quorum sensing system, secretion systems, two-component systems, transcriptional regulators, and genes associated with metabolism also contribute to APEC pathogenesis. The clear understanding of these factors will help in developing new effective treatments. The APEC isolates (particularly belonging to ST95 and ST131 or O1, O2, and O18) have genetic similarities and commonalities in virulence genes with human uropathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC) and abilities to cause urinary tract infections and meningitis in humans. Therefore, the zoonotic potential of APEC cannot be undervalued. APEC resistance to almost all classes of antibiotics, including carbapenems, has been already reported. There is a need for an effective APEC vaccine that can provide protection against diverse APEC serotypes. Alternative therapies, especially the virulence inhibitors, can provide a novel solution with less likelihood of developing resistance.
Collapse
|