1
|
Wang X, Zhu H, Hu J, Zhang B, Guo W, Wang Z, Wang D, Qi J, Tian M, Bao Y, Si F, Wang S. Genetic distribution, characterization, and function of Escherichia coli type III secretion system 2 (ETT2). iScience 2024; 27:109763. [PMID: 38706860 PMCID: PMC11068852 DOI: 10.1016/j.isci.2024.109763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
Many Gram-negative bacteria use type Ⅲ secretion system (T3SS) to inject effector proteins and subvert host signaling pathways, facilitating the growth, survival, and virulence. Notably, some bacteria harbor multiple distinct T3SSs with different functions. An extraordinary T3SS, the Escherichia coli Type III Secretion System 2 (ETT2), is widespread among Escherichia coli (E. coli) strains. Since many ETT2 carry genetic mutations or deletions, it is thought to be nonfunctional. However, increasing studies highlight ETT2 contributes to E. coli pathogenesis. Here, we present a comprehensive overview of genetic distribution and characterization of ETT2. Subsequently, we outline its functional potential, contending that an intact ETT2 may retain the capacity to translocate effector proteins and manipulate the host's innate immune response. Given the potential zoonotic implications associated with ETT2-carrying bacteria, further investigations into the structure, function and regulation of ETT2 are imperative for comprehensive understanding of E. coli pathogenicity and the development of effective control strategies.
Collapse
Affiliation(s)
- Xinyu Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Hong Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Jiangang Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Beibei Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Weiqi Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Zhiyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Di Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Yanqing Bao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| |
Collapse
|
2
|
Zhang R, Wang Y. EvgS/EvgA, the unorthodox two-component system regulating bacterial multiple resistance. Appl Environ Microbiol 2023; 89:e0157723. [PMID: 38019025 PMCID: PMC10734491 DOI: 10.1128/aem.01577-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE EvgS/EvgA, one of the five unorthodox two-component systems in Escherichia coli, plays an essential role in adjusting bacterial behaviors to adapt to the changing environment. Multiple resistance regulated by EvgS/EvgA endows bacteria to survive in adverse conditions such as acidic pH, multidrug, and heat. In this minireview, we summarize the specific structures and regulation mechanisms of EvgS/EvgA and its multiple resistance. By discussing several unresolved issues and proposing our speculations, this review will be helpful and enlightening for future directions about EvgS/EvgA.
Collapse
Affiliation(s)
- Ruizhen Zhang
- MoE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yan Wang
- MoE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Yang Y, Ge J, Lu Y, Zhou Y, Sun H, Li H. Long noncoding RNAs expression profile of RIP2 knockdown in chicken HD11 macrophages associated with avian pathogenic E. coli (APEC) infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104650. [PMID: 36736641 DOI: 10.1016/j.dci.2023.104650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Avian pathogenic E. coli (APEC) has been detected to cause many acute and chronic diseases, resulting in huge economic losses to the poultry industry. Previous experiments have identified the effect of receptor interacting serine/threonine kinase 2 (RIP2) gene in APEC infection. Moreover, increasing evidence indicates that long noncoding RNAs (lncRNAs) play important roles in the anti-bacteria responses. However, little is known about the functions of lncRNAs, especially related to RIP2, in response to APEC. Therefore, we tried to reveal lncRNAs potentially involved in the immune and inflammatory response against APEC infection, with a particular focus on those possibly correlated with RIP2. A total of 1856 and 1373 differentially expressed (DE) lncRNAs were identified in knockdown of RIP2 cells following APEC infection (shRIP2+APEC) vs. APEC and shRIP2 vs. wild type cells (WT), respectively, which were mainly enriched in lysosome, phagosome, NOD-like receptor signaling pathway, TGF-beta signaling pathway. Significantly, TCONS_00009695 regulated by RIP2 could directly alter the expression of target BIRC3 to modulate cytokines and to participate in immune and inflammatory response against APEC infection. Our findings aid to a better understanding of host responses to APEC infection and provide new directions for understanding the potential association between lncRNAs and APEC pathogenesis.
Collapse
Affiliation(s)
- Yexin Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jiayi Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yuyang Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Huan Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou, 225009, China; Yangzhou Engineering Research Center of Agricultural Products Intelligent Measurement and Control & Cleaner Production, Yangzhou, 225009, China
| |
Collapse
|
4
|
Hu J, Afayibo DJA, Zhang B, Zhu H, Yao L, Guo W, Wang X, Wang Z, Wang D, Peng H, Tian M, Qi J, Wang S. Characteristics, pathogenic mechanism, zoonotic potential, drug resistance, and prevention of avian pathogenic Escherichia coli (APEC). Front Microbiol 2022; 13:1049391. [PMID: 36583051 PMCID: PMC9793750 DOI: 10.3389/fmicb.2022.1049391] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Although most Escherichia coli (E. coli) strains are commensal and abundant, certain pathogenic strains cause severe diseases from gastroenteritis to extraintestinal infections. Extraintestinal pathogenic E. coli (ExPEC) contains newborn meningitis E. coli (NMEC), uropathogenic E. coli (UPEC), avian pathogenic E. coli (APEC), and septicemic E. coli (SEPEC) based on their original host and clinical symptom. APEC is a heterogeneous group derived from human ExPEC. APEC causes severe respiratory and systemic diseases in a variety of avians, threatening the poultry industries, food security, and avian welfare worldwide. APEC has many serotypes, and it is a widespread pathogenic bacterium in poultry. In addition, ExPEC strains share significant genetic similarities and similar pathogenic mechanisms, indicating that APEC potentially serves as a reservoir of virulence and resistance genes for human ExPEC, and the virulence and resistance genes can be transferred to humans through food animals. Due to economic losses, drug resistance, and zoonotic potential, APEC has attracted heightened awareness. Various virulence factors and resistance genes involved in APEC pathogenesis and drug resistance have been identified. Here, we review the characteristics, epidemiology, pathogenic mechanism zoonotic potential, and drug resistance of APEC, and summarize the current status of diagnosis, alternative control measures, and vaccine development, which may help to have a better understanding of the pathogenesis and resistance of APEC, thereby reducing economic losses and preventing the spread of multidrug-resistant APEC to humans.
Collapse
|
5
|
Fu D, Wu J, Wu X, Shao Y, Song X, Tu J, Qi K. The two-component system histidine kinase EnvZ contributes to Avian pathogenic Escherichia coli pathogenicity by regulating biofilm formation and stress responses. Poult Sci 2022; 102:102388. [PMID: 36586294 PMCID: PMC9811210 DOI: 10.1016/j.psj.2022.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
EnvZ, the histidine kinase (HK) of OmpR/EnvZ, transduces osmotic signals in Escherichia coli K12 and affects the pathogenicity of Shigella flexneri and Vibrio cholera. Avian pathogenic E. coli (APEC) is an extra-intestinal pathogenic E. coli (ExPEC), causing acute and sudden death in poultry and leading to severe economic losses to the global poultry industry. How the functions of EnvZ correlate with APEC pathogenicity was still unknown. In this study, we successfully constructed the envZ mutant strain AE17ΔenvZ and the inactivation of envZ significantly reduced biofilms and altered red, dry, and rough (rdar) morphology. In addition, AE17ΔenvZ was significantly less resistant to acid, alkali, osmotic, and oxidative stress conditions. Deletion of envZ significantly enhanced sensitivity to specific pathogen-free (SPF) chicken serum and increased adhesion to chicken embryonic fibroblast DF-1 cells and elevated inflammatory cytokine IL-1β, IL6, and IL8 expression levels. Also, when compared with the WT strain, AE17ΔenvZ attenuated APEC pathogenicity in chickens. To explore the molecular mechanisms underpinning envZ in APEC17, we compared the WT and envZ-deletion strains using transcriptome analyses. RNA-Seq results identified 711 differentially expressed genes (DEGs) in the envZ mutant strain and DEGs were mainly enriched in outer membrane proteins, stress response systems, and TCSs. Quantitative real-time reverse transcription PCR (RT-qPCR) showed that EnvZ influenced the expression of biofilms and stress responses genes, including ompC, ompT, mlrA, basR, hdeA, hdeB, adiY, and uspB. We provided compelling evidence showing EnvZ contributed to APEC pathogenicity by regulating biofilms and stress response expression.
Collapse
Affiliation(s)
- Dandan Fu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China,Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Jianmei Wu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China,Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Xiaoyan Wu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China,Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Ying Shao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China,Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Xiangjun Song
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China,Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China,Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China,Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China,Corresponding author:
| |
Collapse
|
6
|
Yin L, Cheng B, Tu J, Shao Y, Song X, Pan X, Qi K. YqeH contributes to avian pathogenic Escherichia coli pathogenicity by regulating motility, biofilm formation, and virulence. Vet Res 2022; 53:30. [PMID: 35436977 PMCID: PMC9014576 DOI: 10.1186/s13567-022-01049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a pathotype of extraintestinal pathogenic E. coli and one of the most serious infectious diseases of poultry. It not only causes great economic losses to the poultry industry, but also poses a serious threat to public health worldwide. Here, we examined the role of YqeH, a transcriptional regulator located at E. coli type III secretion system 2 (ETT2), in APEC pathogenesis. To investigate the effects of YqeH on APEC phenotype and virulence, we constructed a yqeH deletion mutant (APEC40-ΔyqeH) and a complemented strain (APEC40-CΔyqeH) of APEC40. Compared with the wild type (WT), the motility and biofilm formation of APEC40-ΔyqeH were significantly reduced. The yqeH mutant was highly attenuated in a chick infection model compared with WT, and showed severe defects in its adherence to and invasion of chicken embryo fibroblast DF-1 cells. However, the mechanisms underlying these phenomena were unclear. Therefore, we analyzed the transcriptional effects of the yqeH deletion to clarify the regulatory mechanisms of YqeH, and the role of YqeH in APEC virulence. The deletion of yqeH downregulated the transcript levels of several flagellum-, biofilm-, and virulence-related genes. Our results demonstrate that YqeH is involved in APEC pathogenesis, and the reduced virulence of APEC40-ΔyqeH may be related to its reduced motility and biofilm formation.
Collapse
|