1
|
Qiu M, Jiang J, Jiang W, Zhang W, Jiang Y, Xin F, Jiang M. The biosynthesis of L-phenylalanine-derived compounds by engineered microbes. Biotechnol Adv 2024; 77:108448. [PMID: 39260779 DOI: 10.1016/j.biotechadv.2024.108448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
L-Phenylalanine (L-Phe) is an important aromatic amino acid, which has been widely used in food, health care products, medicine and other fields. Based on the relatively mature microbial biosynthesis process, a variety of L-phenylalanine-derived compounds have attracted more and more attentions owing to their extensively potential applications in the fields of food, medicine, spices, cosmetics, and pesticides. However, the challenge of biosynthesis of L-phenylalanine-derived compounds remains the issue of low production and productivity. With the development of metabolic engineering and synthetic biology, the biosynthesis of L-phenylalanine has reached a high level. Therefore, the synthesis of L-phenylalanine-derived compounds based on high production strains of L-phenylalanine has broad prospects. In addition, some L-phenylalanine-derived compounds are more suitable for efficient synthesis by exogenous addition of precursors due to their longer metabolic pathways and the inhibitory effects of many intermediate products. This review systematically summarized the research progress of L-phenylalanine-derived compounds, including phenylpyruvate derivatives, trans-cinnamic derivatives, p-coumaric acid derivatives and other L-phenylalanine-derived compounds (such as flavonoids). Finally, the main strategies to improve the production of L-phenylalanine-derived compounds were summarized, and the development trends of the synthesis of L-phenylalanine-derived compounds by microbial method were also prospected.
Collapse
Affiliation(s)
- Min Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jie Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| |
Collapse
|
2
|
Wei LF, Wang YX, Li Z, Pan H, Xiao Y, Sun R, Zhao H, An TT. Combination of atmospheric and room temperature plasma and ribosome engineering techniques to enhance the antifungal activity of Bacillus megaterium L2 against Sclerotium rolfsii. PEST MANAGEMENT SCIENCE 2024. [PMID: 39540329 DOI: 10.1002/ps.8519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/30/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Sclerotium rolfsii is an extremely destructive phytopathogenic fungus that causes significant economic losses. Biocontrol strategies utilizing antagonistic microorganisms present a promising alternative for controlling plant pathogens. Bacillus megaterium L2 has been identified as a potential microbial biocontrol agent in our previous study; however, its efficacy in controlling pathogens has yet to meet current demands. This study aims to enhance the antifungal activity of strain L2 against S. rolfsii R-67 through a two-round mutagenesis strategy and to preliminarily investigate the mutagenesis mechanism of the high antifungal activity mutant. RESULTS We obtained mutant Dr-77 with the strongest antifungal activity against R-67, and its cell-free supernatant significantly reduced the infection potential of R-67 to Amorphophallus konjac corms, which may be attributed to the antimicrobial compound phenylacetic acid (PAA), and PAA content in Dr-77 (5.78 mg/mL) was 28.90 times higher than original strain L2. This compound exhibited strong antifungal ability against R-67, with a half maximal effective concentration (EC50) value of 0.475 mg/mL, significantly inhibiting mycelial growth and destroying the ultrastructure of R-67 at EC50 value. Notably, PAA also exhibited broad-spectrum antifungal activity against six phytopathogens at EC50 value. Moreover, genome analysis revealed nine different gene mutations, including those involved in PAA biosynthesis, and the activities of prephenate dehydratase (PheA) and phenylacetaldehyde dehydrogenase (ALDH) in PAA biosynthesis pathway were significantly increased. CONCLUSION These results suggest that the elevated PAA content is a primary factor contributing to the enhanced antifungal activity of Dr-77, and that this mutagenesis strategy offers valuable guidance for the breeding of functional microbial resources. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Long-Feng Wei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Yong-Xin Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China
| | - Hang Pan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Yang Xiao
- Institution of Supervision and Inspection Product Quality of Guizhou Province, Guiyang, China
| | - Ran Sun
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Hao Zhao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Tao-Tao An
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Lee CY, Harper CP, Lee SG, Qi Y, Clay T, Aoi Y, Jez JM, Kasahara H, Blodgett JAV, Kunkel BN. Investigating the biosynthesis and roles of the auxin phenylacetic acid during Pseudomonas syringae- Arabidopsis thaliana pathogenesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1408833. [PMID: 39091312 PMCID: PMC11291249 DOI: 10.3389/fpls.2024.1408833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
Several plant-associated microbes synthesize the auxinic plant growth regulator phenylacetic acid (PAA) in culture; however, the role of PAA in plant-pathogen interactions is not well understood. In this study, we investigated the role of PAA during interactions between the phytopathogenic bacterium Pseudomonas syringae strain PtoDC3000 (PtoDC3000) and the model plant host, Arabidopsis thaliana. Previous work demonstrated that indole-3-acetaldehyde dehydrogenase A (AldA) of PtoDC3000 converts indole-3-acetaldehyde (IAAld) to the auxin indole-3-acetic acid (IAA). Here, we further demonstrated the biochemical versatility of AldA by conducting substrate screening and steady-state kinetic analyses, and showed that AldA can use both IAAld and phenylacetaldehyde as substrates to produce IAA and PAA, respectively. Quantification of auxin in infected plant tissue showed that AldA-dependent synthesis of either IAA or PAA by PtoDC3000 does not contribute significantly to the increase in auxin levels in infected A. thaliana leaves. Using available arogenate dehydratase (adt) mutant lines of A. thaliana compromised for PAA synthesis, we observed that a reduction in PAA-Asp and PAA-Glu is correlated with elevated levels of IAA and increased susceptibility. These results provide evidence that PAA/IAA homeostasis in A. thaliana influences the outcome of plant-microbial interactions.
Collapse
Affiliation(s)
- Chia-Yun Lee
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Christopher P. Harper
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Soon Goo Lee
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States
| | - Yunci Qi
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
- United States Department of Agriculture-Agricultural Research Service, New Orleans, LA, United States
| | - Taylor Clay
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States
| | - Yuki Aoi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Joseph M. Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Hiroyuki Kasahara
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Joshua A. V. Blodgett
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Barbara N. Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
4
|
Zhang P, Huguet-Tapia J, Peng Z, Liu S, Obasa K, Block AK, White FF. Genome analysis and hyphal movement characterization of the hitchhiker endohyphal Enterobacter sp. from Rhizoctonia solani. Appl Environ Microbiol 2024; 90:e0224523. [PMID: 38319098 PMCID: PMC10952491 DOI: 10.1128/aem.02245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Bacterial-fungal interactions are pervasive in the rhizosphere. While an increasing number of endohyphal bacteria have been identified, little is known about their ecology and impact on the associated fungal hosts and the surrounding environment. In this study, we characterized the genome of an Enterobacter sp. Crenshaw (En-Cren), which was isolated from the generalist fungal pathogen Rhizoctonia solani, and examined the genetic potential of the bacterium with regard to the phenotypic traits associated with the fungus. Overall, the En-Cren genome size was typical for members of the genus and was capable of free-living growth. The genome was 4.6 MB in size, and no plasmids were detected. Several prophage regions and genomic islands were identified that harbor unique genes in comparison with phylogenetically closely related Enterobacter spp. Type VI secretion system and cyanate assimilation genes were identified from the bacterium, while some common heavy metal resistance genes were absent. En-Cren contains the key genes for indole-3-acetic acid (IAA) and phenylacetic acid (PAA) biosynthesis, and produces IAA and PAA in vitro, which may impact the ecology or pathogenicity of the fungal pathogen in vivo. En-Cren was observed to move along hyphae of R. solani and on other basidiomycetes and ascomycetes in culture. The bacterial flagellum is essential for hyphal movement, while other pathways and genes may also be involved.IMPORTANCEThe genome characterization and comparative genomics analysis of Enterobacter sp. Crenshaw provided the foundation and resources for a better understanding of the ecology and evolution of this endohyphal bacteria in the rhizosphere. The ability to produce indole-3-acetic acid and phenylacetic acid may provide new angles to study the impact of phytohormones during the plant-pathogen interactions. The hitchhiking behavior of the bacterium on a diverse group of fungi, while inhibiting the growth of some others, revealed new areas of bacterial-fungal signaling and interaction, which have yet to be explored.
Collapse
Affiliation(s)
- Peiqi Zhang
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Jose Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Zhao Peng
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Ken Obasa
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- High Plains Plant Disease Diagnostic Lab, Texas A&M AgriLife Extension Service, Amarillo, Texas, USA
| | - Anna K. Block
- Chemistry Research Unit, US Department of Agriculture-Agricultural Research Service, Gainesville, Florida, USA
| | - Frank F. White
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Li J, Lu X, Zou X, Ye BC. Recent Advances in Microbial Metabolic Engineering for Production of Natural Phenolic Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4538-4551. [PMID: 38377566 DOI: 10.1021/acs.jafc.3c07658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Phenolic acids are important natural bioactive compounds with varied physiological functions. They are extensively used in food, pharmaceutical, cosmetic, and other chemical industries and have attractive market prospects. Compared to plant extraction and chemical synthesis, microbial fermentation for phenolic acid production from renewable carbon sources has significant advantages. This review focuses on the structural information, physiological functions, current applications, and biosynthesis pathways of phenolic acids, especially advances in the development of metabolically engineered microbes for the production of phenolic acids. This review provides useful insights concerning phenolic acid production through metabolic engineering of microbial cell factories.
Collapse
Affiliation(s)
- Jin Li
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiumin Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiang Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
6
|
Peng Q, Tao W, Yu F, Xiong Q, Nong C, Zhang W, Fan J. Physiological and Biochemical Analysis Revealing the Key Factors Influencing 2-Phenylethanol and Benzyl Alcohol Production in Crabapple Flowers. PLANTS (BASEL, SWITZERLAND) 2024; 13:631. [PMID: 38475477 DOI: 10.3390/plants13050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Floral scent (FS) plays a crucial role in the ecological functions and industrial applications of plants. However, the physiological and metabolic mechanisms underlying FS formation remain inadequately explored. Our investigation focused on elucidating the differential formation mechanisms of 2-phenylethanol (2-PE) and benzyl alcohol (BA) by examining seven related enzyme concentrations and the content of soluble sugar, soluble proteins, carbon (C) and nitrogen (N), as well as the C/N ratio. The findings revealed that the peak content of 2-PE in M. 'Praire Rose' and BA in M. 'Lollipop' occurred during the end flowering stage (S4) and flowering stage (S3) periods, respectively. The enzyme concentration change trends of phenylpyruvate decarboxylase (PDL), phenylacetaldehyde reductase (PAR), soluble protein, C, N, and C/N ratio changes during the S3-S4 period in M. 'Praire Rose' and M. 'Lollipop' were entirely opposite. Correlation and PCA analysis demonstrated that the content of CYP79D73 (a P450) and N, and the C/N ratio were key factors in 2-PE production in M. 'Praire Rose'. The production of BA in M. 'Lollipop' was more influenced by the content of phenylacetaldehyde synthase (PAAS), CYP79D73, and soluble sugar. As CYP79D73 exits oppositely in correlation to 2-PE (M. 'Praire Rose') and BA (M. 'Lollipop'), it is hypothesized that CYP79D73 was postulated as the primary factor contributing to the observed differences of 2-PE (M. 'Praire Rose') and BA (M. 'Lollipop') formation. These results carry significant implications for crabapple aromatic flower breeding and the essential oil industry etc.
Collapse
Affiliation(s)
- Qin Peng
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Wenkai Tao
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Fangyuan Yu
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Qinqin Xiong
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Chunshi Nong
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Wangxiang Zhang
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Junjun Fan
- College of Horticulture, Jinling Institute of Technology, No. 99 Hongjing Avenue, Jiangning District, Nanjing 211169, China
| |
Collapse
|
7
|
Adame-Soto PJ, Aréchiga-Carvajal ET, González-Herrera SM, Moreno-Jiménez MR, Rutiaga-Quiñones OM. Characterization of mating type on aroma production and metabolic properties wild Kluyveromyces marxianus yeasts. World J Microbiol Biotechnol 2023; 39:216. [PMID: 37269405 DOI: 10.1007/s11274-023-03659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Kluyveromyces marxianus yeasts represent a valuable industry alternative due to their biotechnological potential to produce aromatic compounds. 2-phenylethanol and 2-phenylethylacetate are significant aromatic compounds widely used in food and cosmetics due to their pleasant odor. Natural obtention of these compounds increases their value, and because of this, bioprocesses such as de novo synthesis has become of great significance. However, the relationship between aromatic compound production and yeast's genetic diversity has yet to be studied. In the present study, the analysis of the genetic diversity in K. marxianus isolated from the natural fermentation of Agave duranguensis for Mezcal elaboration is presented. The results of strains in a haploid and diploid state added to the direct relationship between the mating type locus MAT with metabolic characteristics are studied. Growth rate, assimilate carbohydrates (glucose, lactose, and chicory inulin), and the production of aromatic compounds such as ethyl acetate, isoamyl acetate, isoamyl alcohol, 2-phenylethyl butyrate and phenylethyl propionate and the diversity in terms of the output of 2-phenylethanol and 2-phenylethylacetate by de novo synthesis were determinate, obtaining maximum concentrations of 51.30 and 60.39 mg/L by ITD0049 and ITD 0136 yeasts respectively.
Collapse
Affiliation(s)
- P J Adame-Soto
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico, Technological Institute of Durango, Felipe Pescador 1803 Ote, Colonia Nueva Vizcaya, 34080, Durango, Dgo, Mexico
| | - E T Aréchiga-Carvajal
- Genetic Manipulation Unit of the Mycology and Phytopathology Laboratory, Department of Microbiology, and Immunology, Faculty of Biological Sciences, Unit C Ciudad Universitaria, Autonomous University of Nuevo León, 66451, San Nicolás de Los Garza, Nuevo León, Mexico
| | - S M González-Herrera
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico, Technological Institute of Durango, Felipe Pescador 1803 Ote, Colonia Nueva Vizcaya, 34080, Durango, Dgo, Mexico
| | - M R Moreno-Jiménez
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico, Technological Institute of Durango, Felipe Pescador 1803 Ote, Colonia Nueva Vizcaya, 34080, Durango, Dgo, Mexico
| | - O M Rutiaga-Quiñones
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico, Technological Institute of Durango, Felipe Pescador 1803 Ote, Colonia Nueva Vizcaya, 34080, Durango, Dgo, Mexico.
| |
Collapse
|
8
|
Szudera-Kończal K, Myszka K, Kubiak P, Drabińska N, Majcher MA. The Combined Effect of Lactic Acid Bacteria and Galactomyces geotrichum Fermentation on the Aroma Composition of Sour Whey. Molecules 2023; 28:molecules28114308. [PMID: 37298782 DOI: 10.3390/molecules28114308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The increase in demand for food flavorings due to the shortening and simplification of food production technology also entails an increase in the demand for new technologies for their production. The biotechnological production of aromas is a solution characterized by a high efficiency, an independence from environmental factors and a relatively low cost. In this study, the influence of the implementation of lactic acid bacteria pre-fermentation into the production of aroma compounds by Galactomyces geotrichum on a sour whey medium on the intensity of the obtained aroma composition was analyzed. The monitoring of the culture in terms of biomass buildup, the concentration of selected compounds, and the pH resulted in the confirmation of interactions between the analyzed microorganisms. The post-fermentation product underwent a comprehensive sensomic analysis for the identification and quantification of the aroma-active compounds. The use of gas chromatography-olfactometry (GC-O) analysis and the calculation of odor activity values (OAVs) allowed 12 key odorants to be identified in the post-fermentation product. The highest OAV was found for phenylacetaldehyde with a honey odor (1815). The following compounds with the highest OAVs were 2,3-butanedione with a buttery aroma (233), phenylacetic acid with a honey aroma (197), 2,3-butanediol with a buttery aroma (103), 2-phenylethanol with a rosy aroma (39), ethyl octanoate with a fruity aroma (15), and ethyl hexanoate with a fruity aroma (14).
Collapse
Affiliation(s)
- Kamila Szudera-Kończal
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-624 Poznań, Poland
| | - Kamila Myszka
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-624 Poznań, Poland
| | - Piotr Kubiak
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-624 Poznań, Poland
| | - Natalia Drabińska
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-624 Poznań, Poland
| | - Małgorzata Anna Majcher
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-624 Poznań, Poland
| |
Collapse
|
9
|
Biotransformation of the Proteogenic Amino Acids Phenylalanine, Tyrosine and Tryptophan by Yarrowia Species: An Application to the Preparative Synthesis of Natural Phenylacetic Acid. Catalysts 2022. [DOI: 10.3390/catal12121638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The biotransformation of the aromatic amino acids phenylalanine, tyrosine and tryptophan originates a number of bioactive compounds. Yeasts are the most used microorganisms for the transformation of (L)-phenylalanine into the flavour phenylethanol. Here, we reported a study on the biotransformation of the proteogenic aminoacids phenylalanine, tyrosine and tryptophan by yeast strains belonging to Yarrowia genus. We found that the latter microorganisms, in high aerobic conditions, metabolise the aromatic amino acids (L)-phenylalanine and (L)-tyrosine with the almost exclusive formation of phenylacetic acid and 4-hydroxyphenylacetic acid, respectively. Differently, the biotransformation of (L)-tryptophan with Y. lipolytica, gave anthranilic acid as the main product. As stated by the European and USA legislations concerning natural flavour production, phenylacetic acid obtained by microbial conversion of phenylalanine of natural origin can be commercialised as a natural flavour. Accordingly, our findings were exploited in a new process, based on the Yarrowia strains-mediated biotransformation of natural (L)-phenylalanine, that allows the large-scale preparation of the high-value, natural flavour, phenylacetic acid.
Collapse
|
10
|
Matulis P, Malys N. Nanomolar biosensor for detection of phenylacetic acid and L-phenylalanine. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Pan H, Xiao Y, Xie A, Li Z, Ding H, Yuan X, Sun R, Peng Q. The antibacterial mechanism of phenylacetic acid isolated from Bacillus megaterium L2 against Agrobacterium tumefaciens. PeerJ 2022; 10:e14304. [PMID: 36389424 PMCID: PMC9651047 DOI: 10.7717/peerj.14304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Agrobacterium tumefaciens T-37 can infect grapes and other fruit trees and cause root cancer. Given the pollution and damage of chemical agents to the environment, the use of biological control has become an important area of focus. Bacillus megaterium L2 is a beneficial biocontrol strain isolated and identified in the laboratory, which has a good antibacterial effect on a variety of plant pathogens. The antibacterial metabolites of L2 were separated and purified to obtain a bioactive compound phenylacetic acid (PAA). Methods The potential antibacterial mechanism of PAA against A. tumefaciens T-37 strain was determined by relative conductivity, leakage of nucleic acids, proteins, and soluble total sugars, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and reactive oxygen species (ROS). Results PAA showed good antibacterial activity against strain A. tumefaciens T-37 with IC50 of 0.8038 mg/mL. Our data suggested that after treatment with PAA, the relative conductivity, nucleic acid, protein, and total soluble sugar of T-37 were increased significantly compared with the chloramphenicol treatment group and the negative treatment group. The total protein synthesis of T-37 cells was inhibited, the consumption of phosphorus decreased with the increase of incubation time, and the content of ROS was significantly higher than that in the negative treatment group. Meanwhile, the activity of two key enzymes (MDH and SDH) involved in the tricarboxylic acid cycle (TCA cycle) decreased. In addition, T-37 cells were found to be damaged by scanning electron microscopy observation. Our results showed that PAA can destroy cell membrane integrity, damage cell structures, affect cell metabolism, and inhibit protein synthesis to exert an antibacterial effect. Conclusions We concluded that the mechanism of action of the PAA against strain T-37 might be described as PAA exerting antibacterial activity by affecting cell metabolism, inhibiting protein synthesis, and destroying cell membrane integrity and cell ultrastructure. Therefore, PAA has a promising application prospect in the prevention and treatment of root cancer disease caused by A. tumefaciens.
Collapse
Affiliation(s)
- Hang Pan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Yang Xiao
- Institution of Supervision and Inspection Product Quality of Guizhou Province, Guiyang, China
| | - Ailin Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China,Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Haixia Ding
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - XiaoJu Yuan
- Development Center of Planting, Huishui County of Qiannan Prefecture, Guizhou Province, China
| | - Ran Sun
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Qiuju Peng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| |
Collapse
|
12
|
Sekar BS, Li X, Li Z. Bioproduction of Natural Phenethyl Acetate, Phenylacetic Acid, Ethyl Phenylacetate, and Phenethyl Phenylacetate from Renewable Feedstock. CHEMSUSCHEM 2022; 15:e202102645. [PMID: 35068056 DOI: 10.1002/cssc.202102645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Natural phenethyl acetate (PEA), phenylacetic acid (PAA), ethyl phenylacetate (Et-PA), and phenethyl phenylacetate (PE-PA) are highly desirable aroma chemicals, but with limited availability and high price. Here, green, sustainable, and efficient bioproduction of these chemicals as natural products from renewable feedstocks was developed. PEA and PAA were synthesized from l-phenylalanine (l-Phe) via novel six- and five-enzyme cascades, respectively. Whole-cell-based cascade biotransformation of 100 mm l-Phe in a two-phase system (aqueous/organic: 1 : 0.5 v/v) containing ethyl oleate or biodiesel as green solvent gave 13.6 g L-1 PEA (83.1 % conv.) and 11.6 g L-1 PAA (87.1 % conv.), respectively. Coupled fermentation and biotransformation approach produced 10.4 g L-1 PEA and 9.2 g L-1 PAA from glucose or glycerol, respectively. The biosynthesized PAA was converted to natural Et-PA and PE-PA by esterification using lipases with ethanol or 2-phenylethanol derived from sugar, affording 2.7 g L-1 Et-PA (83.1 % conv.) and 4.6 g L-1 PE-PA (96.3 % conv.), respectively.
Collapse
Affiliation(s)
- Balaji Sundara Sekar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, 117456, Singapore, Singapore
| | - Xirui Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, 117456, Singapore, Singapore
| |
Collapse
|
13
|
Biosynthesis of actarit using engineered Escherichia coli. Enzyme Microb Technol 2021; 150:109858. [PMID: 34489018 DOI: 10.1016/j.enzmictec.2021.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022]
Abstract
Actarit is widely regarded as a safe and effective drug for the treatment of rheumatoid arthritis. There is no report on the bioproductin of actarit so far. In this study, we demonstrated for the first time the development of an artificial actarit biosynthetic pathway in Escherichia coli. First, 4-aminophenylacetic acid is selected as precursor substrates for the production of actarit. Second, an N-acetyltransferase that can efficiently catalyse the esterification of acetyl-CoA and 4-aminophenylacetic acid to form actarit was discovered. Subsequently, an engineered E. coli that allows production of actarit from simple carbon sources was established. Finally, we further increased the production of actarit to 206 ± 16.9 mg/L by overexpression of shikimate dehydrogenase ydiB and shikimate kinase aroK.
Collapse
|
14
|
Construction of recombinant Escherichia coli for production of L-phenylalanine-derived compounds. World J Microbiol Biotechnol 2021; 37:84. [PMID: 33855641 DOI: 10.1007/s11274-021-03050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
L-phenylalanine is an important amino acid that is widely used in the fields of food flavors and pharmaceuticals. Apart from L-phenylalanine itself, various commercially valuable chemical compounds can also be generated via the L-phenylalanine biosynthesis pathway. Compared with direct extraction from plants or synthesis by chemical reaction, microbial production of L-phenylalanine -derived compounds can overcome the drawbacks of environmental pollution, low yield, and mixtures of stereoisomeric products. Accordingly, increasing intracellular levels of precursors, deregulating feedback inhibition and transcription repression, engineering global regulators and other effective strategies have been implemented to produce different L-phenylalanine -derived compounds in the excellent chassis host Escherichia coli. Finally, this review highlights principal strategies for improving the production of L-phenylalanine and/or its derivatives in E. coli, and discusses the future outlook for further enhancing the titer and yields of these compounds.
Collapse
|
15
|
Szudera-Kończal K, Myszka K, Kubiak P, Majcher MA. The Use of Sour and Sweet Whey in Producing Compositions with Pleasant Aromas Using the Mold Galactomyces geotrichum: Identification of Key Odorants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10799-10807. [PMID: 32865406 PMCID: PMC9335871 DOI: 10.1021/acs.jafc.0c03979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fermented products with a pleasant aroma and with strong honey, rose, and fruit odor notes were developed through the biotransformation of a medium containing sour or sweet whey with the addition of l-phenylalanine by the Galactomyces geotrichum mold. In order to obtain the strong honey-rose aroma, G. geotrichum strains were screened and fermentation conditions were optimized to achieve a preferable ratio (>1) of phenylacetaldehyde to 2-phenylethanol by the Ehrlich pathway. This allowed post-fermentation products with the ratio of concentrations of phenylacetaldehyde to 2-phenylethanol being 1.7:1. Additionally, the use of gas chromatography-olfactometry (GC-O) analysis and the calculation of odor activity values (OAVs) allowed 10 key odorants to be identified in post-fermentation products. The highest OAVs were found for phenylacetaldehyde with a honey odor in both sour and sweet whey cultures (3010 and 1776, respectively). In the variant with sour whey, the following compounds with the highest OAVs were 3-methyl-1-butanol (131), 3-(methylthio)-propanal (119), 3-methylbutanal (90), dimethyl trisulfide (71), 2,3-butanedione (37), and 2-phenylethanol (29). In the post-fermentation product with sweet whey, the following compounds with the highest OAVs were 3-(methylthio)-propanal (112), dimethyl trisulfide (69), and 2,3-butanedione (41).
Collapse
|
16
|
Mao Z, Liu L, Zhang Y, Yuan J. Efficient Synthesis of Phenylacetate and 2-Phenylethanol by Modular Cascade Biocatalysis. Chembiochem 2020; 21:2676-2679. [PMID: 32291886 DOI: 10.1002/cbic.202000182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/13/2020] [Indexed: 11/12/2022]
Abstract
The green and sustainable synthesis of chemicals from renewable feedstocks by a biotransformation approach has gained increasing attention in recent years. In this work, we developed enzymatic cascades to efficiently convert l-phenylalanine into 2-phenylethanol (2-PE) and phenylacetic acid (PAA), l-tyrosine into tyrosol (p-hydroxyphenylethanol, p-HPE) and p-hydroxyphenylacetic acid (p-HPAA). The enzymatic cascade was cast into an aromatic aldehyde formation module, followed by an aldehyde reduction module, or aldehyde oxidation module, to achieve one-pot biotransformation by using recombinant Escherichia coli. Biotransformation of 50 mM l-Phe produced 6.76 g/L PAA with more than 99 % conversion and 5.95 g/L of 2-PE with 97 % conversion. The bioconversion efficiencies of p-HPAA and p-HPE from l-Tyr reached to 88 and 94 %, respectively. In addition, m-fluoro-phenylalanine was further employed as an unnatural aromatic amino acid substrate to obtain m-fluoro-phenylacetic acid; >96 % conversion was achieved. Our results thus demonstrated high-yielding and potential industrial synthesis of above aromatic compounds by one-pot cascade biocatalysis.
Collapse
Affiliation(s)
- Zuoxi Mao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, P. R. China
| | - Lijun Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, P. R. China
| | - Yang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, P. R. China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, P. R. China
| |
Collapse
|
17
|
Guo D, Kong S, Chu X, Li X, Pan H. De Novo Biosynthesis of Indole-3-acetic Acid in Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8186-8190. [PMID: 31272146 DOI: 10.1021/acs.jafc.9b02048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Indole-3-acetic acid (IAA) is considered the most common and important naturally occurring auxin in plants and a major regulator of plant growth and development. In this study, an aldehyde dehydrogenase AldH from Escherichia coli was found to convert indole-3-acetylaldehyde into IAA. Then we established an artificial pathway in engineered E. coli for microbial production of IAA from glucose. The overall pathway includes the upstream pathway from glucose to L-tryptophan and the downstream pathway from L-tryptophan to IAA. To our knowledge, this is the first report on the biosynthesis of IAA directly from a renewable carbon source. The study described here shows the way for the development of a beneficial microbe for biosynthesis of auxin and promoting plant growth in the future.
Collapse
Affiliation(s)
- Daoyi Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry , Jiangxi Province Gannan Normal University , Ganzhou 341000 , China
| | - Sijia Kong
- Key Laboratory of Organo-Pharmaceutical Chemistry , Jiangxi Province Gannan Normal University , Ganzhou 341000 , China
| | - Xu Chu
- Key Laboratory of Organo-Pharmaceutical Chemistry , Jiangxi Province Gannan Normal University , Ganzhou 341000 , China
| | - Xun Li
- Key Laboratory of Organo-Pharmaceutical Chemistry , Jiangxi Province Gannan Normal University , Ganzhou 341000 , China
| | - Hong Pan
- Key Laboratory of Organo-Pharmaceutical Chemistry , Jiangxi Province Gannan Normal University , Ganzhou 341000 , China
| |
Collapse
|
18
|
Mohammadi Nargesi B, Sprenger GA, Youn JW. Metabolic Engineering of Escherichia coli for para-Amino-Phenylethanol and para-Amino-Phenylacetic Acid Biosynthesis. Front Bioeng Biotechnol 2019; 6:201. [PMID: 30662895 PMCID: PMC6328984 DOI: 10.3389/fbioe.2018.00201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/10/2018] [Indexed: 11/24/2022] Open
Abstract
Aromatic amines are an important class of chemicals which are used as building blocks for the synthesis of polymers and pharmaceuticals. In this study we establish a de novo pathway for the biosynthesis of the aromatic amines para-amino-phenylethanol (PAPE) and para-amino-phenylacetic acid (4-APA) in Escherichia coli. We combined a synthetic para-amino-l-phenylalanine pathway with the fungal Ehrlich pathway. Therefore, we overexpressed the heterologous genes encoding 4-amino-4-deoxychorismate synthase (pabAB from Corynebacterium glutamicum), 4-amino-4-deoxychorismate mutase and 4-amino-4-deoxyprephenate dehydrogenase (papB and papC from Streptomyces venezuelae) and ThDP-dependent keto-acid decarboxylase (aro10 from Saccharomyces cerevisiae) in E. coli. The resulting para-amino-phenylacetaldehyde either was reduced to PAPE or oxidized to 4-APA. The wild type strain E. coli LJ110 with a plasmid carrying these four genes produced (in shake flask cultures) 11 ± 1.5 mg l−1 of PAPE from glucose (4.5 g l−1). By the additional cloning and expression of feaB (phenylacetaldehyde dehydrogenase from E. coli) 36 ± 5 mg l−1 of 4-APA were obtained from 4.5 g l−1 glucose. Competing reactions, such as the genes for aminotransferases (aspC and tyrB) or for biosynthesis of L-phenylalanine and L-tyrosine (pheA, tyrA) and for the regulator TyrR were removed. Additionally, the E. coli genes aroFBL were cloned and expressed from a second plasmid. The best producer strains of E. coli showed improved formation of PAPE and 4-APA, respectively. Plasmid-borne expression of an aldehyde reductase (yahK from E. coli) gave best values for PAPE production, whereas feaB-overexpression led to best values for 4-APA. In fed-batch cultivation, the best producer strains achieved 2.5 ± 0.15 g l−1 of PAPE from glucose (11% C mol mol-1 glucose) and 3.4 ± 0.3 g l−1 of 4-APA (17% C mol mol−1 glucose), respectively which are the highest values for recombinant strains reported so far.
Collapse
|