1
|
Geat N, Singh D, Saha P, Jatoth R, Babu PL, Devi GSR, Lakhran L, Singh D. Deciphering Phyllomicrobiome of Cauliflower Leaf: Revelation by Metagenomic and Microbiological Analysis of Tolerant and Susceptible Genotypes Against Black Rot Disease. Curr Microbiol 2024; 81:439. [PMID: 39488668 DOI: 10.1007/s00284-024-03969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Understanding the phyllomicrobiome dynamics in cauliflower plants holds significant promise for enhancing crop resilience against black rot disease, caused by Xanthomonas campestris pv. campestris. In this study, the culturable microbiome and metagenomic profile of tolerant (BR-161) and susceptible (Pusa Sharad) cauliflower genotypes were investigated to elucidate microbial interactions associated with disease tolerance. Isolation of phyllospheric bacteria from asymptomatic and black rot disease symptomatic leaves of tolerant and susceptible cultivars yielded 46 diverse bacterial isolates. Molecular identification via 16S rRNA sequencing revealed differences in the diversity of microbial taxa between genotypes and health conditions. Metagenomic profiling using next-generation sequencing elucidated distinct microbial communities, with higher diversity observed in black rot disease symptomatic leaf of BR-161. Alpha and beta diversity indices highlighted differences in microbial community structure and composition between genotypes and health conditions. Taxonomic analysis revealed a core microbiome consisting of genera such as Xanthomonas, Psychrobacillus, Lactobacillus, and Pseudomonas across all the samples. Validation through microbiological methods confirmed the presence of these key genera. The findings provide novel insights into the phyllomicrobiome of black rot-tolerant and susceptible genotypes of cauliflower. Harnessing beneficial microbial communities identified in this study offers promising avenues for developing sustainable strategies to manage black rot disease and enhance cauliflower crop health and productivity.
Collapse
Affiliation(s)
- Neelam Geat
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Agricultural Research Station, Mandor, Agriculture University, Jodhpur, 342304, Rajasthan, India
| | - Dinesh Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- Division of Crop Protection, ICAR- Indian Institute of Sugarcane Research, Lucknow, 226002, India.
| | - Partha Saha
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rajender Jatoth
- Agriculture College, Sircilla, Professor Jayashanker Telangana State Agricultural University Hyderabad, Telangana, 500030, India
| | - Pedapudi Lokesh Babu
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Lalita Lakhran
- Agricultural Research Station, Mandor, Agriculture University, Jodhpur, 342304, Rajasthan, India
| | - Devendra Singh
- Division of Plant Improvement and Pest Management, ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India.
| |
Collapse
|
2
|
Xu X, Zhao L, Chen Y, Wang H, Cai L, Wang Y, Wijayawardene NN, Pan W, Wang F, Kang Y. Phyllospheric microbial community structure and carbon source metabolism function in tobacco wildfire disease. Front Cell Infect Microbiol 2024; 14:1458253. [PMID: 39554811 PMCID: PMC11564158 DOI: 10.3389/fcimb.2024.1458253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/19/2024] [Indexed: 11/19/2024] Open
Abstract
The phyllospheric microbial composition of tobacco plants is influenced by multiple factors. Disease severity level is one of the main influencing factors. This study was designed to understand the microbial community in tobacco wildfire disease with different disease severity levels. Tobacco leaves at disease severity level of 1, 5, 7, and 9 (L1, L5, L7, and L9) were collected; both healthy and diseased leaf tissues for each level were collected. The community structure and diversity in tobacco leaves with different disease severity levels were compared using high-throughput technique and Biolog Eco. The results showed that in all healthy and diseased tobacco leaves, the most dominant bacterial phylum was Proteobacteria with a high prevalence of genus Pseudomonas; the relative abundance of Pseudomonas was most found at B9 diseased samples. Ascomycota represents the most prominent fungal phylum, with Blastobotrys as the predominant genus. In bacterial communities, the Alpha diversity of healthy samples was higher than that of diseased samples. In fungal community, the difference in Alpha diversity between healthy and diseased was not significant. LEfSe analysis showed that the most enriched bacterial biomarker was unclassified_Gammaproteobacteria in diseased samples; unclassified_Alcaligenaceae were the most enrich bacterial biomarker in healthy samples. FUNGuild analysis showed that saprotroph was the dominated mode in health and lower diseased samples, The abundance of pathotroph-saprotroph and pathotroph-saprotroph-symbiotroph increases at high disease levels. PICRUSt analysis showed that the predominant pathway was metabolism function, and most bacterial gene sequences seem to be independent of the disease severity level. The Biolog Eco results showed that the utilization rates of carbon sources decrease with increasing disease severity level. The current study revealed the microbial community's characteristic of tobacco wildfire disease with different disease severity levels, providing scientific references for the control of tobacco wildfire disease.
Collapse
Affiliation(s)
- Xia Xu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Institute of Health Research & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Liang Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Institute of Health Research & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Yanfei Chen
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Institute of Health Research & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Hancheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Liuti Cai
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Yanyan Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Institute of Health Research & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Nalin N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China
| | - Weihua Pan
- Department of Dermatology, Changzheng Hospital, Shanghai, China
| | - Feng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Institute of Health Research & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Wang L, Li F, Meng L, Wang K, Li W, Fan F, Zhang X, Jiang X, Mu W, Pang X. Assessment of the Dissipation Behaviors, Residues, and Dietary Risk of Oxine-Copper in Cucumber and Watermelon by UPLC-MS/MS. ACS OMEGA 2024; 9:29471-29477. [PMID: 39005790 PMCID: PMC11238219 DOI: 10.1021/acsomega.4c01970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 05/16/2024] [Indexed: 07/16/2024]
Abstract
During production, agricultural products are often susceptible to potential harm caused by residual traces of pesticides. Oxine-copper is a broad spectrum and efficient protective fungicide widely used in the production of fruits and vegetables. The present study was carried out to profile the dissipation behaviors and residues of oxine-copper on cucumber and watermelon using QuEChERS pretreatment and UPLC-MS/MS. Its storage stability and dietary risk assessment were also estimated. The method validation displayed good linearity (R 2 ≥ 0.9980), sensitivity (limits of quantification ≤0.01 mg/kg), and recoveries (75.5-95.8%) with relative standard deviations of 2.27-8.26%. According to first-order kinetics, the half-lives of oxine-copper in cucumber and watermelon were 1.77-2.11 and 3.57-4.68 d, respectively. The terminal residues of oxine-copper in cucumber and watermelon samples were within <0.01-0.264 and <0.01-0.0641 mg/kg, respectively. Based on dietary risk assessment, the estimated long-term dietary risk probability value of oxine-copper in cucumber and watermelon is 64.11%, indicating that long-term consumption of cucumber and watermelon contaminated with oxine-copper would not pose dietary risks to the general population. The results provide scientific guidance for the rational utilization of oxine-copper in field ecosystems of cucumber and watermelon.
Collapse
Affiliation(s)
- Lu Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Fengyu Li
- College of Science, China Agricultural University, Beijing 100193, China
| | - Lingtao Meng
- Shandong Binnong Technology Co., Ltd., Binzhou 256600, China
| | - Kai Wang
- Shandong Binnong Technology Co., Ltd., Binzhou 256600, China
| | - Wenying Li
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an 271018, China
| | - Fangming Fan
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaobing Zhang
- Shandong Weifang Rainbow Chemical Co., Ltd., Weifang 261108, China
| | - Xinyue Jiang
- University of Wisconsin-Madison, Madison, Wisconsin 53703, United States
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an 271018, China
| | - Xiuyu Pang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| |
Collapse
|
4
|
Boyle JA, Frederickson ME, Stinchcombe JR. Genetic architecture of heritable leaf microbes. Microbiol Spectr 2024; 12:e0061024. [PMID: 38842309 PMCID: PMC11218475 DOI: 10.1128/spectrum.00610-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Host-associated microbiomes are shaped by both their environment and host genetics, and often impact host performance. The scale of host genetic variation important to microbes is largely unknown yet fundamental to the community assembly of host-associated microbiomes, with implications for the eco-evolutionary dynamics of microbes and hosts. Using Ipomoea hederacea, ivyleaf morning glory, we generated matrilines differing in quantitative genetic variation and leaf shape, which is controlled by a single Mendelian locus. We then investigated the relative roles of Mendelian and quantitative genetic variation in structuring the leaf microbiome and how these two sources of genetic variation contributed to microbe heritability. We found that despite large effects of the environment, both Mendelian and quantitative genetic host variation contribute to microbe heritability and that the cumulative small effect genomic differences due to matriline explained as much or more microbial variation than a single large effect Mendelian locus. Furthermore, our results are the first to suggest that leaf shape itself contributes to variation in the abundances of some phyllosphere microbes.IMPORTANCEWe investigated how host genetic variation affects the assembly of Ipomoea hederacea's natural microbiome. We found that the genetic architecture of leaf-associated microbiomes involves both quantitative genetic variation and Mendelian traits, with similar contributions to microbe heritability. The existence of Mendelian and quantitative genetic variation for host-associated microbes means that plant evolution at the leaf shape locus or other quantitative genetic loci has the potential to shape microbial abundance and community composition.
Collapse
Affiliation(s)
- Julia A Boyle
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Swedish Collegium for Advanced Study, Uppsala, Sweden
| |
Collapse
|
5
|
Yue C, Du C, Wang X, Tan Y, Liu X, Fan H. Powdery mildew-induced changes in phyllosphere microbial community dynamics of cucumber. FEMS Microbiol Ecol 2024; 100:fiae050. [PMID: 38599637 PMCID: PMC11062426 DOI: 10.1093/femsec/fiae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 02/22/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024] Open
Abstract
As an important habitat for microorganisms, the phyllosphere has a great impact on plant growth and health, and changes in phyllosphere microorganisms are closely related to the occurrence of leaf diseases. However, there remains a limited understanding regarding alterations to the microbial community in the phyllosphere resulting from pathogen infections. Here, we analyzed and compared the differences in phyllosphere microorganisms of powdery mildew cucumber from three disease severity levels (0% < L1 < 30%, 30% ≤ L2 < 50%, L3 ≥ 50%, the number represents the lesion coverage rate of powdery mildew on leaves). There were significant differences in α diversity and community structure of phyllosphere communities under different disease levels. Disease severity altered the community structure of phyllosphere microorganisms, Rosenbergiella, Rickettsia, and Cladosporium accounted for the largest proportion in the L1 disease grade, while Bacillus, Pantoea, Kocuria, and Podosphaera had the highest relative abundance in the L3 disease grade. The co-occurrence network analysis of the phyllosphere microbial community indicated that the phyllosphere bacterial community was most affected by the severity of disease. Our results suggested that with the development of cucumber powdery mildew, the symbiotic relationship between species was broken, and the entire bacterial community tended to compete.
Collapse
Affiliation(s)
- Cong Yue
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang 311300, China
| | - Changxia Du
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang 311300, China
| | - Xiaodan Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang 311300, China
| | - Yinqing Tan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang 311300, China
| | - Xingchen Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang 311300, China
| | - Huaifu Fan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
6
|
Zhang T, Wang S, Rana S, Wang Y, Liu Z, Cai Q, Geng X, Yuan Q, Yang Y, Miao C, Xue X, Dai L, Li Z. Analysis of Leaf and Soil Nutrients, Microorganisms and Metabolome in the Growth Period of Idesia polycarpa Maxim. Microorganisms 2024; 12:746. [PMID: 38674690 PMCID: PMC11051756 DOI: 10.3390/microorganisms12040746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Idesia polycarpa Maxim is an emerging oil plant species. Understanding its microecological characteristics and internal mechanisms can serve as a basis for field management and the screening and application of growth-promoting bacteria during the growth phase of young trees. This study used three-year-old young I. polycarpa to analyze the tree's root morphology, soil, and leaf nutrient status variations from May to October. In addition, differences in the rhizosphere soil, leaf metabolites, and microorganisms were observed. The results showed that, from May to October, the total nitrogen (TN) in the soil significantly decreased, whereas the TN, total potassium (TK), and total phosphorus (TP) in the leaves differed (p < 0.05). The leaf-dominant bacteria changed from Pseudomonadota to Firmicutes phylum. In addition, the relative abundance of soil and leaf-dominant bacteria decreased. The study found that the soil and leaf differential metabolites were mainly sugars and phenolic acids. The soil bacterial community showed a significant correlation with soil pH, available potassium (AK), available phosphorus (AP), and TN (p < 0.05). Further, the soil fungal community was significantly correlated with pH and AK (p < 0.001). TP, pH, and TK were the main factors influencing the leaf bacterial community, while the leaf fungal community was significantly correlated with five factors, including pH, TC, and TN. The root morphology was also mainly affected by pH, Pedomicrobium sp., Talaromyces sp., Penicillium sp., and D-Mannitol 2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Zhi Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China (S.R.)
| |
Collapse
|
7
|
Pfeilmeier S, Werz A, Ote M, Bortfeld-Miller M, Kirner P, Keppler A, Hemmerle L, Gäbelein CG, Petti GC, Wolf S, Pestalozzi CM, Vorholt JA. Leaf microbiome dysbiosis triggered by T2SS-dependent enzyme secretion from opportunistic Xanthomonas pathogens. Nat Microbiol 2024; 9:136-149. [PMID: 38172620 PMCID: PMC10769872 DOI: 10.1038/s41564-023-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
In healthy plants, the innate immune system contributes to maintenance of microbiota homoeostasis, while disease can be associated with microbiome perturbation or dysbiosis, and enrichment of opportunistic plant pathogens like Xanthomonas. It is currently unclear whether the microbiota change occurs independently of the opportunistic pathogens or is caused by the latter. Here we tested if protein export through the type-2 secretion system (T2SS) by Xanthomonas causes microbiome dysbiosis in Arabidopsis thaliana in immunocompromised plants. We found that Xanthomonas strains secrete a cocktail of plant cell wall-degrading enzymes that promote Xanthomonas growth during infection. Disease severity and leaf tissue degradation were increased in A. thaliana mutants lacking the NADPH oxidase RBOHD. Experiments with gnotobiotic plants, synthetic bacterial communities and wild-type or T2SS-mutant Xanthomonas revealed that virulence and leaf microbiome composition are controlled by the T2SS. Overall, a compromised immune system in plants can enrich opportunistic pathogens, which damage leaf tissues and ultimately cause microbiome dysbiosis by facilitating growth of specific commensal bacteria.
Collapse
Affiliation(s)
- Sebastian Pfeilmeier
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
- Molecular Plant Pathology, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Anja Werz
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Marine Ote
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | - Pascal Kirner
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | - Lucas Hemmerle
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | - Sarah Wolf
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
8
|
De Mandal S, Jeon J. Phyllosphere Microbiome in Plant Health and Disease. PLANTS (BASEL, SWITZERLAND) 2023; 12:3481. [PMID: 37836221 PMCID: PMC10575124 DOI: 10.3390/plants12193481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
The phyllosphere refers to the aboveground surface of plants colonized by diverse microorganisms. Microbes inhabiting this environment play an important role in enhancing the host's genomic and metabolic capabilities, including defense against pathogens. Compared to the large volume of studies on rhizosphere microbiome for plant health and defense, our understanding of phyllosphere microbiome remains in its infancy. In this review, we aim to explore the mechanisms that govern the phyllosphere assembly and their function in host defence, as well as highlight the knowledge gaps. These efforts will help develop strategies to harness the phyllosphere microbiome toward sustainable crop production.
Collapse
Affiliation(s)
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
9
|
Ren T, Dai D, Yu M, Li T, Zhang C. Identification and characterization of pathogens causing saffron corm rot in China. Front Microbiol 2023; 14:1188376. [PMID: 37362925 PMCID: PMC10289022 DOI: 10.3389/fmicb.2023.1188376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Corm rot is the most important disease of saffron, for which fungi from several genus such as Fusarium spp. Penicillium spp. and Botrytis spp., have been previously reported to be the pathogens. In this research, we used a combination of amplicon sequencing and traditional isolation methods to identify the causal agents, main infection source. The diversity of microbial communities in diseased saffron corms and soil decreased significantly compared with healthy corms and soil. The contents of Penicillium and Botrytis in healthy and diseased corms were similarly high, indicating that them were not directly related to the occurrence of corm rot. But the relative abundance of Fusarium, Cadophora and Fusicolla were significantly higher in the diseased corms than healthy ones. The abundance of Fusarium increased, while the abundance of Oidiodendron, Paraphaeosphaeria and the endophytic beneficial bacteria Pseudomonas decreased, which may relate to the occurrence of the disease. The co-occurrence network diagram showed that the correlation between fungal and bacterial communities was mainly positive. Plant pathogens were relatively abundant in the diseased soil, according to functional gene prediction. At the same time, we also collected 100 diseased corms from the fields in Jiande, where is known as the "hometown of saffron." All isolated pathogenic strains were identified as Fusarium oxysporum through morphological observation and phylogenetic tree analysis of ITS, Tef-1α and β-tubulin. To better clarify the biological characteristics of F. oxysporum, we cultured the isolates at different temperatures and pH values. The optimum temperature for mycelial growth and sporulation was 25°C, pH 6,carbon sources sorbitol and nitrogen sources, peptone. In short, our results suggests that F. oxysporum was the pathogen causing corm rot in Jiande and corms other than soils are the main primary infection source. These new understanding of saffron corm rot will provide the theoretical basis for its better and efficiently management.
Collapse
Affiliation(s)
- Tingdan Ren
- College of Modern Agriculture, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Dejiang Dai
- Station for the Plant Protection, Quarantine and Control of Agrochemicals of Zhejiang Province, Hangzhou, China
| | - Miao Yu
- Station for the Plant Protection, Quarantine and Control of Agrochemicals of Zhejiang Province, Hangzhou, China
| | - Tao Li
- College of Modern Agriculture, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Chuanqing Zhang
- College of Modern Agriculture, Zhejiang Agriculture and Forest University, Hangzhou, China
| |
Collapse
|
10
|
Bhandari R, Sanz-Saez A, Leisner CP, Potnis N. Xanthomonas infection and ozone stress distinctly influence the microbial community structure and interactions in the pepper phyllosphere. ISME COMMUNICATIONS 2023; 3:24. [PMID: 36973329 PMCID: PMC10043289 DOI: 10.1038/s43705-023-00232-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
While the physiological and transcriptional response of the host to biotic and abiotic stresses have been intensely studied, little is known about the resilience of associated microbiomes and their contribution towards tolerance or response to these stresses. We evaluated the impact of elevated tropospheric ozone (O3), individually and in combination with Xanthomonas perforans infection, under open-top chamber field conditions on overall disease outcome on resistant and susceptible pepper cultivars, and their associated microbiome structure, function, and interaction network across the growing season. Pathogen infection resulted in a distinct microbial community structure and functions on the susceptible cultivar, while concurrent O3 stress did not further alter the community structure, and function. However, O3 stress exacerbated the disease severity on resistant cultivar. This altered diseased severity was accompanied by enhanced heterogeneity in associated Xanthomonas population counts, although no significant shift in overall microbiota density, microbial community structure, and function was evident. Microbial co-occurrence networks under simultaneous O3 stress and pathogen challenge indicated a shift in the most influential taxa and a less connected network, which may reflect the altered stability of interactions among community members. Increased disease severity on resistant cultivar may be explained by such altered microbial co-occurrence network, indicating the altered microbiome-associated prophylactic shield against pathogens under elevated O3. Our findings demonstrate that microbial communities respond distinctly to individual and simultaneous stressors, in this case, O3 stress and pathogen infection, and can play a significant role in predicting how plant-pathogen interactions would change in the face of climate change.
Collapse
Affiliation(s)
- Rishi Bhandari
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - Alvaro Sanz-Saez
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Courtney P Leisner
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
11
|
Zhang Y, Cao B, Pan Y, Tao S, Zhang N. Metabolite-Mediated Responses of Phyllosphere Microbiota to Rust Infection in Two Malus Species. Microbiol Spectr 2023; 11:e0383122. [PMID: 36916990 PMCID: PMC10101083 DOI: 10.1128/spectrum.03831-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/24/2023] [Indexed: 03/15/2023] Open
Abstract
Plants recruit beneficial microbes to enhance their ability to fight pathogens. However, the current understanding of microbial recruitment is largely limited to belowground systems (root exudates and the rhizosphere). It remains unclear whether the changes in leaf metabolites induced by infectious pathogens can actively recruit beneficial microbes to mitigate the growth of foliar pathogens. In this study, we integrated microbiome and metabolomic analyses to systematically explore the dynamics of phyllosphere fungal and bacterial communities and key leaf metabolites in two crabapple species (Malus sp. "Flame" and Malus sp. "Kelsey") at six stages following infection with Gymnosporangium yamadae. Our results showed that the phyllosphere microbiome changed during lesion expansion, as highlighted by a reduction in bacterial alpha-diversity and an increase in fungal alpha-diversity; a decreasing and then an increasing complexity of the microbial co-occurrence network was observed in Kelsey and a decreasing complexity occurred in Flame. In addition, nucleotide sugars, diarylheptanoids, and carboxylic acids with aromatic rings were more abundant in early stages of collection, which positively regulated the abundance of bacterial orders Pseudomonadales (in Kelsey), Acidimicrobiales, Bacillales, and Flavobacteriales (in Flame). In addition, metabolites such as flavonoids, lignin precursors, terpenoids, coumarins, and quaternary ammonium salts enriched with the expansion of lesions had a positive regulatory effect on fungal families Rhynchogastremataceae and Golubeviaceae (in Flame) and the bacterial order Actinomycetales (in Kelsey). Our findings highlight that plants may also influence phyllosphere microorganisms by adjusting leaf metabolites in response to biotic stress. IMPORTANCE Our findings demonstrate the response patterns of bacterial and fungal communities in the Malus phyllosphere to rust fungus G. yamadae infection, and they also reveal how the phyllosphere microbiome changes with the expansion of lesions. We identified several metabolites whose relative abundance varied significantly with lesion expansion. Using a framework for assessing the role of leaf metabolites in shaping the phyllosphere microbiome of the two Malus species, we identified several specific metabolites that have profoundly selective effects on the microbial community. In conclusion, our study provides new evidence of the ecological niche of the phyllosphere in supporting the "cry for help" strategy for plants.
Collapse
Affiliation(s)
- Yunxia Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, People’s Republic of China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, People’s Republic of China
| | - Bin Cao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yumei Pan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, People’s Republic of China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, People’s Republic of China
| | - Siqi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, People’s Republic of China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, People’s Republic of China
| | - Naili Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, People’s Republic of China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, People’s Republic of China
| |
Collapse
|
12
|
Douanla-Meli C, Moll J. Bark-inhabiting fungal communities of European chestnut undergo substantial alteration by canker formation following chestnut blight infection. Front Microbiol 2023; 14:1052031. [PMID: 36778875 PMCID: PMC9911167 DOI: 10.3389/fmicb.2023.1052031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Background Chestnut forests are severely threatened by chestnut blight caused by the fungal pathogen Cryphonectria parasitica and the infected trees exhibit bark canker in the later stage of the disease. European chestnut (Castanea sativa) is further infected by Gnomoniopsis smithogilvyi, another canker-causing fungal pathogen. We explored whether and how chestnut blight is reflected in bark-inhabiting fungal communities of European chestnut and also assessed the co-occurrence of C. parasitica and G. smithogilvyi. Materials and methods We initially investigated the fungal communities of European chestnut bark tissues and further monitored changes in these fungal communities with regard to disease progression from infection to canker formation by analyzing bark samples from asymptomatic trees, asymptomatic trees with latent C. parasitica infection, and infected trees with canker tissues, using amplicon sequencing of the ITS2 region of rDNA. Results The results showed that fungal community composition and diversity differed between the sample types. The fungal community composition was substantially reshaped by canker formation, whereas latent C. parasitica infection and more specifically pre-canker infection period per se had a weak effect. Fungal communities of canker samples was less diverse and more dissimilar to those of other sample types. C. parasitica dominated the mycobiome of canker samples, whereas G. smithogilvyi was found in only 9% of canker samples at very low abundances. However, G. smithogilvyi was a dominant fungus in the bark of healthy plants. Conclusion This study highlights that canker formation is the principal driver of decreasing diversity and altered composition of the mycobiome in bark tissues of European chestnut infected by C. parasitica infection. It additionally emphasizes the scarce co-occurrence of C. parasitica and G. smithogilvyi on European chestnut.
Collapse
Affiliation(s)
- Clovis Douanla-Meli
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for National and International Plant Health, Quedlinburg, Germany,*Correspondence: Clovis Douanla-Meli, ✉
| | - Julia Moll
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| |
Collapse
|
13
|
Wu PH, Chang HX, Shen YM. Effects of synthetic and environmentally friendly fungicides on powdery mildew management and the phyllosphere microbiome of cucumber. PLoS One 2023; 18:e0282809. [PMID: 36888572 PMCID: PMC9994715 DOI: 10.1371/journal.pone.0282809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Modern agricultural practices rely on synthetic fungicides to control plant disease, but the application of these fungicides has raised concerns regarding human and environmental health for many years. As a substitute, environmentally friendly fungicides have been increasingly introduced as alternatives to synthetic fungicides. However, the impact of these environmentally friendly fungicides on plant microbiomes has received limited attention. In this study, we used amplicon sequencing to compare the bacterial and fungal microbiomes in the leaves of powdery mildew-infected cucumber after the application of two environmentally friendly fungicides (neutralized phosphorous acid (NPA) and sulfur) and one synthetic fungicide (tebuconazole). The phyllosphere α-diversity of both the bacterial and fungal microbiomes showed no significant differences among the three fungicides. For phyllosphere β-diversity, the bacterial composition exhibited no significant differences among the three fungicides, but fungal composition was altered by the synthetic fungicide tebuconazole. While all three fungicides significantly reduced disease severity and the incidence of powdery mildew, NPA and sulfur had minimal impacts on the phyllosphere fungal microbiome relative to the untreated control. Tebuconazole altered the phyllosphere fungal microbiome by reducing the abundance of fungal OTUs such as Dothideomycetes and Sordariomycetes, which included potentially beneficial endophytic fungi. These results indicated that treatments with the environmentally friendly fungicides NPA and sulfur have fewer impacts on the phyllosphere fungal microbiome while maintaining the same control efficacy as the synthetic fungicide tebuconazole.
Collapse
Affiliation(s)
- Ping-Hu Wu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City, Taiwan
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City, Taiwan
| | - Yuan-Min Shen
- Master Program for Plant Medicine, National Taiwan University, Taipei City, Taiwan
- * E-mail:
| |
Collapse
|
14
|
Wang Z, Fu C, Tian J, Wang W, Peng D, Dai X, Tian H, Zhou X, Li L, Yin H. Responses of the bacterial community of tobacco phyllosphere to summer climate and wildfire disease. FRONTIERS IN PLANT SCIENCE 2022; 13:1050967. [PMID: 36618666 PMCID: PMC9811124 DOI: 10.3389/fpls.2022.1050967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Both biotic and abiotic factors continually affect the phyllospheric ecology of plants. A better understanding of the drivers of phyllospheric community structure and multitrophic interactions is vital for developing plant protection strategies. In this study, 16S rRNA high-throughput sequencing was applied to study how summer climatic factors and bacterial wildfire disease have affected the composition and assembly of the bacterial community of tobacco (Nicotiana tabacum L.) phyllosphere. Our results indicated that three time series groups (T1, T2 and T3) formed significantly distinct clusters. The neutral community model (NCM) and beta nearest taxon index (betaNTI) demonstrated that the overall bacterial community assembly was predominantly driven by stochastic processes. Variance partitioning analysis (VPA) further showed that the complete set of the morbidity and climatic variables together could explain 35.7% of the variation of bacterial communities. The node numbers of the molecular ecological networks (MENs) showed an overall uptrend from T1 to T3. Besides, Pseudomonas is the keystone taxa in the MENs from T1 to T3. PICRUSt2 predictions revealed significantly more abundant genes of osmoprotectant biosynthesis/transport in T2, and more genes for pathogenicity and metabolizing organic substrate in T3. Together, this study provides insights into spatiotemporal patterns, processes and response mechanisms underlying the phyllospheric bacterial community.
Collapse
Affiliation(s)
- Zhenhua Wang
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Changwu Fu
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Jinyan Tian
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Wei Wang
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Deyuan Peng
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Xi Dai
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Hui Tian
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Xiangping Zhou
- Yongzhou Tobacco Company of Hunan Province, Yongzhou, China
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
15
|
Hu Y, Meng Y, Yao L, Wang E, Tang T, Wang Y, Dai L, Zhao M, Zhang HE, Fan X, Luo L, Xiang W, Zhang Z. Citrus Huanglongbing correlated with incidence of Diaphorina citri carrying Candidatus Liberibacter asiaticus and citrus phyllosphere microbiome. FRONTIERS IN PLANT SCIENCE 2022; 13:964193. [PMID: 36466264 PMCID: PMC9716883 DOI: 10.3389/fpls.2022.964193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/05/2022] [Indexed: 06/17/2023]
Abstract
In China, citrus Huanglongbing (HLB) disease is caused by the Candidatus Liberibacter asiaticus bacterium, which is carried by the Asian citrus psyllid Diaphorina citri Kuwayama. It was hypothesized that the epidemic of the HLB may related with the rate of bacterium presence in the insect vector and bacterium content in plant tissues, as well as the phyllosphere microbe communities changes. This study systematically analyzed the presence or absence of Ca. L. asiaticus in citrus tree leaves and in the insect vector D. citri over a 6-year period using real-time PCR. In addition, changes in the number of bacteria carried by D. citri over 12 months were quantified, as well as the relationship between the proportion of D. citri carrying Ca. L. asiaticus and the proportion of plants infected with Ca. L. asiaticus were analyzed. Results showed that the proportion of D. citri carrying bacteria was stable and relatively low from January to September. The bacteria in citrus leaves relatively low in spring and summer, then peaked in December. The proportion of D. citri carrying bacteria gradually declined from 2014 to 2019. The proportion of D. citri carrying Ca. L. asiaticus showed a significant positive correlation with the proportion of diseased citrus. The phyllosphere bacterial and fungal communities on the healthy citrus leaf were significantly different with the disease leaf in April and December. Pathogenic invasions change the citrus phyllosphere microbial community structure. It could be summarized that citrus Huanglongbing correlated with incidence of Diaphorina citri carrying Candidatus Liberibacter asiaticus and citrus phyllosphere microbiome.
Collapse
Affiliation(s)
- Yang Hu
- Department of Tree Breeding, Zhejiang Academy of Forestry, Hangzhou, China
| | - Youqing Meng
- Zhejiang Provincial General Station of Plant Protection, Quarantine and Pesticide Management, Hangzhou, China
| | - Liangjin Yao
- Department of Tree Breeding, Zhejiang Academy of Forestry, Hangzhou, China
| | - Enguo Wang
- Department of Plant Protection, Zhejiang Linhai Agricultural Technology Extension Center, Taizhou, China
| | - Tao Tang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Yunsheng Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Liangying Dai
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Mingping Zhao
- Plant Protection and Quarantine Station, Bureau of Agriculture and Rural Affairs of Jianghua Yao Autonomous County, Yongzhou, China
| | - Hong-en Zhang
- School of Mathematical, Nankai University, Tianjin, China
| | - Xiaoyan Fan
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Luyun Luo
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Wei Xiang
- Hunan Crop Research Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Zhuo Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| |
Collapse
|
16
|
Xiang LG, Wang HC, Cai LT, Guo T, Luo F, Hsiang T, Yu ZH. Variations in leaf phyllosphere microbial communities and development of tobacco brown spot before and after fungicide application. Front Microbiol 2022; 13:1068158. [PMID: 36466663 PMCID: PMC9714265 DOI: 10.3389/fmicb.2022.1068158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 10/17/2023] Open
Abstract
In recent years, STROBY (50% Kresoxim-methyl) has been widely used to control tobacco brown spot in Guizhou Province, China. As a broad-spectrum fungicide, STROBY targets not only phytopathogens, but also affects many other microorganisms including those pathogenic, beneficial, or neutral to the plant hosts. To understand the effects of STROBY on the phyllosphere microbial communities of tobacco leaves during the development of tobacco brown spot, the fungal and bacterial communities of symptomatic and asymptomatic leaves at four time points, before spraying (August 29) and after spraying (September 3, 8, and 13), were investigated using the Illumina high-throughput sequencing. The results showed that STROBY had significant effects on the phyllosphere microbial communities of tobacco leaves. Microbial communities in asymptomatic leaves were more greatly affected than their counterparts in symptomatic leaves, and fungal communities were more sensitive than bacterial communities. Throughout the experiment, the most common genera in symptomatic leaves were Alternaria, Pseudomonas, Pantoea, and Sphingomonas, and in asymptomatic leaves, these were Golubevia and Pantoea. After spraying, the alpha diversity of fungal communities increased in symptomatic leaves and decreased in asymptomatic leaves, while the alpha diversity of bacteria increased in both types of leaves. Beta diversity showed that in asymptomatic leaves, the fungal communities in the first stage was significantly different from the remaining three stages. In contrast, the fungal communities in symptomatic leaves and the bacterial communities in all leaves did not fluctuate significantly during the four stages. Before spraying (August 29), the dominant functions of the fungal community were animal pathogen, endophyte, plant pathogen, and wood saprotroph. Whereas after spraying (September 3, 8, and 13), the proportion of the above fungal functions decreased and the unassigned functions increased, especially in asymptomatic leaves. This study describes the effects of STROBY application and tobacco brown spot presence in shaping the leaf phyllosphere microbial communities, and provides insights into the microbial community effects on tobacco leaves of a strobilurin fungicide.
Collapse
Affiliation(s)
- Li-Gang Xiang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou,China
| | - Han-Cheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou,China
| | - Liu-Ti Cai
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou,China
| | - Tao Guo
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Fei Luo
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Zhi-He Yu
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
17
|
Wang S, Tan Y, Li S, Zhu T. Structural and Dynamic Analysis of Leaf-Associated Fungal Community of Walnut Leaves Infected by Leaf Spot Disease Based Illumina High-Throughput Sequencing Technology. Pol J Microbiol 2022; 71:429-441. [PMID: 36185023 PMCID: PMC9608163 DOI: 10.33073/pjm-2022-038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Leaf-associated microbiota is vital in plant-environment interactions and is the basis for micro-ecological regulation. However, there are no studies on the direct differences in microbial community composition between disease-susceptible and healthy walnut leaves. This study collected five samples of healthy and infected leaves (all leaves with abnormal spots were considered diseased leaves) from May to October 2018. Differences in fungal diversity (Chao1 index, Shannon index, and Simpson index) and community structure were observed by sequencing and analyzing diseased and healthy leaf microbial communities by Illumina HiSeq sequencing technology. The main fungal phyla of walnut leaf-associated were Ascomycota, Basidiomycota, and Glomeromycota. Diversity indices (Shannon and Chao1 index values) of healthy leaves differed significantly in the late stages of disease onset. The results showed that the fungal species that differed considerably between the healthy and infected groups differed, and the fungal species that differed significantly between the healthy and infected groups changed with the development of the leaf disease. Critical control time points were determined by analyzing the population dynamics of pathogenic fungi. Leaf-associated microorganisms are abundant and diverse, and fungal identification and diversity studies are helpful for developing more appropriate walnut management strategies.
Collapse
Affiliation(s)
- Shiwei Wang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yu Tan
- College of Forestry, Sichuan Agricultural University, Chengdu, China,Chengdu Botanical Garden, Chengdu, China
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China,National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu, China, T. Zhu, College of Forestry, Sichuan Agricultural University , Chengdu, China # Shiwei Wang and Yu Tan contribute equally to this work and are co-first authors.
| |
Collapse
|
18
|
Dai YF, Wu XM, Wang HC, Li WH, Cai LT, Li JX, Wang F, Sehar S, Shamsi IH. Spatio-Temporal Variation in the Phyllospheric Microbial Biodiversity of Alternaria Alternata-Infected Tobacco Foliage. Front Microbiol 2022; 13:920109. [PMID: 35966692 PMCID: PMC9370072 DOI: 10.3389/fmicb.2022.920109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Phyllospheric microbial composition of tobacco (Nicotiana tabacum L.) is contingent upon certain factors, such as the growth stage of the plant, leaf position, and cultivar and its geographical location, which influence, either directly or indirectly, the growth, overall health, and production of the tobacco plant. To better understand the spatiotemporal variation of the community and the divergence of phyllospheric microflora, procured from healthy and diseased tobacco leaves infected by Alternaria alternata, the current study employed microbe culturing, high-throughput technique, and BIOLOG ECO. Microbe culturing resulted in the isolation of 153 culturable fungal isolates belonging to 33 genera and 99 bacterial isolates belonging to 15 genera. High-throughput sequencing revealed that the phyllosphere of tobacco was dominantly colonized by Ascomycota and Proteobacteria, whereas, the most abundant fungal and bacterial genera were Alternaria and Pseudomonas. The relative abundance of Alternaria increased in the upper and middle healthy groups from the first collection time to the third, whereas, the relative abundance of Pseudomonas, Sphingomonas, and Methylobacterium from the same positions increased during gradual leaf aging. Non-metric multi-dimensional scaling (NMDs) showed clustering of fungal communities in healthy samples, while bacterial communities of all diseased and healthy groups were found scattered. FUNGuild analysis, from the first collection stage to the third one in both groups, indicated an increase in the relative abundance of Pathotroph-Saprotroph, Pathotroph-Saprotroph-Symbiotroph, and Pathotroph-Symbiotroph. Inclusive of all samples, as per the PICRUSt analysis, the predominant pathway was metabolism function accounting for 50.03%. The average values of omnilog units (OUs) showed relatively higher utilization rates of carbon sources by the microbial flora of healthy leaves. According to the analysis of genus abundances, leaf growth and leaf position were the important drivers of change in structuring the microbial communities. The current findings revealed the complex ecological dynamics that occur in the phyllospheric microbial communities over the course of a spatiotemporal varying environment with the development of tobacco brown spots, highlighting the importance of community succession.
Collapse
Affiliation(s)
- Yuan-feng Dai
- Department of Plant Protection, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
- Bijie Tobacco Company, Bijie, China
| | - Xiao-mao Wu
- Department of Plant Protection, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
- *Correspondence: Xiao-mao Wu
| | - Han-cheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
- Han-cheng Wang
| | - Wen-hong Li
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Liu-ti Cai
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Ji-xin Li
- Guizhou Tobacco Company of CNTC, China National Tobacco Corporation, Guiyang, China
| | - Feng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
- Feng Wang
| | - Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Imran Haider Shamsi
| |
Collapse
|
19
|
Liu H, Jiang J, An M, Li B, Xie Y, Xu C, Jiang L, Yan F, Wang Z, Wu Y. Bacillus velezensis SYL-3 suppresses Alternaria alternata and tobacco mosaic virus infecting Nicotiana tabacum by regulating the phyllosphere microbial community. Front Microbiol 2022; 13:840318. [PMID: 35966697 PMCID: PMC9366745 DOI: 10.3389/fmicb.2022.840318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
The occurrence of plant diseases is closely associated with the imbalance of plant tissue microecological environment. The regulation of the phyllosphere microbial communities has become a new and alternative approach to the biological control of foliar diseases. In this study, Bacillus velezensis SYL-3 isolated from Luzhou exhibited an effective inhibitory effect against Alternaria alternata and tobacco mosaic virus (TMV). The analysis of phyllosphere microbiome by PacBio sequencing indicated that SYL-3 treatment significantly altered fungal and bacterial communities on the leaves of Nicotiana tabacum plants and reduced the disease index caused by A. alternata and TMV. Specifically, the abundance of P. seudomo, Sphingomonas, Massilia, and Cladosporium in the SYL-3 treatment group increased by 19.00, 9.49, 3.34, and 12.29%, respectively, while the abundances of Pantoea, Enterobacter, Sampaiozyma, and Rachicladosporium were reduced. Moreover, the abundance of beneficial bacteria, such as Pseudomonas and Sphingomonas, was negatively correlated with the disease indexes of A. alternata and TMV. The PICRUSt data also predicted the composition of functional genes, with significant differences being apparent between SYL-3 and the control treatment group. Further functional analysis of the microbiome also showed that SYL-3 may induce host disease resistance by motivating host defense-related pathways. These results collectively indicate that SYL-3 may suppress disease progression caused by A. alternata or TMV by improving the microbial community composition on tobacco leaves.
Collapse
Affiliation(s)
- He Liu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jun Jiang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Bin Li
- Sichuan Province Tobacco Company, Chengdu, China
| | - Yunbo Xie
- Sichuan Province Tobacco Company, Chengdu, China
| | - Chuantao Xu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Sichuan Province Tobacco Company, Luzhou, China
| | | | - Fangfang Yan
- Sichuan Province Tobacco Company, Panzhihua, China
| | - Zhiping Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Zhiping Wang,
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Yuanhua Wu,
| |
Collapse
|
20
|
Xu P, Fan X, Mao Y, Cheng H, Xu A, Lai W, Lv T, Hu Y, Nie Y, Zheng X, Meng Q, Wang Y, Cernava T, Wang M. Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens. J Adv Res 2022; 39:49-60. [PMID: 35777916 PMCID: PMC9263646 DOI: 10.1016/j.jare.2021.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/16/2021] [Accepted: 10/12/2021] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION A broad spectrum of rhizosphere bacteria and fungi were shown to play a central role for health, fitness and productivity of their host plants. However, implications of host metabolism on microbiota assembly in the phyllosphere and potential consequences for holobiont functioning were sparsely addressed. Previous observations indicated that tea plants might reduce disease occurrence in various forests located in their proximity; the underlying mechanisms and potential implications of the phyllosphere microbiota remained elusive. OBJECTIVES This study aimed atdeciphering microbiome assembly in the tea plant phyllosphere throughout shoot development as well as elucidating potential implications of host metabolites in this process. The main focus was to explore hidden interconnections between the homeostasis of the phyllosphere microbiome and resistance to fungal pathogens. METHODS Profiling of host metabolites and microbiome analyses based on high-throughput sequencing were integrated to identify drivers of microbiome assembly throughout shoot development in the phyllosphere of tea plants. This was complemented by tracking of beneficial microorganisms in all compartments of the plant. Synthetic assemblages (SynAss), bioassays and field surveys were implemented to verify functioning of the phyllosphere microbiota. RESULTS Theophylline and epigallocatechin gallate, two prevalent metabolites at the early and late shoot development stage respectively, were identified as the main drivers of microbial community assembly. Flavobacterium and Myriangium were distinct microbial responders at the early stage, while Parabacteroides and Mortierella were more enriched at the late stage. Reconstructed, stage-specific SynAss suppressed various tree phytopathogens by 13.0%-69.3% in vitro and reduced disease incidence by 8.24%-41.3% in vivo. CONCLUSION The findings indicate that a functional phyllosphere microbiota was assembled along with development-specific metabolites in tea plants, which continuously suppressed prevalent fungal pathogens. The insights gained into the temporally resolved metabolite response of the tea plant microbiota could provide novel solutions for disease management.
Collapse
Affiliation(s)
- Ping Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan Fan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Yuxiao Mao
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310000, China
| | - Haiyan Cheng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Anan Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Wanyi Lai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Tianxing Lv
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Yang Hu
- Zhejiang Provincial Key Laboratory of Biological and Chemical Utilization of Forest Resources, Zhejiang Academy of Forestry, Hangzhou 310023, Zhejiang, China
| | - Yanxia Nie
- Ecology and Environmental Sciences Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuxia Zheng
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310000, China
| | - Qing Meng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuefei Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria.
| | - Mengcen Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Xiang LG, Wang HC, Wang F, Cai LT, Li WH, Hsiang T, Yu ZH. Analysis of Phyllosphere Microorganisms and Potential Pathogens of Tobacco Leaves. Front Microbiol 2022; 13:843389. [PMID: 35572673 PMCID: PMC9100574 DOI: 10.3389/fmicb.2022.843389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the tobacco phyllosphere, some of the microbes may have detrimental effects on plant health, while many may be neutral or even beneficial. Some cannot be cultivated, so culture-independent methods are needed to explore microbial diversity. In this study, both metagenetic analysis and traditional culture-dependent methods were used on asymptomatic healthy leaves and symptomatic diseased leaves of tobacco plants. In the culture-independent analysis, asymptomatic leaves had higher microbial diversity and richness than symptomatic leaves. Both asymptomatic and symptomatic leaves contained several potentially pathogenic bacterial and fungal genera. The putative bacterial pathogens, such as species of Pseudomonas, Pantoea, or Ralstonia, and putative fungal pathogens, such as species of Phoma, Cladosporium, Alternaria, Fusarium, Corynespora, and Epicoccum, had a higher relative abundance in symptomatic leaves than asymptomatic leaves. FUNGuild analysis indicated that the foliar fungal community also included endophytes, saprotrophs, epiphytes, parasites, and endosymbionts. PICRUSt analysis showed that the dominant functions of the bacterial community in a symptomatic leaf were cellular processes and environmental information processing. In the other five foliar samples, the dominant functions of the bacterial community were genetic information processing, metabolism, and organismal systems. In the traditional culture-dependent method, 47 fungal strains were isolated from 60 symptomatic tobacco leaf fragments bearing leaf spots. Among them, 21 strains of Colletotrichum (29%), Xylariaceae (14%), Corynespora (14%), Pestalotiopsis (10%), Alternaria (10%), Epicoccum (10%), Byssosphaeria (5%), Phoma (5%), and Diaporthe (5%) all fulfilled Koch’s postulates and were found to cause disease on detached tobacco leaves in artificial inoculation tests. Symptoms on detached leaves caused by three strains of Corynespora cassiicola in artificial inoculation tests were similar to the original disease symptoms in the tobacco field. This study showed that the combined application of culture-dependent and independent methods could give comprehensive insights into microbial composition that each method alone did not reveal.
Collapse
Affiliation(s)
- Li-Gang Xiang
- College of Agriculture, Yangtze University, Jingzhou, China
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Han-Cheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
- *Correspondence: Han-Cheng Wang,
| | - Feng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
- Feng Wang,
| | - Liu-Ti Cai
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Wen-Hong Li
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Zhi-He Yu
- College of Life Sciences, Yangtze University, Jingzhou, China
- Zhi-He Yu,
| |
Collapse
|
22
|
Unlocking the Changes of Phyllosphere Fungal Communities of Fishscale Bamboo (Phyllachora heterocladae) under Rhombic-Spot Disease Stressed Conditions. FORESTS 2022. [DOI: 10.3390/f13020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As an important nonwood bioresource, fishscale bamboo (Phyllachora heterocladae Oliver) is widely distributed in the subtropical region of China. Rhombic-spot disease, caused by Neostagonosporella sichuanensis, is one of the most serious diseases that threatens fishscale bamboo health. However, there is limited knowledge about how rhombic-spot disease influences the diversity and structures of phyllosphere fungal communities. In this study, we investigated the phyllosphere fungal communities from stems, branches, and leaves of fishscale bamboo during a rhombic-spot disease outbreak using 18S rRNA sequencing. We found that only the phyllosphere fungal community from stems was significantly affected by pathogen invasion in terms of community richness, diversity, and structure. FUNGuild analysis revealed that the major classifications of phyllosphere fungi based on trophic modes in stems, branches, and leaves changed from symbiotroph-pathotroph, no obvious dominant trophic mode, and symbiotroph to saprotroph, saprotroph–pathotroph–symbiotroph, and saprotroph–symbiotroph, respectively, after pathogen invasion. The fungal community composition of the three tissues displayed significant differences at the genus level between healthy and diseased plants. The associations among fungal species in diseased samples showed more complex co-occurrence network structures than those of healthy samples. Taken together, our results highlight the importance of plant pathological conditions for the assembly of phyllosphere fungal communities in different tissues.
Collapse
|
23
|
Huang Y, Wang HC, Cai LT, Li W, Pan D, Xiang L, Su X, Li Z, Adil MF, Shamsi IH. Phyllospheric Microbial Composition and Diversity of the Tobacco Leaves Infected by Didymella segeticola. Front Microbiol 2021; 12:699699. [PMID: 34721315 PMCID: PMC8551862 DOI: 10.3389/fmicb.2021.699699] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
A Myriad of biotic and abiotic factors inevitably affects the growth and production of tobacco (Nicotiana tabacum L.), which is a model crop and sought-after worldwide for its foliage. Among the various impacts the level of disease severity poses on plants, the influence on the dynamics of phyllospheric microbial diversity is of utmost importance. In China, recurring reports of a phyto-pathogen, Didymella segeticola, a causal agent of tobacco leaf spot, accentuate the need for its in-depth investigation. Here, a high-throughput sequencing technique, IonS5TMXL was employed to analyze tobacco leaves infected by D. segeticola at different disease severity levels, ranging from T1G (least disease index) to T4G (highest disease index), in an attempt to explore the composition and diversity of phyllospheric microbiota. In all healthy and diseased tobacco leaves, the most dominant fungal phylum was Ascomycota with a high prevalence of genus Didymella, followed by Boeremia, Meyerozyma and Alternaria, whereas in the case of bacterial phyla, Proteobacteria was prominent with Pseudomonas being a predominant genus, followed by Pantoea. The relative abundance of fungi, i.e., Didymella and Boeremia (Ascomycota) and bacteria, i.e., Pseudomonas and Pantoea (Proteobacteria) were higher in diseased groups compared to healthy groups. Healthy tissues exhibited relatively rich and diverse fungal communities in contrast with diseased groups. The infection of D. segeticola had a complex and significant effect on fungal as well as bacterial alpha diversity. FUNGuild analysis indicated that the relative abundance of pathotrophs and saprotrophs in diseased tissues proportionally increased with disease severity. PICRUSt analysis of diseased tissues indicated that the relative abundance of bacterial cell motility and membrane transport-related gene sequences elevated with an increase in disease severity from T1G to T3G and then tended to decrease at T4G. Conclusively, the current study shows the typical characteristics of the tobacco leaf microbiome and provides insights into the distinct microbiome shifts on tobacco leaves infected by D. segeticola.
Collapse
Affiliation(s)
- Yu Huang
- Upland Flue-Cured Tobacco Quality and Ecology Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China.,College of Agriculture, Guizhou University, Guiyang, China
| | - Han-Cheng Wang
- Upland Flue-Cured Tobacco Quality and Ecology Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Liu-Ti Cai
- Upland Flue-Cured Tobacco Quality and Ecology Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Wenhong Li
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Daiwei Pan
- Faculty of Science, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Ligang Xiang
- Upland Flue-Cured Tobacco Quality and Ecology Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China.,College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiankun Su
- Upland Flue-Cured Tobacco Quality and Ecology Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Zhong Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Muhammad Faheem Adil
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Imran Haider Shamsi
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Sumbula V, Kurian PS, Girija D, Cherian KA. Impact of foliar application of fungicides on tomato leaf fungal community structure revealed by metagenomic analysis. Folia Microbiol (Praha) 2021; 67:103-108. [PMID: 34554392 DOI: 10.1007/s12223-021-00920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/13/2021] [Indexed: 11/27/2022]
Abstract
Fungicides are commonly used to manage plant pathogens. However, little is known about their effects on the non-target fungal communities that inhabit inside and outside the plant. These fungicides may have adverse effects on beneficial microbial communities with possible consequences for plant health and productivity. Hence, a metagenomic approach, based on the ITS2 region of fungal rDNA, was used to study the impact of foliar application of two fungicides (propineb and iprodione + carbendazim) on non-target tomato leaf fungal communities, in the context of early blight disease management. Metagenomic analysis revealed that the richness and diversity of tomato leaf fungal populations were adversely affected by the chemical treatments tested. Among the two fungicides, propineb (contact fungicide) imparted less non-targeted microorganisms than iprodione + carbendazim (systemic fungicide). In addition, all samples showed association of pathogenic genera Cladosporium, Corynespora, Pseudocercospora along with early blight pathogen Alternaria on tomato leaves that otherwise were undetected. Metagenomic studies also revealed a new mode of action for fungicides and bioagents besides their direct effect that is shifting the microbial community structure so that it provides greater resistance against the pathogen.
Collapse
Affiliation(s)
- V Sumbula
- Division of Plant Pathology, Regional Agricultural Research Station, Kerala Agricultural University, Kerala, 679306, Pattambi, Palakkad, India.
| | - P Sainamole Kurian
- Department of Plant Pathology, College of Agriculture, Kerala Agricultural University, Kerala, India
| | - D Girija
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Kerala, India
| | - K Anita Cherian
- Department of Plant Pathology, College of Agriculture, Kerala Agricultural University, Kerala, India
| |
Collapse
|
25
|
Ke M, Ye Y, Li Y, Zhou Z, Xu N, Feng L, Zhang J, Lu T, Cai Z, Qian H. Leaf metabolic influence of glyphosate and nanotubes on the Arabidopsis thaliana phyllosphere. J Environ Sci (China) 2021; 106:66-75. [PMID: 34210440 DOI: 10.1016/j.jes.2021.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 06/13/2023]
Abstract
Chemical exposure can indirectly affect leaf microbiota communities, but the mechanism driving this phenomenon remains largely unknown. Results revealed that the co-exposure of glyphosate and multi-carbon nanotubes (CNTs) caused a synergistic inhibitory effect on the growth and metabolism of Arabidopsis thaliana shoots. However, only a slight inhibitory effect was induced by nanotubes or glyphosate alone at the tested concentrations. Several intermediate metabolites of nitrogen metabolism and fatty acid synthesis pathways were upregulated under the combined treatment, which increased the amount of energy required to alleviate the disruption caused by the combined treatment. Additionally, compared with the two individual treatments, the glyphosate/nanotube combination treatment induced greater fluctuations in the phyllosphere bacterial community members with low abundance (relative abundance (RA) <1%) at both the family and genus levels, and among these bacteria some plant growth promotion and nutrient supplement related bacteria were markable increased. Strikingly, strong correlations between phyllosphere bacterial diversity and metabolites suggested a potential role of leaf metabolism, particularly nitrogen and carbohydrate metabolism, in restricting the range of leaf microbial taxa. These correlations between phyllosphere bacterial diversity and leaf metabolism will improve our understanding of plant-microbe interactions and the extent of their drivers of variation and the underlying causes of variability in bacterial community composition.
Collapse
Affiliation(s)
- Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yizhi Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yan Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhigao Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lan Feng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jinfeng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhiqiang Cai
- Laboratory of Applied Microbiology and Biotechnology, School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou 213164, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
26
|
Chaudhry V, Runge P, Sengupta P, Doehlemann G, Parker JE, Kemen E. Shaping the leaf microbiota: plant-microbe-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:36-56. [PMID: 32910810 PMCID: PMC8210630 DOI: 10.1093/jxb/eraa417] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/07/2020] [Indexed: 05/28/2023]
Abstract
The aerial portion of a plant, namely the leaf, is inhabited by pathogenic and non-pathogenic microbes. The leaf's physical and chemical properties, combined with fluctuating and often challenging environmental factors, create surfaces that require a high degree of adaptation for microbial colonization. As a consequence, specific interactive processes have evolved to establish a plant leaf niche. Little is known about the impact of the host immune system on phyllosphere colonization by non-pathogenic microbes. These organisms can trigger plant basal defenses and benefit the host by priming for enhanced resistance to pathogens. In most disease resistance responses, microbial signals are recognized by extra- or intracellular receptors. The interactions tend to be species specific and it is unclear how they shape leaf microbial communities. In natural habitats, microbe-microbe interactions are also important for shaping leaf communities. To protect resources, plant colonizers have developed direct antagonistic or host manipulation strategies to fight competitors. Phyllosphere-colonizing microbes respond to abiotic and biotic fluctuations and are therefore an important resource for adaptive and protective traits. Understanding the complex regulatory host-microbe-microbe networks is needed to transfer current knowledge to biotechnological applications such as plant-protective probiotics.
Collapse
Affiliation(s)
- Vasvi Chaudhry
- Department of Microbial Interactions, IMIT/ZMBP, University of
Tübingen, Tübingen, Germany
| | - Paul Runge
- Department of Microbial Interactions, IMIT/ZMBP, University of
Tübingen, Tübingen, Germany
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Priyamedha Sengupta
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences
(CEPLAS), University of Cologne, Center for Molecular Biosciences, Cologne,
Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences
(CEPLAS), University of Cologne, Center for Molecular Biosciences, Cologne,
Germany
| | - Jane E Parker
- Max Planck Institute for Plant Breeding Research, Köln, Germany
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences
(CEPLAS), University of Cologne, Center for Molecular Biosciences, Cologne,
Germany
| | - Eric Kemen
- Department of Microbial Interactions, IMIT/ZMBP, University of
Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Rosberg AK, Darlison J, Mogren L, Alsanius BW. Commercial wash of leafy vegetables do not significantly decrease bacterial load but leads to shifts in bacterial species composition. Food Microbiol 2020; 94:103667. [PMID: 33279090 DOI: 10.1016/j.fm.2020.103667] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/18/2022]
Abstract
Production of leafy vegetables for the "Ready-to-eat"-market has vastly increased the last 20 years, and consumption of these minimally processed vegetables has led to outbreaks of food-borne diseases. Contamination of leafy vegetables can occur throughout the production chain, and therefore washing of the produce has become a standard in commercial processing. This study explores the bacterial communities of spinach (Spinacia oleracea) and rocket (Diplotaxis tenuifolia) in a commercial setting in order to identify potential contamination events, and to investigate effects on bacterial load by commercial processing. Samples were taken in field, after washing of the produce and at the end of shelf-life. This study found that the bacterial community composition and diversity changed significantly from the first harvest to the end of shelf-life, where the core microbiome from the first to the last sampling constituted <2% of all OTUs. While washing of the produce had no reducing effect on bacterial load compared to unwashed, washing led to a change in species composition. As the leaves entered the cold chain after harvest, a rise was seen in the relative abundance of spoilage bacteria. E. coli was detected after the washing indicating issues of cross-contamination in the wash water.
Collapse
Affiliation(s)
- Anna Karin Rosberg
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Laboratory, P.O. Box 103, SE-230 53, Alnarp, Sweden.
| | - Julia Darlison
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Laboratory, P.O. Box 103, SE-230 53, Alnarp, Sweden
| | - Lars Mogren
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Laboratory, P.O. Box 103, SE-230 53, Alnarp, Sweden
| | - Beatrix Waechter Alsanius
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Laboratory, P.O. Box 103, SE-230 53, Alnarp, Sweden
| |
Collapse
|
28
|
Chen QL, Cai L, Wang HC, Cai LT, Goodwin P, Ma J, Wang F, Li Z. Fungal Composition and Diversity of the Tobacco Leaf Phyllosphere During Curing of Leaves. Front Microbiol 2020; 11:554051. [PMID: 33013785 PMCID: PMC7499341 DOI: 10.3389/fmicb.2020.554051] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Rhizopus oryzae causes tobacco pole rot in China during tobacco flue-curing. Flue-curing is a post-harvest process done to prepare tobacco leaves and involves three different stages: the yellowing stage has the lowest temperatures and highest humidity, then the color-fixing stage has higher temperatures and medium humidity, and finally the stem-drying stage has the highest temperatures and lowest humidity. In this study, fungal culturing and IonS5XL high-throughput sequencing techniques were used to reveal the fungal community of the petioles and lamina of tobacco leaves infected with pole rot during flue-curing. A total of 108 fungal isolates belonging to 6 genera were isolated on media. The most common fungal species isolated was the pathogen, R. oryzae, that was most often found equally on petioles and laminas in the color-fixing stage, followed by saprotrophs, mostly Aspergillus spp. High-throughput sequencing revealed saprotrophs with Alternaria being the most abundant genus, followed by Phoma, Cercospora, and Aspergillus, whereas Rhizopus was the tenth most abundant genus, which was mostly found on petioles at the yellowing stage. Both culturable fungal diversity and fungal sequence diversity was higher at stem-drying stage than the yellowing and color-fixing stages, and diversity was higher with leaf lamina than petioles revealing that the changes in fungal composition and diversity during the curing process were similar with both methods. This study demonstrates that the curing process affects the leaf microbiome of tobacco during the curing process, and future work could examine if any of these saprotrophic fungi detected during the curing of tobacco leaves may be potential biocontrol agents for with pole rot in curing chambers.
Collapse
Affiliation(s)
- Qian-Li Chen
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Lin Cai
- College of Plant Protection, Southwest University, Chongqing, China
| | - Han-Cheng Wang
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Liu-Ti Cai
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Paul Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Jun Ma
- Qianxinan Branch of Guizhou Tobacco Company, Guiyang, China
| | - Feng Wang
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Zhong Li
- College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
29
|
Xueliang T, Dan X, Tingting S, Songyu Z, Ying L, Diandong W. Plant resistance and leaf chemical characteristic jointly shape phyllosphere bacterial community. World J Microbiol Biotechnol 2020; 36:139. [PMID: 32803493 DOI: 10.1007/s11274-020-02908-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022]
Abstract
Phyllosphere bacteria have an important role in plant growth and resistance to pathogen infection and are partially influenced by plant genotype and leaf environment. How plant resistance to pathogens and leaf chemical characteristics shape the phyllosphere bacterial communities is unclear. In this study, the phyllosphere bacterial communities of maize hybrids with various resistance to Setosphaeria turcica were compared using the high-throughput sequencing and large-scale culturing methods. The results showed that Shannon and Simpson indices of phyllosphere bacterial communities were markedly higher in the highly resistant hybrid (HR) compared with the susceptible one. Hierarchical clustering analysis, unweighted UniFrac principal component analysis (PCoA) and the analysis of similarities (ANOSIM) demonstrated that the phyllosphere bacterial communities were significantly distinct between resistant and susceptible hybrids. The redundancy analysis (RDA) demonstrated that leaf chemical characteristics, including nitrogen and phosphorus concentration, and disease resistance play an important role in shaping the phyllosphere bacterial community. Linear discriminant effect size (LEfSe) analysis indicated that Bacillus, Pseudomonas and Tumebacillus were the biomarker species in the phyllosphere of HR. Biocontrol bacteria against S. turcica (such as Pseudomonas and Bacillus) were isolated from the phyllosphere of HR by large-scale culturing. The work contributes to understanding of the phyllosphere bacterial community assembly and provides a new clue to screening for strong biocontrol bacteria from HR and to facilitating future breeding efforts for enhancing disease resistance.
Collapse
Affiliation(s)
- Tian Xueliang
- Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Xu Dan
- Yangtze Normal University, Fuling, Chongqing, 408100, People's Republic of China
| | - Sun Tingting
- Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Zhao Songyu
- Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Li Ying
- Beihua University, Jilin, 132013, People's Republic of China
| | - Wang Diandong
- Yangtze Normal University, Fuling, Chongqing, 408100, People's Republic of China.
| |
Collapse
|
30
|
Legein M, Smets W, Vandenheuvel D, Eilers T, Muyshondt B, Prinsen E, Samson R, Lebeer S. Modes of Action of Microbial Biocontrol in the Phyllosphere. Front Microbiol 2020; 11:1619. [PMID: 32760378 PMCID: PMC7372246 DOI: 10.3389/fmicb.2020.01619] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
A fast-growing field of research focuses on microbial biocontrol in the phyllosphere. Phyllosphere microorganisms possess a wide range of adaptation and biocontrol factors, which allow them to adapt to the phyllosphere environment and inhibit the growth of microbial pathogens, thus sustaining plant health. These biocontrol factors can be categorized in direct, microbe-microbe, and indirect, host-microbe, interactions. This review gives an overview of the modes of action of microbial adaptation and biocontrol in the phyllosphere, the genetic basis of the mechanisms, and examples of experiments that can detect these mechanisms in laboratory and field experiments. Detailed insights in such mechanisms are key for the rational design of novel microbial biocontrol strategies and increase crop protection and production. Such novel biocontrol strategies are much needed, as ensuring sufficient and consistent food production for a growing world population, while protecting our environment, is one of the biggest challenges of our time.
Collapse
Affiliation(s)
- Marie Legein
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Wenke Smets
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Dieter Vandenheuvel
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Tom Eilers
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Babette Muyshondt
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Els Prinsen
- Laboratory for Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Roeland Samson
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
31
|
Dynamic changes in bacterial communities in the recirculating nutrient solution of cucumber plug seedlings cultivated in an ebb-and-flow subirrigation system. PLoS One 2020; 15:e0232446. [PMID: 32353053 PMCID: PMC7192414 DOI: 10.1371/journal.pone.0232446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/14/2020] [Indexed: 12/04/2022] Open
Abstract
Ebb-and-flow subirrigation systems are highly efficient, water-saving and environmentally friendly. However, one concern with these recirculating systems is the possible transmission of plant pathogens. Here, through 16S rRNA-targeted Illumina sequencing, the bacterial dynamics in a recirculating nutrient solution were characterized for cucumber plug seedlings cultivated in an ebb-and-flow system in summer and winter. Both the bacterial number and diversity in the nutrient solution increased immediately after the first irrigation cycle; then, these values were gradually stable with recirculating irrigation. In summer and winter, different bacterial compositions and changing patterns were observed. In summer, the predominant genera in the nutrient solution included Comamonas, Pseudomonas, Acinetobacter, Reyranella, Sphingobium, Bradyrhizobium, Sphingomonas, and Acidovorax. Of those genera, during recirculating irrigation, the relative abundance of Bradyrhizobium gradually decreased, whereas those of Pseudomonas, Reyranella, Sphingobium, Sphingomonas, and Acidovorax gradually increased. In winter, the bacterial communities were mainly composed of Nevskia, Bosea, Sphingobium, Acidovorax, Pseudomonas, and Hydrocarboniphaga. Of those genera, the relative abundance of Bosea, Sphingobium, and Acidovorax showed an increasing trend, whereas those of Nevskia and Hydrocarboniphaga decreased overall. Furthermore, in both summer and winter, no plant pathogenic bacteria on cucumber could be detected; however, some potentially beneficial bacteria, including Comamonas testosteroni, Acinetobacter baumannii, Pseudomonas aeruginosa, P. koreensis and Sphingobium yanoikuyae, colonized the nutrient solution and exhibited increased relative abundances during irrigation. The colonization of these bacteria might facilitate the plant growth promotion. Inoculation of the microbes from the effluent nutrient solution also promoted the growth of cucumber seedlings, but did not lead to any disease. The present data elucidate the bacterial dynamics in a cucumber cultivation ebb-and-flow system and provide useful information for biological control during cucumber seedling production.
Collapse
|