1
|
He L, Li C, Chen Z, Huo Y, Zhou B, Xie F. Combined metabolome and transcriptome analysis reveal the mechanism of water stress in Ophiocordyceps sinensis. BMC Genomics 2024; 25:1014. [PMID: 39472792 PMCID: PMC11523607 DOI: 10.1186/s12864-024-10785-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Ophiocordyceps sinensis (O. sinensis) is the dominant bacterium in the asexual stage of Chinese cordyceps, and its growth usually suffers from water stress. Thus, simulating its ecological growth environment is crucial for artificial cultivation. This study aimed to reveal the mechanism underlying the water stress tolerance of Ophiocordyceps sinensis (O. sinensis) by combining metabolomic and transcriptome analyses to identify crucial pathways related to differentially expressed genes (DEGs) and metabolites (DEMs) involved in the response to water stress. RESULTS Gene coexpression analysis revealed that many genes related to 'betalain biosynthesis', 'tyrosine metabolism', 'linoleic acid metabolism', 'fructose and mannose metabolism', and 'starch and sucrose metabolism' were highly upregulated after 20d-water stress. Metabolomic analysis revealed that many metabolites regulated by these genes in these metabolic pathways were markedly decreased. On the one hand, we surmised that carbohydrate metabolism and the β-oxidation pathway worked cooperatively to generate enough acyl-CoA and then entered the TCA cycle to provide energy when exposed to water stress. On the other hand, the betalain biosynthesis and tyrosine metabolism pathway might play crucial roles in response to water stress in O. sinensis by enhancing cell osmotic potential and producing osmoregulatory substances (betaine) and antioxidant pigments (eumelanin). CONCLUSIONS Overall, our findings provide important information for further exploration of the mechanism underlying the water stress tolerance of O. sinensis for the industrialization of artificial cultivation of Chinese cordyceps.
Collapse
Affiliation(s)
- Li He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - ChuanYong Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - ZhaoHe Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - YanLi Huo
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Bo Zhou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Fang Xie
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China.
| |
Collapse
|
2
|
Li XZ, Li YL, Wang YN, Zhu JS. Translation of Mutant Repetitive Genomic Sequences in Hirsutella sinensis and Changes in the Secondary Structures and Functional Specifications of the Encoded Proteins. Int J Mol Sci 2024; 25:11178. [PMID: 39456960 PMCID: PMC11508423 DOI: 10.3390/ijms252011178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple repetitive sequences of authentic genes commonly exist in fungal genomes. AT-biased genotypes of Ophiocordyceps sinensis have been hypothesized as repetitive pseudogenes in the genome of Hirsutella sinensis (GC-biased Genotype #1 of O. sinensis) and are generated through repeat-induced point mutation (RIP), which is charactered by cytosine-to-thymine and guanine-to-adenine transitions, concurrent epigenetic methylation, and dysfunctionality. This multilocus study examined repetitive sequences in the H. sinensis genome and transcriptome using a bioinformatic approach and revealed that 8.2% of the authentic genes had repetitive copies, including various allelic insertions/deletions, transversions, and transitions. The transcripts for the repetitive sequences, regardless of the decreases, increases, or bidirectional changes in the AT content, were identified in the H. sinensis transcriptome, resulting in changes in the secondary protein structure and functional specification. Multiple repetitive internal transcribed spacer (ITS) copies containing multiple insertion/deletion and transversion alleles in the genome of H. sinensis were GC-biased and were theoretically not generated through RIP mutagenesis. The repetitive ITS copies were genetically and phylogenetically distinct from the AT-biased O. sinensis genotypes that possess multiple transition alleles. The sequences of Genotypes #2-17 of O. sinensis, both GC- and AT-biased, were absent from the H. sinensis genome, belong to the interindividual fungi, and differentially occur in different compartments of the natural Cordyceps sinensis insect-fungi complex, which contains >90 fungal species from >37 genera. Metatranscriptomic analyses of natural C. sinensis revealed the transcriptional silencing of 5.8S genes in all C. sinensis-colonizing fungi in natural settings, including H. sinensis and other genotypes of O. sinensis. Thus, AT-biased genotypes of O. sinensis might have evolved through advanced evolutionary mechanisms, not through RIP mutagenesis, in parallel with GC-biased Genotype #1 of H. sinensis from a common genetic ancestor over the long course of evolution.
Collapse
Affiliation(s)
- Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China or (X.-Z.L.); or (Y.-L.L.)
| | - Yu-Ling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China or (X.-Z.L.); or (Y.-L.L.)
| | - Ya-Nan Wang
- State Key Laboratory of Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Jia-Shi Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China or (X.-Z.L.); or (Y.-L.L.)
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
3
|
Wu L, Hu X, Yan S, Wu Z, Tang X, Xie L, Qiu Y, Li R, Chen J, Tian M. Establishment of an Agrobacterium tumefaciens-Mediated Transformation System for Hirsutella sinensis. Curr Issues Mol Biol 2024; 46:10618-10632. [PMID: 39329981 PMCID: PMC11430471 DOI: 10.3390/cimb46090629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Ophiocordyceps sinensis (Berk.) is a complex is formed by Hepialidae larvae and Hirsutella sinensis. Infestation by H. sinensis, interaction with host larvae, and fruiting body development are three crucial processes affecting the formation of O. sinensis. However, research on the molecular mechanism of O. sinensis formation has been hindered by the lack of effective genetic transformation protocols. Therefore, Agrobacterium tumefaciens-mediated transformation (ATMT) was adopted to genetically transform two H. sinensis strains and optimize the transformation conditions. The results revealed that the most suitable Agrobacterium strain for H. sinensis transformation was AGL1, and that the surfactant Triton X-100 could also induce ATMT, although less effectively than acetosyringone (AS). In addition, the endogenous promoters of H. sinensis genes had a stronger ability to drive the expression of the target gene than did the exogenous promoter. The optimal transformation conditions were as follows: AS and hygromycin B concentrations of 100 μM and 50 μg/mL, respectively; A. tumefaciens OD600 of 0.4; cocultivation at 18 °C for 24 h; and H. sinensis used within three passages. The results lay a foundation for the functional study of key regulatory genes involved in the formation of O. sinensis.
Collapse
Affiliation(s)
- Lijuan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Xinkun Hu
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| | - Shen Yan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zenglin Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Xuzhong Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Lei Xie
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Yujie Qiu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Rui Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Mengliang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| |
Collapse
|
4
|
Li XZ, Xiao MJ, Li YL, Gao L, Zhu JS. Mutations and Differential Transcription of Mating-Type and Pheromone Receptor Genes in Hirsutella sinensis and the Natural Cordyceps sinensis Insect-Fungi Complex. BIOLOGY 2024; 13:632. [PMID: 39194570 DOI: 10.3390/biology13080632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Sexual reproduction in ascomycetes is controlled by the mating-type (MAT) locus. (Pseudo)homothallic reproduction has been hypothesized on the basis of genetic data from Hirsutella sinensis (Genotype #1 of Ophiocordyceps sinensis). However, the differential occurrence and differential transcription of mating-type genes in the MAT1-1 and MAT1-2 idiomorphs were found in the genome and transcriptome assemblies of H. sinensis, and the introns of the MAT1-2-1 transcript were alternatively spliced with an unspliced intron I that contains stop codons. These findings reveal that O. sinensis reproduction is controlled at the genetic, transcriptional, and coupled transcriptional-translational levels. This study revealed that mutant mating proteins could potentially have various secondary structures. Differential occurrence and transcription of the a-/α-pheromone receptor genes were also found in H. sinensis. The data were inconsistent with self-fertilization under (pseudo)homothallism but suggest the self-sterility of H. sinensis and the requirement of mating partners to achieve O. sinensis sexual outcrossing under heterothallism or hybridization. Although consistent occurrence and transcription of the mating-type genes of both the MAT1-1 and MAT1-2 idiomorphs have been reported in natural and cultivated Cordyceps sinensis insect-fungi complexes, the mutant MAT1-1-1 and α-pheromone receptor transcripts in natural C. sinensis result in N-terminal or middle-truncated proteins with significantly altered overall hydrophobicity and secondary structures of the proteins, suggesting heterogeneous fungal source(s) of the proteins and hybridization reproduction because of the co-occurrence of multiple genomically independent genotypes of O. sinensis and >90 fungal species in natural C. sinensis.
Collapse
Affiliation(s)
- Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China
| | - Meng-Jun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China
| | - Yu-Ling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China
| | - Ling Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China
| | - Jia-Shi Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China
| |
Collapse
|
5
|
He L, Wang JY, Su QJ, Chen ZH, Xie F. Selection and validation of reference genes for RT-qPCR in ophiocordyceps sinensis under different experimental conditions. PLoS One 2024; 19:e0287882. [PMID: 38319940 PMCID: PMC10846742 DOI: 10.1371/journal.pone.0287882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/14/2023] [Indexed: 02/08/2024] Open
Abstract
The Chinese caterpillar mushroom, Ophiocordyceps sinensis (O. sinensis), is a rarely medicinal fungus in traditional chinese herbal medicine due to its unique medicinal values, and the expression stability of reference genes is essential to normalize its gene expression analysis. In this study, BestKeeper, NormFinder and geNorm, three authoritative statistical arithmetics, were applied to evaluate the expression stability of sixteen candidate reference genes (CRGs) in O. sinensis under different stress [low temperature (4°C), light treatment (300 lx), NaCl (3.8%)] and different development stages (mycelia, primordia and fruit bodies) and formation of morphologic mycelium (aeriasubstrate, hyphae knot mycelium). The paired variation values indicated that two genes could be enough to accurate standardization exposed to different conditions of O.sinensis. Among these sixteen CRGs, 18S ribosomal RNA (18S rRNA) and beta-Tubulin (β-TUB) showed the topmost expression stability in O.sinensis exposed to all conditions, while glutathione hydrolase proenzym (GGT) and Phosphoglucose isomerase (PGI) showed the least expression stability. The optimal reference gene in different conditions was various. β-TUB and Ubiquitin (UBQ) were identified as the two most stable genes in different primordia developmental stage, while phosphoglucomutase (PGM) with elongation factor 1-alpha (EF1-α) and 18S rRNA with UBQ were the most stably expressed for differentially morphologic mycelium stages and different stresses, respectively. These results will contribute to more accurate evaluation of the gene relative expression levels in O.sinensis under different conditions using the optimal reference gene in real-time quantitative PCR (RT-qPCR) analysis.
Collapse
Affiliation(s)
- Li He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P. R. China
| | - Jin Yi Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P. R. China
| | - Qiang Jun Su
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P. R. China
| | - Zhao He Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P. R. China
| | - Fang Xie
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P. R. China
| |
Collapse
|
6
|
Foresman D, Tartar A. The transcriptome of the entomopathogenic fungus Culicinomyces clavisporus contains an ortholog of the insecticidal ribotoxin Hirsutellin. PeerJ 2023; 11:e16259. [PMID: 37868071 PMCID: PMC10586291 DOI: 10.7717/peerj.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
The entomopathogenic fungus Culicinomyces clavisporus is known to infect and kill mosquito larvae and therefore has been seen as a potential biological control agent against disease vector mosquitoes. Whereas most fungal entomopathogens infect hosts by penetrating the external cuticle, C. clavisporus initiates infection through ingestion (per os). This unique infection strategy suggests that the C. clavisporus genome may be mined for novel pathogenicity factors with potential for vector control. To this end, an Isoseq-based transcriptome analysis was initiated, and resulted in a total of 3,512,145 sequences, with an average length of 1,732 bp. Transcripts assembly and annotation suggested that the C. clavisporus transcriptome lacked the cuticle-degrading proteins that have been associated with other entomopathogenic fungi, supporting the per os pathogenicity process. Furthermore, mining of the sequence data unexpectedly revealed C. clavisporus transcripts homologous to the Hirsutellin toxin. Comparative sequence analyses indicated that the C. clavisporus Hirsutellin predicted protein has retained the canonical molecular features that have been associated with the ribotoxic and insecticidal properties of the original toxin isolated from Hirsutella thompsonii. The identification of an Hirsutellin ortholog in C. clavisporus was supported by phylogenetic analyses demonstrating that Culicinomyces and Hirsutella were closely related genera in the Ophiocordycipitaceae family. Validation of the mosquitocidal activity of this novel C. clavisporus protein has yet to be performed but may help position Hirsutellin orthologs as prime candidates for the development of alternative biocontrol approaches complementing the current toolbox of vector mosquito management strategies.
Collapse
Affiliation(s)
- Dana Foresman
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Aurélien Tartar
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| |
Collapse
|
7
|
Sharma A, Kaur E, Joshi R, Kumari P, Khatri A, Swarnkar MK, Kumar D, Acharya V, Nadda G. Systematic analyses with genomic and metabolomic insights reveal a new species, Ophiocordyceps indica sp. nov. from treeline area of Indian Western Himalayan region. Front Microbiol 2023; 14:1188649. [PMID: 37547690 PMCID: PMC10399244 DOI: 10.3389/fmicb.2023.1188649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Ophiocordyceps is a species-rich genus in the order Hypocreales (Sordariomycetes, Ascomycota) depicting a fascinating relationship between microbes and insects. In the present study, a new species, Ophiocordyceps indica sp. nov., is discovered infecting lepidopteran larvae from tree line locations (2,202-2,653 m AMSL) of the Kullu District, Himachal Pradesh, Indian Western Himalayan region, using combinations of morphological and molecular phylogenetic analyses. A phylogeny for Ophiocordyceps based on a combined multigene (nrSSU, nrLSU, tef-1α, and RPB1) dataset is provided, and its taxonomic status within Ophiocordycipitaceae is briefly discussed. Its genome size (~59 Mb) revealed 94% genetic similarity with O. sinensis; however, it differs from other extant Ophiocordyceps species based on morphological characteristics, molecular phylogenetic relationships, and genetic distance. O. indica is identified as the second homothallic species in the family Ophiocordycipitaceae, after O. sinensis. The presence of targeted marker components, viz. nucleosides (2,303.25 μg/g), amino acids (6.15%), mannitol (10.13%), and biological activity data, suggests it to be a new potential source of nutraceutical importance. Data generated around this economically important species will expand our understanding regarding the diversity of Ophiocordyceps-like taxa from new locations, thus providing new research avenues.
Collapse
Affiliation(s)
- Aakriti Sharma
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ekjot Kaur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Pooja Kumari
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Abhishek Khatri
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Mohit Kumar Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Vishal Acharya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Gireesh Nadda
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Li YL, Gao L, Yao YS, Li XZ, Wu ZM, Tan NZ, Luo ZQ, Xie WD, Wu JY, Zhu JS. Altered GC- and AT-biased genotypes of Ophiocordyceps sinensis in the stromal fertile portions and ascospores of natural Cordyceps sinensis. PLoS One 2023; 18:e0286865. [PMID: 37289817 PMCID: PMC10249794 DOI: 10.1371/journal.pone.0286865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
OBJECTIVE To examine multiple genotypes of Ophiocordyceps sinensis in a semi-quantitative manner in the stromal fertile portion (SFP) densely covered with numerous ascocarps and ascospores of natural Cordyceps sinensis and to outline the dynamic alterations of the coexisting O. sinensis genotypes in different developmental phases. METHODS Mature Cordyceps sinensis specimens were harvested and continuously cultivated in our laboratory (altitude 2,254 m). The SFPs (with ascocarps) and fully and semi-ejected ascospores were collected for histological and molecular examinations. Biochip-based single nucleotide polymorphism (SNP) MALDI-TOF mass spectrometry (MS) was used to genotype multiple O. sinensis mutants in the SFPs and ascospores. RESULTS Microscopic analysis revealed distinct morphologies of the SFPs (with ascocarps) before and after ascospore ejection and SFP of developmental failure, which, along with the fully and semi-ejected ascospores, were subjected to SNP MS genotyping analysis. Mass spectra showed the coexistence of GC- and AT-biased genotypes of O. sinensis that were genetically and phylogenetically distinct in the SFPs before and after ejection and of developmental failure and in fully and semi-ejected ascospores. The intensity ratios of MS peaks were dynamically altered in the SFPs and the fully and semi-ejected ascospores. Mass spectra also showed transversion mutation alleles of unknown upstream and downstream sequences with altered intensities in the SFPs and ascospores. Genotype #5 of AT-biased Cluster-A maintained a high intensity in all SFPs and ascospores. An MS peak with a high intensity containing AT-biased Genotypes #6 and #15 in pre-ejection SFPs was significantly attenuated after ascospore ejection. The abundance of Genotypes #5‒6 and #16 of AT-biased Cluster-A was differentially altered in the fully and semi-ejected ascospores that were collected from the same Cordyceps sinensis specimens. CONCLUSION Multiple O. sinensis genotypes coexisted in different combinations with altered abundances in the SFPs prior to and after ejection, the SFP of developmental failure, and the two types of ascospores of Cordyceps sinensis, demonstrating their genomic independence. Metagenomic fungal members present in different combinations and with dynamic alterations play symbiotic roles in different compartments of natural Cordyceps sinensis.
Collapse
Affiliation(s)
- Yu-Ling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
| | - Ling Gao
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Yi-Sang Yao
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
| | - Zi-Mei Wu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ning-Zhi Tan
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Zhou-Qing Luo
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei-Dong Xie
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Jian-Yong Wu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, Guangdong, China
- Department of Applied Biology and Chemistry Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Jia-Shi Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Li YL, Li XZ, Yao YS, Wu ZM, Gao L, Tan NZ, Luo ZQ, Xie WD, Wu JY, Zhu JS. Differential coexistence of multiple genotypes of Ophiocordyceps sinensis in the stromata, ascocarps and ascospores of natural Cordyceps sinensis. PLoS One 2023; 18:e0270776. [PMID: 36893131 PMCID: PMC9997936 DOI: 10.1371/journal.pone.0270776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
OBJECTIVE To examine the differential occurrence of Ophiocordyceps sinensis genotypes in the stroma, stromal fertile portion (SFP) densely covered with numerous ascocarps, and ascospores of natural Cordyceps sinensis. METHODS Immature and mature C. sinensis specimens were harvested. Mature C. sinensis specimens were continuously cultivated in our laboratory (altitude 2,200 m). The SFPs (with ascocarps) and ascospores of C. sinensis were collected for microscopic and molecular analyses using species-/genotype-specific primers. Sequences of mutant genotypes of O. sinensis were aligned with that of Genotype #1 Hirsutella sinensis and compared phylogenetically using a Bayesian majority-rule method. RESULTS Fully and semiejected ascospores were collected from the same specimens. The semiejected ascospores tightly adhered to the surface of the asci as observed by the naked eye and under optical and confocal microscopies. The multicellular heterokaryotic ascospores showed uneven staining of nuclei. The immature and mature stromata, SFPs (with ascocarps) and ascospores were found to differentially contain several GC- and AT-biased genotypes of O. sinensis, Samsoniella hepiali, and an AB067719-type fungus. The genotypes within AT-biased Cluster-A in the Bayesian tree occurred in all compartments of C. sinensis, but those within AT-biased Cluster-B were present in immature and mature stromata and SPFs but absent in the ascospores. Genotype #13 of O. sinensis was present in semi-ejected ascospores and Genotype #14 in fully ejected ascospores. GC-biased Genotypes #13-14 featured large DNA segment substitutions and genetic material recombination between the genomes of the parental fungi (H. sinensis and the AB067719-type fungus). These ascosporic offspring genotypes combined with varying abundances of S. hepiali in the 2 types of ascospores participated in the control of the development, maturation and ejection of the ascospores. CONCLUSION Multiple genotypes of O. sinensis coexist differentially in the stromata, SFPs and 2 types of C. sinensis ascospores, along with S. hepiali and the AB067719-type fungus. The fungal components in different combinations and their dynamic alterations in the compartments of C. sinensis during maturation play symbiotic roles in the lifecycle of natural C. sinensis.
Collapse
Affiliation(s)
- Yu-Ling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
| | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
| | - Yi-Sang Yao
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zi-Mei Wu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ling Gao
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Ning-Zhi Tan
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zhou-Qing Luo
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei-Dong Xie
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jian-Yong Wu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, Guangdong, China
- Department of Applied Biology and Chemistry Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jia-Shi Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
10
|
de Menezes TA, Aburjaile FF, Quintanilha-Peixoto G, Tomé LMR, Fonseca PLC, Mendes-Pereira T, Araújo DS, Melo TS, Kato RB, Delabie JHC, Ribeiro SP, Brenig B, Azevedo V, Drechsler-Santos ER, Andrade BS, Góes-Neto A. Unraveling the Secrets of a Double-Life Fungus by Genomics: Ophiocordyceps australis CCMB661 Displays Molecular Machinery for Both Parasitic and Endophytic Lifestyles. J Fungi (Basel) 2023; 9:jof9010110. [PMID: 36675931 PMCID: PMC9864599 DOI: 10.3390/jof9010110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Ophiocordyceps australis (Ascomycota, Hypocreales, Ophiocordycipitaceae) is a classic entomopathogenic fungus that parasitizes ants (Hymenoptera, Ponerinae, Ponerini). Nonetheless, according to our results, this fungal species also exhibits a complete set of genes coding for plant cell wall degrading Carbohydrate-Active enZymes (CAZymes), enabling a full endophytic stage and, consequently, its dual ability to both parasitize insects and live inside plant tissue. The main objective of our study was the sequencing and full characterization of the genome of the fungal strain of O. australis (CCMB661) and its predicted secretome. The assembled genome had a total length of 30.31 Mb, N50 of 92.624 bp, GC content of 46.36%, and 8,043 protein-coding genes, 175 of which encoded CAZymes. In addition, the primary genes encoding proteins and critical enzymes during the infection process and those responsible for the host-pathogen interaction have been identified, including proteases (Pr1, Pr4), aminopeptidases, chitinases (Cht2), adhesins, lectins, lipases, and behavioral manipulators, such as enterotoxins, Protein Tyrosine Phosphatases (PTPs), and Glycoside Hydrolases (GHs). Our findings indicate that the presence of genes coding for Mad2 and GHs in O. australis may facilitate the infection process in plants, suggesting interkingdom colonization. Furthermore, our study elucidated the pathogenicity mechanisms for this Ophiocordyceps species, which still is scarcely studied.
Collapse
Affiliation(s)
- Thaís Almeida de Menezes
- Department of Biological Sciences, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, Novo Horizonte, Feira de Santana 44036-900, BA, Brazil
| | - Flávia Figueira Aburjaile
- Laboratory of Integrative Bioinformatics, Preventive Veterinary Medicine Department, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Gabriel Quintanilha-Peixoto
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - Luiz Marcelo Ribeiro Tomé
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - Paula Luize Camargos Fonseca
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - Thairine Mendes-Pereira
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - Daniel Silva Araújo
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL 60660, USA
| | - Tarcisio Silva Melo
- Department of Biological Sciences, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, Novo Horizonte, Feira de Santana 44036-900, BA, Brazil
| | - Rodrigo Bentes Kato
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - Jacques Hubert Charles Delabie
- Laboratory of Myrmecology, Centro de Pesquisa do Cacau, Ilhéus 45600-000, BA, Brazil
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Ilhéus 45600-970, BA, Brazil
| | - Sérvio Pontes Ribeiro
- Laboratory of Ecology of Diseases and Forests, Nucleus of Biological Science, Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto 35402-163, MG, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, 37073 Göttingen, Germany
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Bruno Silva Andrade
- Department of Biological Sciences, Universidade Federal do Sudoeste da Bahia, Av. José Moreira Sobrinho, s/n, Jequiezinho, Jequié 45205-490, BA, Brazil
| | - Aristóteles Góes-Neto
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil
- Correspondence: ; Tel.: +55-31-3409-3050
| |
Collapse
|
11
|
Xu M, Ashley NA, Vaghefi N, Wilkinson I, Idnurm A. Isolation of strains and their genome sequencing to analyze the mating system of Ophiocordyceps robertsii. PLoS One 2023; 18:e0284978. [PMID: 37130139 PMCID: PMC10153710 DOI: 10.1371/journal.pone.0284978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
The fungal genus Ophiocordyceps contains a number of insect pathogens. One of the best known of these is Ophiocordyceps sinensis, which is used in Chinese medicine and its overharvesting threatens sustainability; hence, alternative species are being sought. Ophiocordyceps robertsii, found in Australia and New Zealand, has been proposed to be a close relative to O. sinensis, but little is known about this species despite being also of historical significance. Here, O. robertsii strains were isolated into culture and high coverage draft genome sequences obtained and analyzed. This species has a large genome expansion, as also occurred in O. sinensis. The mating type locus was characterized, indicating a heterothallic arrangement whereby each strain has an idiomorphic region of two (MAT1-2-1, MAT1-2-2) or three (MAT1-1-1, MAT1-1-2, MAT1-1-3) genes flanked by the conserved APN2 and SLA2 genes. These resources provide a new opportunity for understanding the evolution of the expanded genome in the homothallic species O. sinensis, as well as capabilities to explore the pharmaceutical potential in a species endemic to Australia and New Zealand.
Collapse
Affiliation(s)
- Melvin Xu
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Darling Heights, Queensland, Australia
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Ian Wilkinson
- GhostMothLabs, 20 Lynch Drive, Echuca, Victoria, Australia
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Duan X, Yang H, Wang C, Liu H, Lu X, Tian Y. Microbial synthesis of cordycepin, current systems and future perspectives. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Li X, Li Y. The complete mitochondrial genome of Ahamus yushuensis Chu et Wang 1985 (Lepidoptera: Hepialidae) and phylogenetic analysis. Mitochondrial DNA B Resour 2022; 7:1611-1613. [PMID: 36106190 PMCID: PMC9467571 DOI: 10.1080/23802359.2022.2116950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The complete mitochondrial genome (mitogenome) of Ahamus yushuensis was determined in this study. This mitogenome is 15,336 bp and encodes 37 mitochondrial genes, including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), and two ribosomal RNA genes (rrnL and rrnS). The A. yushuensis mitogenome has an A + T content of 82.2% and presents a positive AT-skew (0.052) and a negative GC-skew (−0.236). Twelve PCGs start with a typical ATN codon, whereas a single PCG uses CGA (coxI) as the initial codon. The maximum likelihood phylogenetic analysis based on the concatenated nucleotide sequences of 13 PCGs strongly supported the monophyletic relationship of A. yushuensis to the clade of Thitarodes damxungensis and A. yunnanensis.
Collapse
Affiliation(s)
- Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, China
| | - Yuling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, China
| |
Collapse
|
14
|
Muggia L, Ametrano CG, Sterflinger K, Tesei D. An Overview of Genomics, Phylogenomics and Proteomics Approaches in Ascomycota. Life (Basel) 2020; 10:E356. [PMID: 33348904 PMCID: PMC7765829 DOI: 10.3390/life10120356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/26/2022] Open
Abstract
Fungi are among the most successful eukaryotes on Earth: they have evolved strategies to survive in the most diverse environments and stressful conditions and have been selected and exploited for multiple aims by humans. The characteristic features intrinsic of Fungi have required evolutionary changes and adaptations at deep molecular levels. Omics approaches, nowadays including genomics, metagenomics, phylogenomics, transcriptomics, metabolomics, and proteomics have enormously advanced the way to understand fungal diversity at diverse taxonomic levels, under changeable conditions and in still under-investigated environments. These approaches can be applied both on environmental communities and on individual organisms, either in nature or in axenic culture and have led the traditional morphology-based fungal systematic to increasingly implement molecular-based approaches. The advent of next-generation sequencing technologies was key to boost advances in fungal genomics and proteomics research. Much effort has also been directed towards the development of methodologies for optimal genomic DNA and protein extraction and separation. To date, the amount of proteomics investigations in Ascomycetes exceeds those carried out in any other fungal group. This is primarily due to the preponderance of their involvement in plant and animal diseases and multiple industrial applications, and therefore the need to understand the biological basis of the infectious process to develop mechanisms for biologic control, as well as to detect key proteins with roles in stress survival. Here we chose to present an overview as much comprehensive as possible of the major advances, mainly of the past decade, in the fields of genomics (including phylogenomics) and proteomics of Ascomycota, focusing particularly on those reporting on opportunistic pathogenic, extremophilic, polyextremotolerant and lichenized fungi. We also present a review of the mostly used genome sequencing technologies and methods for DNA sequence and protein analyses applied so far for fungi.
Collapse
Affiliation(s)
- Lucia Muggia
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Claudio G. Ametrano
- Grainger Bioinformatics Center, Department of Science and Education, The Field Museum, Chicago, IL 60605, USA;
| | - Katja Sterflinger
- Academy of Fine Arts Vienna, Institute of Natual Sciences and Technology in the Arts, 1090 Vienna, Austria;
| | - Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|