1
|
Xu S, Wang Y, Jiang Y, Han C, Qin Q, Wei S. Functional analysis of the cystatin A gene response to SGIV infection in orange-spotted grouper, Epinephelus coioides. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104502. [PMID: 35940384 DOI: 10.1016/j.dci.2022.104502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Cystatin A (CyA), an inhibitor of cysteine protease, was widely studied in immune defense and cancer therapy. However, the function of CyA and its potential molecular mechanism during virus infection in fish remain unknown. In our study, we cloned the open reading frame (ORF) of CyA homology from orange-spotted grouper (Ec-CyA) consisting of 303 nucleotides and encoding a 101-amino acid protein. Ec-CyA included two conserved sequences containing one N-terminal glycine fragment and one QXVXG sequence (48aa-52aa) without the signal peptide. Tissue distribution analysis showed that Ec-CyA was highly expressed in spleen and head kidney. Moreover, further analysis indicated that the expression of Ec-CyA increased during SGIV simulation in grouper spleen (GS) cells. Subcellular localization assay demonstrated that Ec-CyA was mainly distributed in cytoplasm in GS cells. Overexpressed Ec-CyA promoted the mRNA level of viral genes MCP, VP19 and LITAF. Meanwhile, SGIV-induced apoptosis in fat head minnow (FHM) cells was facilitated, as well as the activation of caspase-3/7, caspase-9. In addition, Ec-CyA overexpression down-regulated the expression of interferon (IFN) related molecules including ISG15, IFN, IRF3, MAVS, MyD88, TRAF6 and up-regulated proinflammatory factors such as IL-1β, IL-8 and TNF-α. At the same time, Ec-CyA-overexpressing inhibited the activity of IFN and ISRE promoter, but induced NF-κB promoter activity by luciferase reporter gene assay. In summary, our findings suggested that Ec-CyA was involved in innate immune response and played a key role in DNA virus infection.
Collapse
Affiliation(s)
- Suifeng Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yunxiang Jiang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chengzong Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 528478, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Eszterbauer E, Szegő D, Ursu K, Sipos D, Gellért Á. Serine protease inhibitors of the whirling disease parasite Myxobolus cerebralis (Cnidaria, Myxozoa): Expression profiling and functional predictions. PLoS One 2021; 16:e0249266. [PMID: 33780500 PMCID: PMC8007001 DOI: 10.1371/journal.pone.0249266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/15/2021] [Indexed: 11/19/2022] Open
Abstract
Here, we studied the expression pattern and putative function of four, previously identified serine protease inhibitors (serpins) of Myxobolus cerebralis, a pathogenic myxozoan species (Cnidaria: Myxozoa) causing whirling disease of salmonid fishes. The relative expression profiles of serpins were determined at different developmental stages both in fish and in annelid hosts using serpin-specific qPCR assays. The expression of serpin Mc-S1 was similar throughout the life cycle, whereas a significant decrease was detected in the relative expression of Mc-S3 and Mc-S5 during the development in fish, and then in the sporogonic stage in the worm host. A decreasing tendency could also be observed in the expression of Mc-S4 in fish, which was, however, upregulated in the worm host. For the first time, we predicted the function of M. cerebralis serpins by the use of several bioinformatics-based applications. Mc-S1 is putatively a chymotrypsin-like inhibitor that locates extracellularly and is capable of heparin binding. The other three serpins are caspase-like inhibitors, and they are probably involved in protease and cell degradation processes during the early stage of fish invasion.
Collapse
Affiliation(s)
- Edit Eszterbauer
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Dóra Szegő
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Krisztina Ursu
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Dóra Sipos
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Ákos Gellért
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|
3
|
Advances and Discoveries in Myxozoan Genomics. Trends Parasitol 2021; 37:552-568. [PMID: 33619004 DOI: 10.1016/j.pt.2021.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022]
Abstract
Myxozoans are highly diverse and globally distributed cnidarian endoparasites in freshwater and marine habitats. They have adopted a heteroxenous life cycle, including invertebrate and fish hosts, and have been associated with diseases in aquaculture and wild fish stocks. Despite their importance, genomic resources of myxozoans have proven difficult to obtain due to their miniaturized and derived genome character and close associations with fish tissues. The first 'omic' datasets have now become the main resource for a better understanding of host-parasite interactions, virulence, and diversity, but also the evolutionary history of myxozoans. In this review, we discuss recent genomic advances in the field and outline outstanding questions to be answered with continuous and improved efforts of generating myxozoan genomic data.
Collapse
|
4
|
Bartošová-Sojková P, Kyslík J, Alama-Bermejo G, Hartigan A, Atkinson SD, Bartholomew JL, Picard-Sánchez A, Palenzuela O, Faber MN, Holland JW, Holzer AS. Evolutionary Analysis of Cystatins of Early-Emerging Metazoans Reveals a Novel Subtype in Parasitic Cnidarians. BIOLOGY 2021; 10:110. [PMID: 33546310 PMCID: PMC7913475 DOI: 10.3390/biology10020110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 01/04/2023]
Abstract
The evolutionary aspects of cystatins are greatly underexplored in early-emerging metazoans. Thus, we surveyed the gene organization, protein architecture, and phylogeny of cystatin homologues mined from 110 genomes and the transcriptomes of 58 basal metazoan species, encompassing free-living and parasite taxa of Porifera, Placozoa, Cnidaria (including Myxozoa), and Ctenophora. We found that the cystatin gene repertoire significantly differs among phyla, with stefins present in most of the investigated lineages but with type 2 cystatins missing in several basal metazoan groups. Similar to liver and intestinal flukes, myxozoan parasites possess atypical stefins with chimeric structure that combine motifs of classical stefins and type 2 cystatins. Other early metazoan taxa regardless of lifestyle have only the classical representation of cystatins and lack multi-domain ones. Our comprehensive phylogenetic analyses revealed that stefins and type 2 cystatins clustered into taxonomically defined clades with multiple independent paralogous groups, which probably arose due to gene duplications. The stefin clade split between the subclades of classical stefins and the atypical stefins of myxozoans and flukes. Atypical stefins represent key evolutionary innovations of the two parasite groups for which their origin might have been linked with ancestral gene chimerization, obligate parasitism, life cycle complexity, genome reduction, and host immunity.
Collapse
Affiliation(s)
- Pavla Bartošová-Sojková
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (J.K.); (G.A.-B.); (A.P.-S.); (A.S.H.)
| | - Jiří Kyslík
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (J.K.); (G.A.-B.); (A.P.-S.); (A.S.H.)
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Gema Alama-Bermejo
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (J.K.); (G.A.-B.); (A.P.-S.); (A.S.H.)
| | - Ashlie Hartigan
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK;
| | - Stephen D. Atkinson
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (S.D.A.); (J.L.B.)
| | - Jerri L. Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (S.D.A.); (J.L.B.)
| | - Amparo Picard-Sánchez
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (J.K.); (G.A.-B.); (A.P.-S.); (A.S.H.)
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Castellón, Spain;
| | - Oswaldo Palenzuela
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Castellón, Spain;
| | - Marc Nicolas Faber
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK; (M.N.F.); (J.W.H.)
| | - Jason W. Holland
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK; (M.N.F.); (J.W.H.)
| | - Astrid S. Holzer
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (J.K.); (G.A.-B.); (A.P.-S.); (A.S.H.)
| |
Collapse
|