1
|
Wang Z, Ma Z, Tian Z, Jia H, Zhang L, Mao Y, Yang Z, Liu X, Li M. Microbial dysbiosis in the gut–mammary axis as a mechanism for mastitis in dairy cows. INT J DAIRY TECHNOL 2024. [DOI: 10.1111/1471-0307.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Mastitis is a significant and costly disease in dairy cows, reducing milk production and affecting herd health. Recent research highlights the role of gastrointestinal microbial dysbiosis in the development of mastitis. This review focuses on how microbial imbalances in the rumen and intestines can compromise the integrity of the gastrointestinal barriers, allowing harmful bacteria and endotoxins, such as lipopolysaccharide, to enter the bloodstream and reach the mammary gland, triggering inflammation. This process links gastrointestinal health to mammary gland inflammation through the gut–mammary axis. Furthermore, disruptions in glucose metabolism and immune responses are implicated in the progression of mastitis. This review underscores the potential for non‐antibiotic interventions aimed at restoring microbial balance to reduce mastitis incidence, providing new insights into improving dairy cow health and farm productivity. Our findings emphasise the critical need to explore preventive measures targeting the rumen and intestinal microbiota for effective mastitis control.
Collapse
Affiliation(s)
- Zhiwei Wang
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Zheng Ma
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Zhichen Tian
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Haoran Jia
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Lei Zhang
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Yongjiang Mao
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety the Ministry of Education, Yangzhou University Yangzhou Jiangsu 225009 China
| | - Zhangping Yang
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety the Ministry of Education, Yangzhou University Yangzhou Jiangsu 225009 China
| | - Xu Liu
- College of Veterinary Medicine Northwest A&F University Yangling Shanxi 712100 China
| | - Mingxun Li
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety the Ministry of Education, Yangzhou University Yangzhou Jiangsu 225009 China
| |
Collapse
|
2
|
El Jeni R, Villot C, Koyun OY, Osorio-Doblado A, Baloyi JJ, Lourenco JM, Steele M, Callaway TR. Invited review: "Probiotic" approaches to improving dairy production: Reassessing "magic foo-foo dust". J Dairy Sci 2024; 107:1832-1856. [PMID: 37949397 DOI: 10.3168/jds.2023-23831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The gastrointestinal microbial consortium in dairy cattle is critical to determining the energetic status of the dairy cow from birth through her final lactation. The ruminant's microbial community can degrade a wide variety of feedstuffs, which can affect growth, as well as production rate and efficiency on the farm, but can also affect food safety, animal health, and environmental impacts of dairy production. Gut microbial diversity and density are powerful tools that can be harnessed to benefit both producers and consumers. The incentives in the United States to develop Alternatives to Antibiotics for use in food-animal production have been largely driven by the Veterinary Feed Directive and have led to an increased use of probiotic approaches to alter the gastrointestinal microbial community composition, resulting in improved heifer growth, milk production and efficiency, and animal health. However, the efficacy of direct-fed microbials or probiotics in dairy cattle has been highly variable due to specific microbial ecological factors within the host gut and its native microflora. Interactions (both synergistic and antagonistic) between the microbial ecosystem and the host animal physiology (including epithelial cells, immune system, hormones, enzyme activities, and epigenetics) are critical to understanding why some probiotics work but others do not. Increasing availability of next-generation sequencing approaches provides novel insights into how probiotic approaches change the microbial community composition in the gut that can potentially affect animal health (e.g., diarrhea or scours, gut integrity, foodborne pathogens), as well as animal performance (e.g., growth, reproduction, productivity) and fermentation parameters (e.g., pH, short-chain fatty acids, methane production, and microbial profiles) of cattle. However, it remains clear that all direct-fed microbials are not created equal and their efficacy remains highly variable and dependent on stage of production and farm environment. Collectively, data have demonstrated that probiotic effects are not limited to the simple mechanisms that have been traditionally hypothesized, but instead are part of a complex cascade of microbial ecological and host animal physiological effects that ultimately impact dairy production and profitability.
Collapse
Affiliation(s)
- R El Jeni
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - C Villot
- Lallemand SAS, Blagnac, France, 31069
| | - O Y Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - A Osorio-Doblado
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J J Baloyi
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - M Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
3
|
He Z, Li W, Yuan W, He Y, Xu J, Yuan C, Zhao C, Zhang N, Fu Y, Hu X. Lactobacillus reuteri inhibits Staphylococcus aureus-induced mastitis by regulating oxytocin releasing and gut microbiota in mice. FASEB J 2024; 38:e23383. [PMID: 38197892 DOI: 10.1096/fj.202301961r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024]
Abstract
Mastitis is the most frequent disease of cows and has well-recognized detrimental effects on animal wellbeing and dairy farm profitability. With the advent of the postantibiotic era, alternative antibiotic agents, especially probiotics, have received increasing attention in the treatment of mastitis. Based on research showing that Lactobacillus reuteri (L. reuteri) has anti-inflammatory effects, this study explored the protective effects and mechanisms of L. reuteri against mastitis induced by Staphylococcus aureus (S. aureus) in mice. First, mice with S. aureus-induced mastitis were orally administered L. reuteri, and the inflammatory response in the mammary gland was observed. The results showed that L. reuteri significantly inhibited S. aureus-induced mastitis. Moreover, the concentration of oxytocin (OT) and protein expression of oxytocin receptor (OTR) were measured, and inhibition of OTR or vagotomy reversed the protective effect of L. reuteri or its culture supernatant (LCS) on S. aureus-induced mastitis. In addition, in mouse mammary epithelial cells (MMECs), OT inhibited the inflammation induced by S. aureus by inhibiting the protein expression of OTR. It was suggested that L. reuteri protected against S. aureus-induced mastitis by releasing OT. Furthermore, microbiological analysis showed that the composition of the microbiota was altered, and the relative abundance of Lactobacillus was significantly increased in gut and mammary gland after treatment with L. reuteri or LCS. In conclusion, our study found the L. reuteri inhibited the mastitis-induced by S. aureus via promoting the release of OT, and treatment with L. reuteri increased the abundance of Lactobacillus in both gut and mammary gland.
Collapse
Affiliation(s)
- Zhaoqi He
- Department of Breast Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenjia Li
- Department of Breast Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Weijie Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuhong He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiawen Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chongshan Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
4
|
Burakova I, Gryaznova M, Smirnova Y, Morozova P, Mikhalev V, Zimnikov V, Latsigina I, Shabunin S, Mikhailov E, Syromyatnikov M. Association of milk microbiome with bovine mastitis before and after antibiotic therapy. Vet World 2023; 16:2389-2402. [PMID: 38328355 PMCID: PMC10844787 DOI: 10.14202/vetworld.2023.2389-2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/26/2023] [Indexed: 02/09/2024] Open
Abstract
Background and Aim Mastitis is recognized as the most common disease in cattle and causes economic losses in the dairy industry. A number of opportunistic bacterial taxa have been identified as causative agents for this disease. Conventionally, antibiotics are used to treat mastitis; however, most bacteria are resistant to the majority of antibiotics. This study aimed to use molecular methods to identify milk microbiome patterns characteristic of mastitis that can help in the early diagnosis of this disease and in the development of new treatment strategies. Materials and Methods To evaluate the microbiome composition, we performed NGS sequencing of the 16S rRNA gene of the V3 region. Results An increase in the abundance of the bacterial genera Hymenobacter and Lachnospiraceae NK4A136 group is associated with the development of subclinical and clinical mastitis in dairy cows. These bacteria can be added to the list of markers used to detect mastitis in cows. Furthermore, a decrease in the abundance of Ralstonia, Lachnospiraceae NK3A20 group, Acetitomaculum, Massilia, and Atopostipes in cows with mastitis may indicate their role in maintaining a healthy milk microbiome. Antibiotics reduced the levels of Streptococcus in milk compared to those in the healthy group and cows before antibiotic treatment. Antibiotic therapy also contributed to an increase in the abundance of beneficial bacteria of the genus Asticcacaulis. Conclusion This study expands our understanding of the association between milk microbiota and mastitis.
Collapse
Affiliation(s)
- Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Polina Morozova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Vitaliy Mikhalev
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| | - Vitaliy Zimnikov
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| | - Irina Latsigina
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| | - Sergey Shabunin
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| | - Evgeny Mikhailov
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| |
Collapse
|
5
|
Khasapane NG, Khumalo ZTH, Kwenda S, Nkhebenyane SJ, Thekisoe O. Characterisation of Milk Microbiota from Subclinical Mastitis and Apparently Healthy Dairy Cattle in Free State Province, South Africa. Vet Sci 2023; 10:616. [PMID: 37888568 PMCID: PMC10610705 DOI: 10.3390/vetsci10100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Bovine mastitis is an inflammation of the udder tissue of the mammary gland brought on by microbial infections or physical damage. It is characterised by physical, chemical, and biological changes in the udder and milk. While several different bacterial species have been identified as causative agents of mastitis, many subclinical mastitis (SCM) cases remain culture-negative. The aim of this study was to characterise milk microbiota from SCM and apparently healthy dairy cows (non-SCM) by 16S rRNA sequencing. Alpha-diversity metrics showed significant differences between SCM cows and non-SCM counterparts. The beta-diversity metrics in the principal coordinate analysis significantly clustered samples by type (PERMANOVA test, p < 0.05), while non-metric dimensional scaling did not (PERMANOVA test, p = 0.07). The overall analysis indicated a total of 95 phyla, 33 classes, 82 orders, 124 families, 202 genera, and 119 bacterial species. Four phyla, namely Actinobacteriota, Bacteroidota, Firmicutes, and Proteobacteria collectively accounted for more than 97% of all sequencing reads from SCM and non-SCM cow samples. The most abundant bacterial classes were Actinobacteria, Bacilli, Bacteroidia, Clostridia, and Gammaproteobacteria in non-SCM cow samples, whilst SCM cow samples were mainly composed of Actinobacteria, Alphaproteobacteria, Bacilli, Clostridia, and Gammaproteobacteria. Dominant bacterial species in non-SCM cow samples were Anthropi spp., Pseudomonas azotoformans, P. fragi, Acinetobacter guillouiae, Enterococcus italicus, Lactococcus lactis, whilst P. azotoformans, Mycobacterium bovis, P. fragi, Acinetobacter guillouiae, and P. koreensis were dominant in the SCM cow samples. The current study found differences in bacterial species between SCM and non-SCM cow milk; hence, the need for detailed epidemiological studies.
Collapse
Affiliation(s)
- N. G. Khasapane
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa;
| | - Z. T. H. Khumalo
- ClinVet International, Study Management, Bainsvlei, Bloemfontein 9300, South Africa;
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
| | - S. Kwenda
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2192, South Africa;
| | - S. J. Nkhebenyane
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa;
| | - O. Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa;
| |
Collapse
|
6
|
Li X, Xu C, Liang B, Kastelic JP, Han B, Tong X, Gao J. Alternatives to antibiotics for treatment of mastitis in dairy cows. Front Vet Sci 2023; 10:1160350. [PMID: 37404775 PMCID: PMC10315858 DOI: 10.3389/fvets.2023.1160350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/26/2023] [Indexed: 07/06/2023] Open
Abstract
Mastitis is considered the costliest disease on dairy farms and also adversely affects animal welfare. As treatment (and to a lesser extent prevention) of mastitis rely heavily on antibiotics, there are increasing concerns in veterinary and human medicine regarding development of antimicrobial resistance. Furthermore, with genes conferring resistance being capable of transfer to heterologous strains, reducing resistance in strains of animal origin should have positive impacts on humans. This article briefly reviews potential roles of non-steroidal anti-inflammatory drugs (NSAIDs), herbal medicines, antimicrobial peptides (AMPs), bacteriophages and their lytic enzymes, vaccination and other emerging therapies for prevention and treatment of mastitis in dairy cows. Although many of these approaches currently lack proven therapeutic efficacy, at least some may gradually replace antibiotics, especially as drug-resistant bacteria are proliferating globally.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bingchun Liang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaofang Tong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Park S, Jung D, Altshuler I, Kurban D, Dufour S, Ronholm J. A longitudinal census of the bacterial community in raw milk correlated with Staphylococcus aureus clinical mastitis infections in dairy cattle. Anim Microbiome 2022; 4:59. [PMID: 36434660 PMCID: PMC9701008 DOI: 10.1186/s42523-022-00211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is a common cause of clinical mastitis (CM) in dairy cattle. Optimizing the bovine mammary gland microbiota to resist S. aureus colonization is a growing area of research. However, the details of the interbacterial interactions between S. aureus and commensal bacteria, which would be required to manipulate the microbiome to resist infection, are still unknown. This study aims to characterize changes in the bovine milk bacterial community before, during, and after S. aureus CM and to compare bacterial communities present in milk between infected and healthy quarters. METHODS We collected quarter-level milk samples from 698 Holstein dairy cows over an entire lactation. A total of 11 quarters from 10 cows were affected by S. aureus CM and milk samples from these 10 cows (n = 583) regardless of health status were analyzed by performing 16S rRNA gene amplicon sequencing. RESULTS The milk microbiota of healthy quarters was distinguishable from that of S. aureus CM quarters two weeks before CM diagnosis via visual inspection. Microbial network analysis showed that 11 OTUs had negative associations with OTU0001 (Staphylococcus). A low diversity or dysbiotic milk microbiome did not necessarily correlate with increased inflammation. Specifically, Staphylococcus xylosus, Staphylococcus epidermidis, and Aerococcus urinaeequi were each abundant in milk from the quarters with low levels of inflammation. CONCLUSION Our results show that the udder microbiome is highly dynamic, yet a change in the abundance in certain bacteria can be a potential indicator of future S. aureus CM. This study has identified potential prophylactic bacterial species that could act as a barrier against S. aureus colonization and prevent future instances of S. aureus CM.
Collapse
Affiliation(s)
- Soyoun Park
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
- Mastitis Network, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada
| | - Dongyun Jung
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
- Mastitis Network, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada
| | - Ianina Altshuler
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
| | - Daryna Kurban
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Mastitis Network, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada
| | - Simon Dufour
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Mastitis Network, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada.
- Mastitis Network, Saint-Hyacinthe, QC, Canada.
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
8
|
Kober AKMH, Saha S, Islam MA, Rajoka MSR, Fukuyama K, Aso H, Villena J, Kitazawa H. Immunomodulatory Effects of Probiotics: A Novel Preventive Approach for the Control of Bovine Mastitis. Microorganisms 2022; 10:2255. [PMID: 36422325 PMCID: PMC9692641 DOI: 10.3390/microorganisms10112255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 07/30/2023] Open
Abstract
Bovine mastitis (BM) is one of the most common diseases of dairy cattle, causing economic and welfare problems in dairy farming worldwide. Because of the predominant bacterial etiology, the treatment of BM is mostly based on antibiotics. However, the antimicrobial resistance (AMR), treatment effectiveness, and the cost of mastitis at farm level are linked to limitations in the antibiotic therapy. These scenarios have prompted the quest for new preventive options, probiotics being one interesting alternative. This review article sought to provide an overview of the recent advances in the use of probiotics for the prevention and treatment of BM. The cellular and molecular interactions of beneficial microbes with mammary gland (MG) cells and the impact of these interactions in the immune responses to infections are revised. While most research has demonstrated that some probiotics strains can suppress mammary pathogens by competitive exclusion or the production of antimicrobial compounds, recent evidence suggest that other probiotic strains have a remarkable ability to modulate the response of MG to Toll-like receptor (TLR)-mediated inflammation. Immunomodulatory probiotics or immunobiotics can modulate the expression of negative regulators of TLR signaling in the MG epithelium, regulating the expression of pro-inflammatory cytokines and chemokines induced upon pathogen challenge. The scientific evidence revised here indicates that immunobiotics can have a beneficial role in MG immunobiology and therefore they can be used as a preventive strategy for the management of BM and AMR, the enhancement of animal and human health, and the improvement of dairy cow milk production.
Collapse
Affiliation(s)
- A. K. M. Humayun Kober
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Dairy and Poultry Science, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh
| | - Sudeb Saha
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Dairy Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md. Aminul Islam
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Kohtaro Fukuyama
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hisashi Aso
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- The Cattle Museum, Maesawa, Oshu 029-4205, Japan
| | - Julio Villena
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman 4000, Argentina
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
9
|
Neculai-Valeanu AS, Ariton AM. Udder Health Monitoring for Prevention of Bovine Mastitis and Improvement of Milk Quality. Bioengineering (Basel) 2022; 9:608. [PMID: 36354519 PMCID: PMC9687184 DOI: 10.3390/bioengineering9110608] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 08/05/2023] Open
Abstract
To maximize milk production, efficiency, and profits, modern dairy cows are genetically selected and bred to produce more and more milk and are fed copious quantities of high-energy feed to support ever-increasing milk volumes. As demands for increased milk yield and milking efficiency continue to rise to provide for the growing world population, more significant stress is placed on the dairy cow's productive capacity. In this climate, which is becoming increasingly hotter, millions of people depend on the capacity of cattle to respond to new environments and to cope with temperature shocks as well as additional stress factors such as solar radiation, animal crowding, insect pests, and poor ventilation, which are often associated with an increased risk of mastitis, resulting in lower milk quality and reduced production. This article reviews the impact of heat stress on milk production and quality and emphasizes the importance of udder health monitoring, with a focus on the use of emergent methods for monitoring udder health, such as infrared thermography, biosensors, and lab-on-chip devices, which may promote animal health and welfare, as well as the quality and safety of dairy products, without hindering the technological flow, while providing significant benefits to farmers, manufacturers, and consumers.
Collapse
|
10
|
Luo S, Wang Y, Kang X, Liu P, Wang G. Research progress on the association between mastitis and gastrointestinal microbes in dairy cows and the effect of probiotics. Microb Pathog 2022; 173:105809. [PMID: 36183956 DOI: 10.1016/j.micpath.2022.105809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022]
Abstract
Mastitis in dairy cows affects milk quality and thereby constrains the development of the dairy industry. A clear understanding of the pathogenesis of mastitis can help its treatment. Mastitis is caused by the invasion of pathogenic bacteria into the mammary gland through the mammary ducts. However, recent studies suggested that an endogenous entero-mammary pathway in dairy cattle might also be playing an important role in regulating mastitis. Also, probiotic intervention regulating host gut microbes has become an interesting tool to control mastitis. This review discusses the association of gastrointestinal microbes with mastitis and the mechanism of action of probiotics in dairy cows to provide new ideas for the management of mastitis in large-scale dairy farms.
Collapse
Affiliation(s)
- Shuangyan Luo
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Yuxia Wang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xinyun Kang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Panpan Liu
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Guiqin Wang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China.
| |
Collapse
|
11
|
Mukhamadieva N, Julanov M, Zainettinova D, Stefanik V, Nurzhumanova Z, Mukataev A, Suychinov A. Prevalence, Diagnosis and Improving the Effectiveness of Therapy of Mastitis in Cows of Dairy Farms in East Kazakhstan. Vet Sci 2022; 9:vetsci9080398. [PMID: 36006312 PMCID: PMC9413477 DOI: 10.3390/vetsci9080398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022] Open
Abstract
In the present work, the prevalence, etiological factors and effective treatment scheme of mastitis in cows of dairy farms “Balke” and “Madi-R” in Eastern Kazakhstan were investigated. In total, 210 heads were investigated on two farms. The incidence of mastitis in cows on dairy farms is not the same in different years. Average clinical mastitis was detected in 35.4% of cows in 2016, 19.6% in 2017, 28.5% in 2018, and in 2019 in 16.4% of cows. The prevalence rates of subclinical mastitis by year had some differences. So, in 2016—36.5% of cows, then in 2017—21.5%, 2018—19.3% and in 2019—22.6%. In cows with udder inflammation, serum calcium 9.37 ± 0.15 mg/% with a range of 8.0 to 10.8 mg/%, phosphorus 3.58 ± 0.07 mg/% (3.0 to 4.3 mg/%), reserve alkalinity 363.46 ± 6.69 mg/% (320 to 440), carotene 0.49 ± 0.03 mg/% (0.220 to 0.988 mg/%), which are in the lower limit of physiological parameters. The drug “Dorob” was tested during the study of comparative effectiveness of treatment methods. The results of the study showed that this drug has anti-inflammatory, antimicrobial and stimulating healing actions. The treatment of the sick cows with catarrhal mastitis has shown that a total of 8 cows have recovered in the control group and 10 cows in the experimental group with the preparation “Dorob”. The period of recovery in the control group was 8.8 ± 0.39, and in the experimental group—6.2 ± 0.28 (p < 0.05). The drug does not contain antibiotics and hormonal preparations. The inclusion of the drug in the scheme of treatment allows for effectively treating inflammatory processes in the udder of cows and restoring their productivity with minimal cost of time and money.
Collapse
Affiliation(s)
- Nurzhamal Mukhamadieva
- Veterinary Department, Shakarim University, Semey 071412, Kazakhstan; (N.M.); (D.Z.); (Z.N.); (A.M.)
| | - Mardan Julanov
- Faculty of Veterinary, Kazakh National Agrarian Research University, Almaty 050000, Kazakhstan;
| | - Dinara Zainettinova
- Veterinary Department, Shakarim University, Semey 071412, Kazakhstan; (N.M.); (D.Z.); (Z.N.); (A.M.)
| | - Vasyl Stefanik
- Department of Obstetrics, Gynecology and Biotechnology of Animal Reproduction, Lviv National University of Veterinary Medicine and Biotechnology Named after S.Z. Gzhitsky, 79000 Lviv, Ukraine;
| | - Zhanat Nurzhumanova
- Veterinary Department, Shakarim University, Semey 071412, Kazakhstan; (N.M.); (D.Z.); (Z.N.); (A.M.)
| | - Aitbek Mukataev
- Veterinary Department, Shakarim University, Semey 071412, Kazakhstan; (N.M.); (D.Z.); (Z.N.); (A.M.)
| | - Anuarbek Suychinov
- Kazakh Research Institute of Processing and Food Industry (Semey Branch), Semey 071410, Kazakhstan
- Correspondence: ; Tel.: +7-7012331814
| |
Collapse
|
12
|
Nalla K, Manda NK, Dhillon HS, Kanade SR, Rokana N, Hess M, Puniya AK. Impact of Probiotics on Dairy Production Efficiency. Front Microbiol 2022; 13:805963. [PMID: 35756055 PMCID: PMC9218901 DOI: 10.3389/fmicb.2022.805963] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
There has been growing interest on probiotics to enhance weight gain and disease resistance in young calves and to improve the milk yield in lactating animals by reducing the negative energy balance during the peak lactation period. While it has been well established that probiotics modulate the microbial community composition in the gastrointestinal tract, and a probiotic-mediated homeostasis in the rumen could improve feed conversation competence, volatile fatty acid production and nitrogen flow that enhances the milk composition as well as milk production, detailed changes on the molecular and metabolic level prompted by probiotic feed additives are still not understood. Moreover, as living biotherapeutic agents, probiotics have the potential to directly change the gene expression profile of animals by activating the signalling cascade in the host cells. Various direct and indirect components of probiotic approaches to improve the productivity of dairy animals are discussed in this review.
Collapse
Affiliation(s)
- Kirankumar Nalla
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Naresh Kumar Manda
- Department of Biosensors and Nanotechnology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Santosh R Kanade
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Namita Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Matthias Hess
- Systems Microbiology and Natural Product Discovery Laboratory, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
13
|
Werning ML, Hernández-Alcántara AM, Ruiz MJ, Soto LP, Dueñas MT, López P, Frizzo LS. Biological Functions of Exopolysaccharides from Lactic Acid Bacteria and Their Potential Benefits for Humans and Farmed Animals. Foods 2022; 11:1284. [PMID: 35564008 PMCID: PMC9101012 DOI: 10.3390/foods11091284] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Lactic acid bacteria (LAB) synthesize exopolysaccharides (EPS), which are structurally diverse biopolymers with a broad range of technological properties and bioactivities. There is scientific evidence that these polymers have health-promoting properties. Most commercialized probiotic microorganisms for consumption by humans and farmed animals are LAB and some of them are EPS-producers indicating that some of their beneficial properties could be due to these polymers. Probiotic LAB are currently used to improve human health and for the prevention and treatment of specific pathologic conditions. They are also used in food-producing animal husbandry, mainly due to their abilities to promote growth and inhibit pathogens via different mechanisms, among which the production of EPS could be involved. Thus, the aim of this review is to discuss the current knowledge of the characteristics, usage and biological role of EPS from LAB, as well as their postbiotic action in humans and animals, and to predict the future contribution that they could have on the diet of food animals to improve productivity, animal health status and impact on public health.
Collapse
Affiliation(s)
- María Laura Werning
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
| | - Annel M. Hernández-Alcántara
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (A.M.H.-A.); (P.L.)
| | - María Julia Ruiz
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Animal Health and Preventive Medicine, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires, Buenos Aires 7000, Argentina
| | - Lorena Paola Soto
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza 3038, Argentina
| | - María Teresa Dueñas
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country (UPV/EHU), 20018 San Sebastián, Spain;
| | - Paloma López
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (A.M.H.-A.); (P.L.)
| | - Laureano Sebastián Frizzo
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza 3038, Argentina
| |
Collapse
|
14
|
Ji Y, Dong X, Liu Z, Wang W, Yan H, Liu X. Effects of Bovine Pichia kudriavzevii T7, Candida glabrata B14, and Lactobacillus plantarum Y9 on Milk Production, Quality and Digestive Tract Microbiome in Dairy Cows. Microorganisms 2022; 10:842. [PMID: 35630288 PMCID: PMC9146454 DOI: 10.3390/microorganisms10050842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022] Open
Abstract
Microbial administration has been used successfully to improve host health. However, the positive effects of endogenous microbials are still underexplored. This study investigated the effects of bovine Lactic acid bacteria and yeast on the milk production, quality and digestive tract microbiome of dairy cows. Lactobacillus plantarum Y9, Pichia kudriavzevii T7 and Candida glabrata B14 isolated from high-yielding dairy cows were selected to feed low-yielding Holstein cows. Pichia kudriavzevii T7 could significantly increase milk yield, meanwhile, Pichia kudriavzevii T7 and Candida glabrata B14 could obviously reduce the number of somatic cell counts (SCC). However, slight differences were found in milk fat, protein, lactose and SNF (solids not fat) percentage. High throughput sequencing showed that the dominant bacteria were Prevotella and Ruminococcaceae in rumen and feces, respectively, and the dominant fungi were Penicillium, Aspergillus and Trichoderma in both samples, before and after feeding the microbial addition. Nonetheless, microbial addition changed the abundance and structure of the microbiome in the digestive tract. Our data showed bovine yeast and LAB were beneficial for improving performance and regulating the microbial structure of dairy cows. This study was expected to enrich the knowledge of the digestive tract microbiome in dairy cows and provide a feasible strategy for the further utilization of bovine microorganisms.
Collapse
Affiliation(s)
| | | | | | | | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Y.J.); (X.D.); (Z.L.); (W.W.)
| | - Xiaolu Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Y.J.); (X.D.); (Z.L.); (W.W.)
| |
Collapse
|
15
|
The Influence of Bacteria Causing Subclinical Mastitis on the Structure of the Cow’s Milk Microbiome. Molecules 2022; 27:molecules27061829. [PMID: 35335192 PMCID: PMC8950352 DOI: 10.3390/molecules27061829] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
Mastitis is the most expensive disease of dairy cattle across the world and is the main reason for the use of antibiotics in animal husbandry. The aim of this study was to analyze the microbiome of raw milk obtained from a semi-subsistence farm located in the Kuyavian–Pomeranian Voivodeship in Poland. Milk from healthy cows and from cows with subclinical mastitis was analyzed. The following pathogenic bacteria were found in milk from individuals with subclinical mastitis: Escherichia coli or Streptococcus agalactiae. The composition of drinking milk was assessed on the basis of 16S rRNA gene sequencing using the Ion Torrent platform. Based on the conducted research, significant changes in the composition of the milk microbiome were found depending on the physiological state of the cows. The microbiome of milk from healthy cows differed significantly from the milk from cows with subclinical mastitis. Two phyla dominated in the milk from healthy cows: Firmicutes and Proteobacteria, in equal amounts. On the contrary, in the milk from cows with diagnosed subclinical mastitis, one of the types dominated: either Firmicutes or Proteobacteria, and was largely predominant. Moreover, the milk microflora from the ill animals were characterized by lower values of the determined biodiversity indicators than the milk from healthy cows. The presence of pathogenic bacteria in the milk resulted in a significant reduction in the share of lactic acid bacteria in the structure of the population of microorganisms, which are of great importance in the production technology of regional products.
Collapse
|
16
|
Ban Y, Guan LL. Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. J Anim Sci Biotechnol 2021; 12:109. [PMID: 34635155 PMCID: PMC8507308 DOI: 10.1186/s40104-021-00630-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/08/2021] [Indexed: 01/03/2023] Open
Abstract
Direct-fed microbials (DFMs) are feed additives containing live naturally existing microbes that can benefit animals' health and production performance. Due to the banned or strictly limited prophylactic and growth promoting usage of antibiotics, DFMs have been considered as one of antimicrobial alternatives in livestock industry. Microorganisms used as DFMs for ruminants usually consist of bacteria including lactic acid producing bacteria, lactic acid utilizing bacteria and other bacterial groups, and fungi containing Saccharomyces and Aspergillus. To date, the available DFMs for ruminants have been largely based on their effects on improving the feed efficiency and ruminant productivity through enhancing the rumen function such as stabilizing ruminal pH, promoting ruminal fermentation and feed digestion. Recent research has shown emerging evidence that the DFMs may improve performance and health in young ruminants, however, these positive outcomes were not consistent among studies and the modes of action have not been clearly defined. This review summarizes the DFM studies conducted in ruminants in the last decade, aiming to provide the new knowledge on DFM supplementation strategies for various ruminant production stages, and to identify what are the potential barriers and challenges for current ruminant industry to adopt the DFMs. Overall literature research indicates that DFMs have the potential to mitigate ruminal acidosis, improve immune response and gut health, increase productivity (growth and milk production), and reduce methane emissions or fecal shedding of pathogens. More research is needed to explore the mode of action of specific DFMs in the gut of ruminants, and the optimal supplementation strategies to promote the development and efficiency of DFM products for ruminants.
Collapse
Affiliation(s)
- Yajing Ban
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
17
|
Barreto MO, Soust M, Moore RJ, Olchowy TWJ, Alawneh JI. Systematic review and meta-analysis of probiotic use on inflammatory biomarkers and disease prevention in cattle. Prev Vet Med 2021; 194:105433. [PMID: 34298303 DOI: 10.1016/j.prevetmed.2021.105433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
The aim of this study was to appraise the available evidence on the effectiveness of probiotic treatment on mature cattle immunity, inflammation, and disease prevention. A systematic review with meta-analysis was conducted to analyse studies that were eligible to answer the following research question: "in cattle of at least 6-months of age, is the use of probiotics associated with immunomodulatory and inflammatory responses, and clinical disease outcomes?" Our literature search yielded 25 studies that fit the inclusion criteria. From these studies, only 19 were suitable for inclusion in the meta-analysis due to data limitations and differences in study population characteristics. Included studies were assessed for bias using a risk assessment tool adapted from the Cochrane Collaboration's tool for assessing risk of bias in randomised trials. GRADE guidelines were used to assess the quality of the body of evidence at the outcome level. The meta-analysis was performed using Review Manager and R. The overall quality of evidence at the outcome level was assessed as being very low. On average, the treatment effect on immunoglobulin G (IgG), serum amyloid A (SAA), haptoglobin (Hp) and β-hydroxybutyrate (BoHB) for cows receiving probiotics did not differ from control cows. Exposure to probiotics was not associated with reduced risk of reproductive disorders (pooled RR = 1.02 95 % CI = 0.81-1.27, P = 0.88). There is insufficient evidence to support any significant positive effects of probiotics on cattle immunity and disease prevention. This lack of consistent evidence could be due to dissimilarities in the design of the included studies such as differences in dosage, dose schedule, diet composition and/or physiological state of the host at the time of treatment.
Collapse
Affiliation(s)
- Michelle O Barreto
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia; The University of Queensland, Good Clinical Practice Research Group (GCPRG), Gatton, Queensland, 4343, Australia
| | - Martin Soust
- Terragen Biotech Pty Ltd., Coolum Beach, Queensland, 4573, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Melbourne, Victoria, 3083, Australia
| | - Timothy W J Olchowy
- The University of Queensland, Good Clinical Practice Research Group (GCPRG), Gatton, Queensland, 4343, Australia; Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T3R 1J3, Canada
| | - John I Alawneh
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia; The University of Queensland, Good Clinical Practice Research Group (GCPRG), Gatton, Queensland, 4343, Australia; Murdoch University, School of Veterinary Medicine, Perth, Western Australia, 6150, Australia.
| |
Collapse
|
18
|
Maity S, Ambatipudi K. Response to Comments on “Mammary microbial dysbiosis leads to the zoonosis of bovine mastitis: a One-Health perspective” by Maity and Ambatipudi. FEMS Microbiol Ecol 2021; 97:6294908. [PMID: 34100931 DOI: 10.1093/femsec/fiab079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- Sudipa Maity
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
19
|
Etter D, Jenni C, Tasara T, Johler S. Mild Lactic Acid Stress Causes Strain-Dependent Reduction in SEC Protein Levels. Microorganisms 2021; 9:1014. [PMID: 34066749 PMCID: PMC8151770 DOI: 10.3390/microorganisms9051014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcal enterotoxin C (SEC) is a major cause of staphylococcal food poisoning in humans and plays a role in bovine mastitis. Staphylococcus aureus (S. aureus) benefits from a competitive growth advantage under stress conditions encountered in foods such as a low pH. Therefore, understanding the role of stressors such as lactic acid on SEC production is of pivotal relevance to food safety. However, stress-dependent cues and their effects on enterotoxin expression are still poorly understood. In this study, we used human and animal strains harboring different SEC variants in order to evaluate the influence of mild lactic acid stress (pH 6.0) on SEC expression both on transcriptional and translational level. Although only a modest decrease in sec mRNA levels was observed under lactic acid stress, protein levels showed a significant decrease in SEC levels for some strains. These findings indicate that post-transcriptional modifications can act in SEC expression under lactic acid stress.
Collapse
Affiliation(s)
- Danai Etter
- Institute for Food Safety and Hygiene, University of Zurich, 8057 Zurich, Switzerland; (D.E.); (T.T.)
- Laboratory of Food Microbiology, Institute for Food, Nutrition and Health (IFNH), ETH Zurich, 8092 Zurich, Switzerland;
| | - Céline Jenni
- Laboratory of Food Microbiology, Institute for Food, Nutrition and Health (IFNH), ETH Zurich, 8092 Zurich, Switzerland;
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, University of Zurich, 8057 Zurich, Switzerland; (D.E.); (T.T.)
| | - Sophia Johler
- Institute for Food Safety and Hygiene, University of Zurich, 8057 Zurich, Switzerland; (D.E.); (T.T.)
| |
Collapse
|
20
|
Maity S, Ambatipudi K. Mammary microbial dysbiosis leads to the zoonosis of bovine mastitis: a One-Health perspective. FEMS Microbiol Ecol 2021; 97:6006870. [PMID: 33242081 DOI: 10.1093/femsec/fiaa241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Bovine mastitis is a prototypic emerging and reemerging bacterial disease that results in cut-by-cut torture to animals, public health and the global economy. Pathogenic microbes causing mastitis have overcome a series of hierarchical barriers resulting in the zoonotic transmission from bovines to humans either by proximity or remotely through milk and meat. The disease control is challenging and has been attributed to faulty surveillance systems to monitor their emergence at the human-animal interface. The complex interaction between the pathogens, the hidden pathobionts and commensals of the bovine mammary gland that create a menace during mastitis remains unexplored. Here, we review the zoonotic potential of these pathogens with a primary focus on understanding the interplay between the host immunity, mammary ecology and the shift from symbiosis to dysbiosis. We also address the pros and cons of the current management strategies and the extent of the success in implementing the One-Health approach to keep these pathogens at bay.
Collapse
Affiliation(s)
- Sudipa Maity
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, , India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, , India
| |
Collapse
|
21
|
Sevin S, Karaca B, Haliscelik O, Kibar H, OmerOglou E, Kiran F. Postbiotics secreted by Lactobacillus sakei EIR/CM-1 isolated from cow milk microbiota, display antibacterial and antibiofilm activity against ruminant mastitis-causing pathogens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1958077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sedat Sevin
- Department of Pharmacology and Toxicology, Ankara University, Ankara, Turkey
- The Company of Sentezfarma, Ankara University Technopolis, Ankara, Turkey
| | - Basar Karaca
- Microbiology Research Laboratory, Department of Biology, Ankara University, Ankara, Turkey
| | - Ozan Haliscelik
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Ankara University, Ankara, Turkey
| | - Hazal Kibar
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Ankara University, Ankara, Turkey
| | - Emine OmerOglou
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Ankara University, Ankara, Turkey
| | - Fadime Kiran
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Ankara University, Ankara, Turkey
| |
Collapse
|
22
|
Wu H, Wang Y, Dong L, Hu H, Meng L, Liu H, Zheng N, Wang J. Microbial Characteristics and Safety of Dairy Manure ComPosting for Reuse as Dairy Bedding. BIOLOGY 2020; 10:13. [PMID: 33379325 PMCID: PMC7824547 DOI: 10.3390/biology10010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022]
Abstract
Changes in bacterial community, phenotype, metabolic function, and pathogenic bacteria content in recycled manure solids (RMS) were analyzed by 16S rRNA sequencing, Bugbase, picrost2, and qPCR, respectively. The data from RMS bedding were compared to those of sand bedding and rice husk bedding. The results show that the proportion of potentially pathogenic bacteria among the manure flora of RMS after dry and wet separation, after composting, and after sun-cure storage was 74.00%, 26.03%, and 49.067%, respectively. Compared to RMS bedding, the proportion of potentially pathogenic microorganisms in sand bedding and rice husk bedding was higher. The picrust2 analyses show that the level of lipopolysaccharide biosynthesis changed significantly during RMS processing. In addition, the qPCR results show that composting could effectively reduce the detection and quantification of pathogens, except Streptococcus uberis, in RMS bedding. In general, composting is an essential step to improve the safety of bedding materials in the process of fecal treatment. However, at the same time, RMS bedding may increase the risk of mastitis caused by Streptococcus uberis.
Collapse
Affiliation(s)
- Haoming Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (L.D.); (H.H.); (L.M.); (H.L.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China;
| | - Lei Dong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (L.D.); (H.H.); (L.M.); (H.L.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haiyan Hu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (L.D.); (H.H.); (L.M.); (H.L.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lu Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (L.D.); (H.H.); (L.M.); (H.L.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huimin Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (L.D.); (H.H.); (L.M.); (H.L.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (L.D.); (H.H.); (L.M.); (H.L.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (L.D.); (H.H.); (L.M.); (H.L.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|