1
|
Kamali M, Sarhadynejad Z, Tajadini H, Keikha M, Salari Z, Dehesh T, Lashkarizadeh M, Esmaili M. Evaluation of the Efficacy of Medicinal Plants in Treating Bacterial Vaginosis: A Comprehensive Systematic Review of Interventional Studies. IRANIAN JOURNAL OF NURSING AND MIDWIFERY RESEARCH 2024; 29:649-659. [PMID: 39759925 PMCID: PMC11694588 DOI: 10.4103/ijnmr.ijnmr_311_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 01/07/2025]
Abstract
Background Bacterial Vaginosis (BV) is the most prevalent cause of vaginal infection among women. This study aimed to summarize the evidence related to the effectiveness of medicinal plants as an alternative therapy for the management of BV. Materials and Methods PubMed, Scopus, Cochrane Library, Web of Science, and Medline PubMed were systematically searched. Moreover, we searched Google Scholar to explore the possible effects of herbal treatments on BV in women of childbearing age up to 2022. All randomized clinical trials investigating the effects of medicinal plants as oral or vaginal monotherapy or in combination for BV treatment in women of childbearing age were included in this systematic review. Results In total, 20 studies comprising 2685 participants were included in our review. The results show that combinations of herbal medicines such as Prangos ferulacea, Berberis vulgaris, Myrtus communis, and Quercus Brantii with metronidazole can have better results in the treatment of BV. Moreover, the main results show that some medicinal plant products alone such as Forzejehe (Tribulus terrestris + Myrtus communis + Foeniculum vulgare + Tamarindus indica), Zataria multiflora, and Calendula officinalis had therapeutic effects similar to metronidazole. Propolis and Brazilian pepper tree (Schinus) were effective in the treatment of BV, but they have less therapeutic effect than metronidazole. Conclusions To reduce the complications caused by chemical treatments and also the resistance of patients to these treatments, it seems necessary to use supportive treatments along with chemical drugs after the necessary approvals have been obtained.
Collapse
Affiliation(s)
- Mohadese Kamali
- Faculty of Persian Medicine, Herbal and Traditional Medicines Research Center, Department of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zarrin Sarhadynejad
- Faculty of Persian Medicine, Herbal and Traditional Medicines Research Center, Department of Traditional Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Haleh Tajadini
- Faculty of Persian Medicine, Medical Mycology and Bacteriology Research Center, Department of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Keikha
- Department of Biostatistics and Epidemiology, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh Salari
- School of Medicine, Obstetrics and Gynecology Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Tania Dehesh
- Department of Biostatistics and Epidemiology, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdiyeh Lashkarizadeh
- School of Medicine, Department of Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mitra Esmaili
- Faculty of Persian Medicine, Herbal and Traditional Medicines Research Center, Department of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Refaey MS, Abosalem EF, Yasser El-Basyouni R, Elsheriri SE, Elbehary SH, Fayed MAA. Exploring the therapeutic potential of medicinal plants and their active principles in dental care: A comprehensive review. Heliyon 2024; 10:e37641. [PMID: 39318809 PMCID: PMC11420497 DOI: 10.1016/j.heliyon.2024.e37641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Since the human population realized how important it was to maintain overall health and the weight of disease, they have been looking for therapeutic qualities in natural environments. The use of plants having medicinal qualities for the treatment and prevention of illnesses that may have an impact on general health is known as herbal medicine. There has been a noticeable increase in interest lately in the combination of synthetic contemporary medications and traditional herbal remedies. About 80 % of people rely on it for healthcare, particularly in developing nations. One important aspect of overall health is said to be oral healthcare. The World Health Organization views oral health as a crucial component of overall health and well-being. Because they are more readily available, less expensive, and have fewer adverse effects than pharmaceutical treatments, using natural medicines to treat pathologic oro-dental disorders can make sense. The current evaluation of the literature sought to investigate the range and scope of the use of herbal products and their secondary metabolites in maintaining oral health, encompassing several oral healthcare domains such as halitosis, gingivitis, periodontitis, and other oral disorders. Therefore, there are many herbs discussed in this work and their mechanism in the treatment and improvement of many oral ailments. Besides, compounds that are useful in oral treatment with their natural sources and the cases where they can be used. To prevent any possible side effects or drug interactions, a doctor's consultation is necessary before using dental medicine. Although herbal therapy is safe and with minimum side effects, it is also strongly advised to do a more thorough preclinical and clinical evaluation before using herbal medicines officially.
Collapse
Affiliation(s)
- Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Esraa Fawzy Abosalem
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Rana Yasser El-Basyouni
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Shymaa E Elsheriri
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Sara Hassan Elbehary
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Marwa A A Fayed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
3
|
Allkja J, Roudbary M, Alves AMV, Černáková L, Rodrigues CF. Biomaterials with antifungal strategies to fight oral infections. Crit Rev Biotechnol 2024; 44:1151-1163. [PMID: 37587010 DOI: 10.1080/07388551.2023.2236784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/18/2023]
Abstract
Oral fungal infections pose a threat to human health and increase the economic burden of oral diseases by prolonging and complicating treatment. A cost-effective strategy is to try to prevent these infections from happening in the first place. With this purpose, biomaterials with antifungal properties are a crucial element to overcome fungal infections in the oral cavity. In this review, we go through different kinds of biomaterials and coatings that can be used to functionalize them. We also review their potential as a therapeutic approach in addition to prophylaxis, by going through traditional and alternative antifungal compounds, e.g., essential oils, that could be incorporated in them, to enhance their efficacy against fungal pathogens. We aim to highlight the potential of these technologies and propose questions that need to be addressed in prospective research. Finally, we intend to concatenate the key aspects and technologies on the use of biomaterials in oral health, to create an easy to find summary of the current state-of-the-art for researchers in the field.
Collapse
Affiliation(s)
- Jontana Allkja
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Oral Sciences Research Group, Glasgow Dental School, University of Glasgow, Glasgow, UK
| | - Maryam Roudbary
- Sydney Infectious Disease Institute, University of Sydney, Sydney, Australia
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Anelise Maria Vasconcelos Alves
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Célia Fortuna Rodrigues
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- 1H-TOXRUN - One Health Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário - CESPU, Gandra PRD, Portugal
| |
Collapse
|
4
|
Guo J, Wang P, Li Y, Liu Y, Ye Y, Chen Y, Kankala RK, Tong F. Advances in hybridized nanoarchitectures for improved oro-dental health. J Nanobiotechnology 2024; 22:469. [PMID: 39113060 PMCID: PMC11305065 DOI: 10.1186/s12951-024-02680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/11/2024] Open
Abstract
On a global note, oral health plays a critical role in improving the overall human health. In this vein, dental-related issues with dentin exposure often facilitate the risk of developing various oral-related diseases in gums and teeth. Several oral-based ailments include gums-associated (gingivitis or periodontitis), tooth-based (dental caries, root infection, enamel erosion, and edentulous or total tooth loss), as well as miscellaneous diseases in the buccal or oral cavity (bad breath, mouth sores, and oral cancer). Although established conventional treatment modalities have been available to improve oral health, these therapeutic options suffer from several limitations, such as fail to eradicate bacterial biofilms, deprived regeneration of dental pulp cells, and poor remineralization of teeth, resulting in dental emergencies. To this end, the advent of nanotechnology has resulted in the development of various innovative nanoarchitectured composites from diverse sources. This review presents a comprehensive overview of different nanoarchitectured composites for improving overall oral health. Initially, we emphasize various oral-related diseases, providing detailed pathological circumstances and their effects on human health along with deficiencies of the conventional therapeutic modalities. Further, the importance of various nanostructured components is emphasized, highlighting their predominant actions in solving crucial dental issues, such as anti-bacterial, remineralization, and tissue regeneration abilities. In addition to an emphasis on the synthesis of different nanostructures, various nano-therapeutic solutions from diverse sources are discussed, including natural (plant, animal, and marine)-based components and other synthetic (organic- and inorganic-) architectures, as well as their composites for improving oral health. Finally, we summarize the article with an interesting outlook on overcoming the challenges of translating these innovative platforms to clinics.
Collapse
Affiliation(s)
- Jun Guo
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yuyao Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yifan Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yingtong Ye
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Yi Chen
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China.
| | - Fei Tong
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
5
|
Sindhusha VB, Rajasekar A. Formulation of Neem and Echinacea Gel for Oral Health Along With the Evaluation of Antimicrobial, Cytotoxic, Anti-inflammatory, and Free Radical Scavenging Activity: An In Vitro Study. Cureus 2024; 16:e63631. [PMID: 39092399 PMCID: PMC11291991 DOI: 10.7759/cureus.63631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Background Herbs have been used in medical practice for centuries and continue to play a significant role in modern complementary and alternative medicine. Phytochemicals in these herbs possess strong antioxidant and anti-inflammatory properties, which are beneficial in targeting oral health issues, such as dental plaque, gingivitis, and oral microbial infections. As research progresses, the challenge remains to translate these natural compounds into safe, effective, and accessible treatments for a wide range of diseases. Aim The aim of this research was to formulate the neem and echinacea gel along with the evaluation of antimicrobial, anti-inflammatory, free-radical scavenging activity, and cytotoxic potential. Materials and methods The neem and echinacea gel was prepared using a concentrated powdered mixture of neem and echinacea (5 grams each) to which 100 ml of distilled water was added, and the mixture was boiled for 30 minutes at 60°C. The 10 ml concentrate was mixed with 20 ml of a carbopol and carboxymethyl cellulose (CMC) mixture and mixed thoroughly, which resulted in neem and echinacea gel. Then, the antimicrobial, anti-inflammatory, cytotoxic potential, and free-radical scavenging activity of the gel were evaluated. The data obtained were statistically analyzed with the help of a paired t-test, where a p-value of less than 0.05 was considered statistically significant. Results The antimicrobial assay showed that neem and echinacea gel at the concentration of 100 micrograms showed a greater zone of inhibition against Staphylococcus aureus (3.15 ± 0.26), Streptococcus mutans (2.48 ± 0.45), Enterococcus faecalis (2.89 ± 0.15), and Candida albicans (4.28 ± 0.87). The cytotoxic test revealed that even at an 80 µg concentration of the extract, more than 70% of the nauplii were vital, which indicated that the gel was not cytotoxic. The highest anti-inflammatory activity (78.39 ± 1.82) of the gel was seen at 50 micrograms when compared with diclofenac sodium (73.16 ± 1.80). The free radical scavenging activity showed that the 2,2-diphenyl-1-picrylhydrazyl (DPPH) absorbance of the neem and echinacea extract was highest at 50 micrograms. Conclusion The combination of neem and echinacea extract-based gel possessed high antimicrobial and anti-inflammatory activity when compared with standard drugs, such as amoxicillin and diclofenac sodium. The antioxidant activity of the gel was equal to butylated hydroxytoluene (BHT), and also the gel has a low cytotoxic potential even at its higher concentrations. Hence, the gel can be used as a natural remedy with minimal side effects, making it a valuable alternative to chemical agents.
Collapse
Affiliation(s)
- Vyshnavi B Sindhusha
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Arvina Rajasekar
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
6
|
Mosaddad SA, Talebi S, Keyhan SO, Fallahi HR, Darvishi M, Aghili SS, Tavahodi N, Namanloo RA, Heboyan A, Fathi A. Dental implant considerations in patients with systemic diseases: An updated comprehensive review. J Oral Rehabil 2024; 51:1250-1302. [PMID: 38570927 DOI: 10.1111/joor.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/27/2023] [Accepted: 03/02/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Various medical conditions and the drugs used to treat them have been shown to impede or complicate dental implant surgery. It is crucial to carefully monitor the medical status and potential post-operative complications of patients with systemic diseases, particularly elderly patients, to minimize the risk of health complications that may arise. AIM The purpose of this study was to review the existing evidence on the viability of dental implants in patients with systemic diseases and to provide practical recommendations to achieve the best possible results in the corresponding patient population. METHODS The information for our study was compiled using data from PubMed, Scopus, Web of Science and Google Scholar databases and searched separately for each systemic disease included in our work until October 2023. An additional manual search was also performed to increase the search sensitivity. Only English-language publications were included and assessed according to titles, abstracts and full texts. RESULTS In total, 6784 studies were found. After checking for duplicates and full-text availability, screening for the inclusion criteria and manually searching reference lists, 570 articles remained to be considered in this study. CONCLUSION In treating patients with systemic conditions, the cost-benefit analysis should consider the patient's quality of life and expected lifespan. The success of dental implants depends heavily on ensuring appropriate maintenance therapy, ideal oral hygiene standards, no smoking and avoiding other risk factors. Indications and contraindications for dental implants in cases of systemic diseases are yet to be more understood; broader and hardcore research needs to be done for a guideline foundation.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
- Department of Conservative Dentistry and Bucofacial Prosthesis, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
- Maxillofacial Surgery & Implantology & Biomaterial Research Foundation, Tehran, Iran
| | - Sahar Talebi
- Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seied Omid Keyhan
- Maxillofacial Surgery & Implantology & Biomaterial Research Foundation, Tehran, Iran
- Department of Oral & Maxillofacial Surgery, Gangneung-Wonju National University, Gangneung, South Korea
- Department of Oral & Maxillofacial Surgery, College of Medicine, University of Florida, Jacksonville, FL, USA
- Iface Academy, Istanbul, Turkey
| | - Hamid Reza Fallahi
- Maxillofacial Surgery & Implantology & Biomaterial Research Foundation, Tehran, Iran
- Department of Oral & Maxillofacial Surgery, Gangneung-Wonju National University, Gangneung, South Korea
- Department of Oral & Maxillofacial Surgery, College of Medicine, University of Florida, Jacksonville, FL, USA
- Iface Academy, Istanbul, Turkey
| | - Mohammad Darvishi
- Faculty of Dentistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Tavahodi
- Student Research Committee, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Fathi
- Department of Prosthodontics, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Nedumaran N, Rajasekar A, Venkatakrishnan S, Wajeeha H. An In Vitro Study of Antioxidant, Anti-inflammatory, and Cytotoxic Effects of Echinacea-Mediated Zinc Oxide Nanoparticles. Cureus 2024; 16:e65354. [PMID: 39184651 PMCID: PMC11344488 DOI: 10.7759/cureus.65354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Background Plant extracts, such as Echinacea, are preferred in the pharmaceutical industry for their natural availability and minimal adverse effects. Echinacea is known for its anti-inflammatory and other biological properties. Zinc oxide nanoparticles (ZnONPs) are cost-effective, safe, and easily synthesized, making them prominent in nanoparticle research. This study aims to determine the anti-inflammatory, cytotoxic, and antioxidant properties of ZnONPs synthesized using Echinacea. Methodology In this study, 5 mg of powdered Echinacea was mixed with 100 mL of distilled water, heated at 44°C until vaporization, cooled, and filtered twice. The extract was mixed with 0.1 g of zinc oxide and exposed to sunlight for two weeks for nanoparticle synthesis. After centrifugation at 3,500 rpm for eight minutes, nanoparticles were collected. Scanning electron microscope analysis was done to determine nanoparticle formation. Cytotoxicity analysis was conducted using the brine shrimp method, with surviving nauplii counted after exposure to different nanoparticle concentrations. Antioxidant activity was assessed via 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and ferric-reducing antioxidant power (FRAP) assay. Anti-inflammatory activity was assessed using membrane stabilization assay and bovine serum albumin (BSA) assay. Using SPSS Statistics Version 23 (IBM Corp., Armonk, NY, USA), the mean and standard deviation between the prepared extract and the standard were compared for all assays. Results In the cytotoxicity assessment, at 5 µL, the mortality of nauplii remained unchanged from the control. However, at 10 and 20 µL, a 10% increase in mortality was observed, which then stabilized at 40 and 80 µL with 20%. Regarding antioxidant activity, as nanoparticle concentration increased from 10 to 50 µL in the DPPH and FRAP assays, their effectiveness also increased accordingly. According to the anti-inflammatory assay, the membrane stabilization and BSA assay showed an increase in activity with increasing concentrations of 10 to 50 μL extract against similar concentrations of standard diclofenac sodium. Conclusions Echinacea-based ZnONPs demonstrated effective antioxidant and anti-inflammatory properties with low cytotoxicity, suggesting their potential use in future pharmaceutical or therapeutic applications.
Collapse
Affiliation(s)
- Nivedha Nedumaran
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Arvina Rajasekar
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Souparnika Venkatakrishnan
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Hidhayathul Wajeeha
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
8
|
Wang SY, Cai Y, Hu X, Li F, Qian XH, Xia LY, Gao B, Wu L, Xie WZ, Gu JM, Deng T, Zhu C, Jia HC, Peng WQ, Huang J, Fang C, Zeng XT. P. gingivalis in oral-prostate axis exacerbates benign prostatic hyperplasia via IL-6/IL-6R pathway. Mil Med Res 2024; 11:30. [PMID: 38764065 PMCID: PMC11103868 DOI: 10.1186/s40779-024-00533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is the most common disease in elderly men. There is increasing evidence that periodontitis increases the risk of BPH, but the specific mechanism remains unclear. This study aimed to explore the role and mechanism of the key periodontal pathogen Porphyromonas gingivalis (P. gingivalis) in the development of BPH. METHODS The subgingival plaque (Sp) and prostatic fluid (Pf) of patients with BPH concurrent periodontitis were extracted and cultured for 16S rDNA sequencing. Ligature-induced periodontitis, testosterone-induced BPH and the composite models in rats were established. The P. gingivalis and its toxic factor P. gingivalis lipopolysaccharide (P.g-LPS) were injected into the ventral lobe of prostate in rats to simulate its colonization of prostate. P.g-LPS was used to construct the prostate cell infection model for mechanism exploration. RESULTS P. gingivalis, Streptococcus oralis, Capnocytophaga ochracea and other oral pathogens were simultaneously detected in the Pf and Sp of patients with BPH concurrent periodontitis, and the average relative abundance of P. gingivalis was found to be the highest. P. gingivalis was detected in both Pf and Sp in 62.5% of patients. Simultaneous periodontitis and BPH synergistically aggravated prostate histological changes. P. gingivalis and P.g-LPS infection could induce obvious hyperplasia of the prostate epithelium and stroma (epithelial thickness was 2.97- and 3.08-fold that of control group, respectively), and increase of collagen fibrosis (3.81- and 5.02-fold that of control group, respectively). P. gingivalis infection promoted prostate cell proliferation, inhibited apoptosis, and upregulated the expression of inflammatory cytokines interleukin-6 (IL-6; 4.47-fold), interleukin-6 receptor-α (IL-6Rα; 5.74-fold) and glycoprotein 130 (gp130; 4.47-fold) in prostatic tissue. P.g-LPS could significantly inhibit cell apoptosis, promote mitosis and proliferation of cells. P.g-LPS activates the Akt pathway through IL-6/IL-6Rα/gp130 complex, which destroys the imbalance between proliferation and apoptosis of prostate cells, induces BPH. CONCLUSION P. gingivalis was abundant in the Pf of patients with BPH concurrent periodontitis. P. gingivalis infection can promote BPH, which may affect the progression of BPH via inflammation and the Akt signaling pathway.
Collapse
Affiliation(s)
- Shuang-Ying Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yi Cai
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiao Hu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Fei Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xin-Hang Qian
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Ling-Yun Xia
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Bo Gao
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Lan Wu
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wen-Zhong Xie
- Henan Provincial Engineering Research Center for Microecological Regulatory of Oral Environment and Oral Implantology, Kaifeng University Health Science Center, Kaifeng, 475000, Henan, China
| | - Jia-Min Gu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tong Deng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Cong Zhu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hai-Chang Jia
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wan-Qi Peng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- School of Stomatology, Jinan University, Guangzhou, 510632, China
| | - Jiao Huang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Cheng Fang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
9
|
Bassir L, Taravati S, Nouri F, Rahimi S. The effect of different intracanal irrigants on the push-out bond strength of dentin in damaged anterior primary teeth. J Med Life 2024; 17:536-542. [PMID: 39144693 PMCID: PMC11320612 DOI: 10.25122/jml-2024-0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/01/2024] [Indexed: 08/16/2024] Open
Abstract
This experimental study investigated the effect of different intracanal irrigants on the push-out bond strength of dentin in damaged anterior primary teeth. The crowns of 90 anterior primary teeth were sectioned horizontally, 1 mm above the cementoenamel junction (CEJ). Following canal preparation with K-files, all groups except the negative control received normal saline irrigation. Canals were then irrigated with either 3% or 5.25% sodium hypochlorite (NaOCl), 2% or 0.2% chlorhexidine (CHX) solution (except negative and positive controls). The roots were filled with Metapex material and covered with a calcium hydroxide liner. In root canals, the bond was applied by self-etching and then light-cured for 20 seconds before canals were restored incrementally with composite. Stereomicroscopes were used to assess failure patterns. Push-out bond strengths (MPa ± SD) were: 3% NaOCl (16.92 ± 5.78), 5.25% NaOCl (8.96 ± 3.55), 2% CHX (14.76 ± 5.56), and 0.2% CHX (7.76 ± 2.93). Significant differences were seen across the irrigants regarding the push-out bond strength of dentin sections (P <0.001). The most frequent failures were adhesive and cohesive. NaOCl and CHX irrigants increased the push-out bond strength compared to controls. Compared to controls, both 3% NaOCl and 2% CHX irrigants significantly increased the push-out bond strength of dentin in non-vital anterior primary teeth.
Collapse
Affiliation(s)
- Leila Bassir
- Department of Pediatric Dentistry, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Taravati
- Department of Pediatric Dentistry, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farzad Nouri
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeide Rahimi
- Department of Pediatric Dentistry, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Augimeri G, Caparello G, Caputo I, Reda R, Testarelli L, Bonofiglio D. Mediterranean diet: a potential player in the link between oral microbiome and oral diseases. J Oral Microbiol 2024; 16:2329474. [PMID: 38510981 PMCID: PMC10953787 DOI: 10.1080/20002297.2024.2329474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Background The oral microbiome is a complex and dynamic assemblage of microorganisms that colonize different sites of the oral cavity maintaining both oral and systemic health. Therefore, when its composition is altered, oral diseases occur. Among oral inflammatory pathologies, periodontal diseases affect the tissues surrounding the teeth, representing the main cause of tooth loss and one of the most important threats to the oral health. Lifestyle and eating habits influence the composition of the human oral microbiota and the development and progression of oral diseases. In this context, the Mediterranean Diet (MD) model, comprising both healthy dietary choices and lifestyle, is linked to the prevention of several metabolic and chronic-degenerative pathological processes, including oral diseases. Indeed, the MD is a plant-based diet, enriched of anti-inflammatory and antioxidant nutrients, which may induce beneficial effects against dental caries and periodontal diseases. Aim This review summarizes the role of the oral microbiome in the development of the oral diseases and the potential of MD in modulating the oral microbiome leading to implications for oral health. Conclusions The data collected highlight the need to promote the MD pattern along with the correct hygiene habits to prevent the development of oral diseases.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Giovanna Caparello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Ippolito Caputo
- Department of Oral and Maxillo Facial Sciences, Sapienza University of Rome, Rome, Italy
| | - Rodolfo Reda
- Department of Oral and Maxillo Facial Sciences, Sapienza University of Rome, Rome, Italy
| | - Luca Testarelli
- Department of Oral and Maxillo Facial Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
11
|
Cao X, Cheng XW, Liu YY, Dai HW, Gan RY. Inhibition of pathogenic microbes in oral infectious diseases by natural products: Sources, mechanisms, and challenges. Microbiol Res 2024; 279:127548. [PMID: 38016378 DOI: 10.1016/j.micres.2023.127548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
The maintenance of oral health is of utmost importance for an individual's holistic well-being and standard of living. Within the oral cavity, symbiotic microorganisms actively safeguard themselves against potential foreign diseases by upholding a multifaceted equilibrium. Nevertheless, the occurrence of an imbalance can give rise to a range of oral infectious ailments, such as dental caries, periodontitis, and oral candidiasis. Presently, clinical interventions encompass the physical elimination of pathogens and the administration of antibiotics to regulate bacterial and fungal infections. Given the limitations of various antimicrobial drugs frequently employed in dental practice, the rising incidence of oral inflammation, and the escalating bacterial resistance to antibiotics, it is imperative to explore alternative remedies that are dependable, efficacious, and affordable for the prevention and management of oral infectious ailments. There is an increasing interest in the creation of novel antimicrobial agents derived from natural sources, which possess attributes such as safety, cost-effectiveness, and minimal adverse effects. This review provides a comprehensive overview of the impact of natural products on the development and progression of oral infectious diseases. Specifically, these products exert their influences by mitigating dental biofilm formation, impeding the proliferation of oral pathogens, and hindering bacterial adhesion to tooth surfaces. The review also encompasses an examination of the various classes of natural products, their antimicrobial mechanisms, and their potential therapeutic applications and limitations in the context of oral infections. The insights garnered from this review can support the promising application of natural products as viable therapeutic options for managing oral infectious diseases.
Collapse
Affiliation(s)
- Xin Cao
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xing-Wang Cheng
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yin-Ying Liu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, Singapore 138669, Singapore; Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Hong-Wei Dai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, Singapore 138669, Singapore; Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore.
| |
Collapse
|
12
|
Hakim LK, Yari A, Nikparto N, Mehraban SH, Cheperli S, Asadi A, Darehdor AA, Nezaminia S, Dortaj D, Nazari Y, Dehghan M, Hojjat P, Mohajeri M, Hasani Jebelli MS. The current applications of nano and biomaterials in drug delivery of dental implant. BMC Oral Health 2024; 24:126. [PMID: 38267933 PMCID: PMC10809618 DOI: 10.1186/s12903-024-03911-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND AND AIM Dental implantology has revolutionized oral rehabilitation, offering a sophisticated solution for restoring missing teeth. Despite advancements, issues like infection, inflammation, and osseointegration persist. Nano and biomaterials, with their unique properties, present promising opportunities for enhancing dental implant therapies by improving drug delivery systems. This review discussed the current applications of nano and biomaterials in drug delivery for dental implants. METHOD A literature review examined recent studies and advancements in nano and biomaterials for drug delivery in dental implantology. Various materials, including nanoparticles, biocompatible polymers, and bioactive coatings, were reviewed for their efficacy in controlled drug release, antimicrobial properties, and promotion of osseointegration. RESULTS Nano and biomaterials exhibit considerable potential in improving drug delivery for dental implants. Nanostructured drug carriers demonstrate enhanced therapeutic efficacy, sustained release profiles, and improved biocompatibility. Furthermore, bioactive coatings contribute to better osseointegration and reduced risks of infections. CONCLUSION Integrating current nano and biomaterials in drug delivery for dental implants holds promise for advancing clinical outcomes. Enhanced drug delivery systems can mitigate complications associated with dental implant procedures, offering improved infection control, reduced inflammation, and optimized osseointegration.
Collapse
Affiliation(s)
| | - Amir Yari
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kashan University of Medical Sciences, Kashan, Iran
| | - Nariman Nikparto
- Oral and Maxillofacial Surgeon (OMFS), Department of Oral and Maxillofacial Surgery, Masters in Public Health (MPH), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Hasani Mehraban
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirali Asadi
- Oral and Maxillofacial Surgeon, Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sayna Nezaminia
- Oral and Maxillofacial Surgery Resident, Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Dorara Dortaj
- Operative Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasin Nazari
- General Dentist, Masters in Engineering, Tehran, Iran
| | - Mohamad Dehghan
- Specialist in Prosthodontics, Independent Researcher, Tehran, Iran
| | - Pardis Hojjat
- Department of Periodontics, Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahsa Mohajeri
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
13
|
Aghili S, Rahimi H, Hakim LK, Karami S, Soufdoost RS, Oskouei AB, Alam M, Badkoobeh A, Golkar M, Abbasi K, Heboyan A, Hosseini ZS. Interactions Between Oral Microbiota and Cancers in the Aging Community: A Narrative Review. Cancer Control 2024; 31:10732748241270553. [PMID: 39092988 PMCID: PMC11378226 DOI: 10.1177/10732748241270553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
The oral microbiome potentially wields significant influence in the development of cancer. Within the human oral cavity, an impressive diversity of more than 700 bacterial species resides, making it the second most varied microbiome in the body. This finely balanced oral microbiome ecosystem is vital for sustaining oral health. However, disruptions in this equilibrium, often brought about by dietary habits and inadequate oral hygiene, can result in various oral ailments like periodontitis, cavities, gingivitis, and even oral cancer. There is compelling evidence that the oral microbiome is linked to several types of cancer, including oral, pancreatic, colorectal, lung, gastric, and head and neck cancers. This review discussed the critical connections between cancer and members of the human oral microbiota. Extensive searches were conducted across the Web of Science, Scopus, and PubMed databases to provide an up-to-date overview of our understanding of the oral microbiota's role in various human cancers. By understanding the possible microbial origins of carcinogenesis, healthcare professionals can diagnose neoplastic diseases earlier and design treatments accordingly.
Collapse
Affiliation(s)
- Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hussein Rahimi
- Student Research Committee, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | | | | | - Asal Bagherzadeh Oskouei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | | |
Collapse
|
14
|
Aghili SS, Jahangirnia A, Alam M, Oskouei AB, Golkar M, Badkoobeh A, Abbasi K, Mohammadikhah M, Karami S, Soufdoost RS, Namanloo RA, Talebi S, Amookhteh S, Hemmat M, Sadeghi S. The effect of photodynamic therapy in controlling the oral biofilm: A comprehensive overview. J Basic Microbiol 2023; 63:1319-1347. [PMID: 37726220 DOI: 10.1002/jobm.202300400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/26/2023] [Indexed: 09/21/2023]
Abstract
Several resistance mechanisms are involved in dental caries, including oral biofilms. An accumulation of bacteria on the surface of teeth is called plaque. Periodontitis and gingivitis are caused by dental plaque. In this review article, we aimed to review the studies associated with the application of photodynamic therapy (PDT) to prevent and treat various microbial biofilm-caused oral diseases in recent decades. There are several studies published in PubMed that have described antimicrobial photodynamic therapy (APDT) effects on microorganisms. Several in vitro and in vivo studies have demonstrated the potential of APDT for treating endodontic, periodontal, and mucosal infections caused by bacteria as biofilms. Reactive oxygen species (ROS) are activated in the presence of oxygen by integrating a nontoxic photosensitizer (PS) with appropriate wavelength visible light. By causing irreversible damage to microorganisms, ROS induces some biological and photochemical events. Testing several wavelengths has been conducted to identify potential PS for APDT. A standard protocol is not yet available, and the current review summarizes findings from dental studies on APDT.
Collapse
Affiliation(s)
- Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asal Bagherzadeh Oskouei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | | | | | | | - Sahar Talebi
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Amookhteh
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Hemmat
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sima Sadeghi
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Maleki AR, Tabatabaei RR, Aminian F, Ranjbar S, Ashrafi F, Ranjbar R. Antibacterial and antibiofilm effects of green synthesized selenium nanoparticles on clinical Klebsiella pneumoniae isolates. J Basic Microbiol 2023; 63:1373-1382. [PMID: 37699755 DOI: 10.1002/jobm.202300332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/24/2023] [Accepted: 09/03/2023] [Indexed: 09/14/2023]
Abstract
Nanotechnology covers many disciplines, including the biological sciences. In this study, selenium nanoparticles (Se-NPs) were synthesized using Artemisia annua extract and investigated against clinical strains of klebsiella pneumoniae (K. pneumoniae) for their anti-biofilm effects. In this experimental study, from May 1998 to September 1998, 50 clinical samples of blood, urine, and sputum were collected, and K. pneumoniae strains were isolated using microbiological methods. Subsequently, the antibacterial effects of Se-NPs at concentrations of 12-25-50-100/5-6/3-25/125 μg/mL were studied. Finally, biofilm-producing strains were isolated, and the expression of mrkA biofilm gene was studied in real-time strains treated with Se-NPs using real-time polymerase chain reaction (PCR). Out of 50 clinical samples, 20 strains of K. pneumoniae were isolated. Minimum inhibitory concentration (MIC) results of Se-NPs showed that Se-NPs were capable of significant cell killing. Real-time PCR results also showed that mrkA gene expression was significantly reduced in strains treated with Se-NPs. According to this study, Se-NPs could reduce bacterial growth and biofilm formation, therefore, could be considered a candidate drug in the medical application for infections caused by K. pneumoniae.
Collapse
Affiliation(s)
- Ali Reza Maleki
- Depatment of Microbiology, School of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Robab Rafiei Tabatabaei
- Depatment of Microbiology, School of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Fatemeh Aminian
- Department of Molecular Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Sina Ranjbar
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ashrafi
- Depatment of Microbiology, School of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Dosoky NS, Kirpotina LN, Schepetkin IA, Khlebnikov AI, Lisonbee BL, Black JL, Woolf H, Thurgood TL, Graf BL, Satyal P, Quinn MT. Volatile Composition, Antimicrobial Activity, and In Vitro Innate Immunomodulatory Activity of Echinacea purpurea (L.) Moench Essential Oils. Molecules 2023; 28:7330. [PMID: 37959750 PMCID: PMC10647913 DOI: 10.3390/molecules28217330] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Echinacea purpurea (L.) Moench is a medicinal plant commonly used for the treatment of upper respiratory tract infections, the common cold, sore throat, migraine, colic, stomach cramps, and toothaches and the promotion of wound healing. Based on the known pharmacological properties of essential oils (EOs), we hypothesized that E. purpurea EOs may contribute to these medicinal properties. In this work, EOs from the flowers of E. purpurea were steam-distilled and analyzed by gas chromatography-mass spectrometry (GC-MS), GC with flame-ionization detection (GC-FID), and chiral GC-MS. The EOs were also evaluated for in vitro antimicrobial and innate immunomodulatory activity. About 87 compounds were identified in five samples of the steam-distilled E. purpurea EO. The major components of the E. purpurea EO were germacrene D (42.0 ± 4.61%), α-phellandrene (10.09 ± 1.59%), β-caryophyllene (5.75 ± 1.72%), γ-curcumene (5.03 ± 1.96%), α-pinene (4.44 ± 1.78%), δ-cadinene (3.31 ± 0.61%), and β-pinene (2.43 ± 0.98%). Eleven chiral compounds were identified in the E. purpurea EO, including α-pinene, sabinene, β-pinene, α-phellandrene, limonene, β-phellandrene, α-copaene, β-elemene, β-caryophyllene, germacrene D, and δ-cadinene. Analysis of E. purpurea EO antimicrobial activity showed that they inhibited the growth of several bacterial species, although the EO did not seem to be effective for Staphylococcus aureus. The E. purpurea EO and its major components induced intracellular calcium mobilization in human neutrophils. Additionally, pretreatment of human neutrophils with the E. purpurea EO or (+)-δ-cadinene suppressed agonist-induced neutrophil calcium mobilization and chemotaxis. Moreover, pharmacophore mapping studies predicted two potential MAPK targets for (+)-δ-cadinene. Our results are consistent with previous reports on the innate immunomodulatory activities of β-caryophyllene, α-phellandrene, and germacrene D. Thus, this study identified δ-cadinene as a novel neutrophil agonist and suggests that δ-cadinene may contribute to the reported immunomodulatory activity of E. purpurea.
Collapse
Affiliation(s)
- Noura S. Dosoky
- Essential Oil Science, dōTERRA International, 1248 W 700 S, Pleasant Grove, UT 84062, USA;
| | - Liliya N. Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (L.N.K.); (I.A.S.)
| | - Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (L.N.K.); (I.A.S.)
| | | | - Brent L. Lisonbee
- Innova Bio, Utah Valley University, 800 W University Pkwy, Orem, UT 84058, USA; (B.L.L.); (J.L.B.); (T.L.T.)
| | - Jeffrey L. Black
- Innova Bio, Utah Valley University, 800 W University Pkwy, Orem, UT 84058, USA; (B.L.L.); (J.L.B.); (T.L.T.)
| | - Hillary Woolf
- Research and Development, dōTERRA International, 389 S 1300 W, Pleasant Grove, UT 84062, USA; (H.W.); (B.L.G.)
| | - Trever L. Thurgood
- Innova Bio, Utah Valley University, 800 W University Pkwy, Orem, UT 84058, USA; (B.L.L.); (J.L.B.); (T.L.T.)
| | - Brittany L. Graf
- Research and Development, dōTERRA International, 389 S 1300 W, Pleasant Grove, UT 84062, USA; (H.W.); (B.L.G.)
| | - Prabodh Satyal
- Essential Oil Science, dōTERRA International, 1248 W 700 S, Pleasant Grove, UT 84062, USA;
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (L.N.K.); (I.A.S.)
| |
Collapse
|
17
|
Ferreira RC, do Nascimento YM, de Araújo Loureiro PB, Martins RX, de Souza Maia ME, Farias DF, Tavares JF, Gonçalves JCR, da Silva MS, Sobral MV. Chemical Composition, In Vitro Antitumor Effect, and Toxicity in Zebrafish of the Essential Oil from Conyza bonariensis (L.) Cronquist (Asteraceae). Biomolecules 2023; 13:1439. [PMID: 37892120 PMCID: PMC10604947 DOI: 10.3390/biom13101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/29/2023] Open
Abstract
The essential oil from Conyza bonariensis (Asteraceae) aerial parts (CBEO) was extracted by hydrodistillation in a Clevenger-type apparatus and was characterized by gas chromatography-mass spectrometry. The antitumor potential was evaluated against human tumor cell lines (melanoma, cervical, colorectal, and leukemias), as well as non-tumor keratinocyte lines using the MTT assay. The effect of CBEO on the production of Reactive Oxygen Species (ROS) was evaluated by DCFH-DA assay, and a protection assay using the antioxidant N-acetyl-L-cysteine (NAC) was also performed. Moreover, the CBEO toxicity in the zebrafish model was assessed. The majority of the CBEO compound was (Z)-2-lachnophyllum ester (57.24%). The CBEO exhibited selectivity towards SK-MEL-28 melanoma cells (half maximal inhibitory concentration, IC50 = 18.65 ± 1.16 µg/mL), and induced a significant increase in ROS production. In addition, the CBEO's cytotoxicity against SK-MEL-28 cells was reduced after pretreatment with NAC. Furthermore, after 96 h of exposure, 1.5 µg/mL CBEO induced death of all zebrafish embryos. Non-lethal effects were observed after exposure to 0.50-1.25 µg/mL CBEO. Additionally, significant alterations in the activity of enzymes associated with oxidative stress in zebrafish larvae were observed. These results provide evidence that CBEO has a significant in vitro antimelanoma effect by increasing ROS production and moderate embryotoxicity in zebrafish.
Collapse
Affiliation(s)
- Rafael Carlos Ferreira
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Yuri Mangueira do Nascimento
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Paulo Bruno de Araújo Loureiro
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Rafael Xavier Martins
- Laboratory of Risk Assessment for Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Maria Eduarda de Souza Maia
- Laboratory of Risk Assessment for Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Davi Felipe Farias
- Laboratory of Risk Assessment for Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Josean Fechine Tavares
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Juan Carlos Ramos Gonçalves
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marcelo Sobral da Silva
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| |
Collapse
|
18
|
Afzoon S, Amiri MA, Mohebbi M, Hamedani S, Farshidfar N. A systematic review of the impact of Porphyromonas gingivalis on foam cell formation: Implications for the role of periodontitis in atherosclerosis. BMC Oral Health 2023; 23:481. [PMID: 37442956 PMCID: PMC10347812 DOI: 10.1186/s12903-023-03183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND The current literature suggests the significant role of foam cells in the initiation of atherosclerosis through the formation of a necrotic core in atherosclerotic plaques. Moreover, an important periodontal pathogen called Porphyromonas gingivalis (P. gingivalis) is indicated to play a significant role in this regard. Thus, the aim of this systematic review was to comprehensively study the pathways by which P. gingivalis as a prominent bacterial species in periodontal disease, can induce foam cells that would initiate the process of atherosclerosis formation. METHODS An electronic search was undertaken in three databases (Pubmed, Scopus, and Web of Science) to identify the studies published from January 2000 until March 2023. The risk of bias in each study was also assessed using the QUIN risk of bias assessment tool. RESULTS After the completion of the screening process, 11 in-vitro studies met the inclusion criteria and were included for further assessments. Nine of these studies represented a medium risk of bias, while the other two had a high risk of bias. All of the studies have reported that P. gingivalis can significantly induce foam cell formation by infecting the macrophages and induction of oxidized low-density lipoprotein (oxLDL) uptake. This process is activated through various mediators and pathways. The most important factors in this regard are the lipopolysaccharide of P. gingivalis and its outer membrane vesicles, as well as the changes in the expression rate of transmembrane lipid transportation channels, including transient receptor potential channel of the vanilloid subfamily 4 (TRPV4), lysosomal integral protein 2 (LIMP2), CD36, etc. The identified molecular pathways involved in this process include but are not limited to NF-κB, ERK1/2, p65. CONCLUSION Based on the results of this study, it can be concluded that P. gingivalis can effectively promote foam cell formation through various pathogenic elements and this bacterial species can affect the expression rate of various genes and the function of specific receptors in the cellular and lysosomal membranes. However, due to the moderate to high level of risk of bias among the studies, further studies are required in this regard.
Collapse
Affiliation(s)
- Saeed Afzoon
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mostafa Mohebbi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Hamedani
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Mosaddad SA, Mahootchi P, Safari S, Rahimi H, Aghili SS. Interactions between systemic diseases and oral microbiota shifts in the aging community: A narrative review. J Basic Microbiol 2023. [PMID: 37173818 DOI: 10.1002/jobm.202300141] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
As a gateway to general health and a diverse microbial habitat, the oral cavity is colonized by numerous microorganisms such as bacteria, fungi, viruses, and archaea. Oral microbiota plays an essential role in preserving oral health. Besides, the oral cavity also significantly contributes to systemic health. Physiological aging influences all body systems, including the oral microbial inhabitants. The cited effect can cause diseases by forming dysbiotic communities. Since it has been demonstrated that microbial dysbiosis could disturb the symbiosis state between the host and the resident microorganism, shifting the condition toward a more pathogenic one, this study investigated how the oral microbial shifts in aging could associate with the development or progression of systemic diseases in older adults. The current study focused on the interactions between variations in the oral microbiome and prevalent diseases in older adults, including diabetes mellitus, Sjögren's syndrome, rheumatoid arthritis, pulmonary diseases, cardiovascular diseases, oral candidiasis, Parkinson's disease, Alzheimer's disease, and glaucoma. Underlying diseases can dynamically modify the oral ecology and the composition of its resident oral microbiome. Clinical, experimental, and epidemiological research suggests the associations of systemic disorders with bacteremia and inflammation after oral microbial changes in older adults.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Mahootchi
- Department of Oral and Maxillofacial Diseases, School of Dentistry, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Sajedeh Safari
- Department of Prosthodontics, Islamic Azad University, Tehran, Iran
| | - Hussein Rahimi
- Student Research Committee, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Gou J, Lu Y, Xie M, Tang X, Chen L, Zhao J, Li G, Wang H. Antimicrobial activity in Asterceae: The selected genera characterization and against multidrug resistance bacteria. Heliyon 2023; 9:e14985. [PMID: 37151707 PMCID: PMC10161380 DOI: 10.1016/j.heliyon.2023.e14985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Plants from the Asteraceae family are widely used as ethno medicines to treatment parasitic, malaria, hematemesis, pruritus, pyretic, anthelmintic, wound healing. The aim of this review is to provide an overview of Asteraceae plants antimicrobial activity. The most relevant results from the published studies are summarized and discussed. The species in genus of Artemisia, Echinacea, Centaurea, Baccharis, and Calendula showed antimicrobial activity. Most of these species are usually used as ethno medicines to treat infection, inflammation, and parasitics. The effective part or component for antimicrobial was essential oil and crude extract, and essential oil attracted more attention. It was also reported that nanoparticles coated with crude extract were effective against multidrug resistant bacteria. For multidrug resistant bacteria study, the species in Armtemisia were the most investigated, and Staphylococcus aureus and Escherichia coli were the most studied multidrug resistant strains. The antimicrobial activity was evaluated mainly based on the results of minimum inhibitory concentration (MIC). Few reports have been reported on minimum bactericide concentration (MBC) and its antibacterial mechanisms. According to the reported study results, some plants in Asteraceae have the potential to be developed as bacteriostatic agents and against multidrug resistant bacteria. However, most studies are still in vitro, further clinical and applied studies are needed.
Collapse
|
21
|
The Effect of Cytotoxicity and Antimicrobial of Synthesized CuO NPs from Propolis on HEK-293 Cells and Lactobacillus acidophilus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:1430839. [PMID: 36818232 PMCID: PMC9935807 DOI: 10.1155/2023/1430839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Background Drug resistance is currently possible anywhere in the world. Due to the discovery of antimicrobials, medicine, and health have made tremendous advances over the past several decades. Aim This research evaluated the antimicrobial and cytotoxicity effects of green synthesis of copper oxide nanoparticles (CuO NPs) on Lactobacillus acidophilus and human embryonic kidney 293 cells (HEK). Method and Materials. Propolis was sampled and extracted. Green synthesis of CuO NPs was synthesized and characterized using SEM, TEM, DLS, BET, and zeta potential methods. L. acidophilus (ATCC 4356) was used, and the antimicrobial tests were carried out at different concentrations (10≥ mg/ml). Moreover, the cytotoxicity was evaluated using an MTT assay on human embryonic kidney 293 cells (HEK). Results Synthesized CuO NPs using propolis extracts from Khalkhal (sample 1) and Gillan (sample 2) showed -13.2 and -14.4 mV, respectively. The hydrodynamic sizes of well-dispersed samples 1 and 2 were 3124.9 nm and 1726.7 nm, respectively. According to BET analysis, samples 1 and 2 had 5.37 and 8.45 m2/g surface area, respectively. The surface area was decreased due to the addition of propolis extract, and the pore size was increased. CuO NPs of samples 1 and 2 were visible on SEM images with diameters ranging from 75 to 145 nm and 120 to 155 nm, respectively. Based on TEM analysis, the size of CuO particles was increased in samples 1 and 2. CuO NPs particles had narrow size distributions with evenly dispersed NPs on all sides. The cell viability of the CuO NPs of samples 1 and 2 after 24, 48, and 72 hours was greater than 50%. As a result of the MIC and MBC tests, it was determined that samples 1 and 2 had the same effect against L. acidophilus (0.0024 mg/ml). Biofilm formation and degradation of sample 1 were more efficient against L. acidophilus. Conclusion There was no evidence of cytotoxicity in the samples. In addition, results showed that the green synthesized CuO NPs from Khalkhal propolis were effective against L. acidophilus. Thus, the green synthesized CuO NPs from Khalkhal propolis were the best candidates for clinical application.
Collapse
|
22
|
Current Infections of the Orofacial Region: Treatment, Diagnosis, and Epidemiology. Life (Basel) 2023; 13:life13020269. [PMID: 36836626 PMCID: PMC9966653 DOI: 10.3390/life13020269] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Undoubtedly, diagnosing and managing infections is one of the most challenging issues for orofacial clinicians. As a result of the diversity of symptoms, complicated behavior, and sometimes confusing nature of these conditions, it has become increasingly difficult to diagnose and treat them. It also highlights the need to gain a deeper insight into the orofacial microbiome as we try to improve our understanding of it. In addition to changes in patients' lifestyles, such as changes in diet, smoking habits, sexual practices, immunosuppressive conditions, and occupational exposures, there have been changes in patients' lifestyles that complicate the issue. Recent years have seen the development of new infection treatments due to the increased knowledge about the biology and physiology of infections. This review aimed to provide a comprehensive overview of the types of infections in the mouth, including the types that viruses, fungi, or bacteria may cause. It is important to note that we searched the published literature in the Scopus, Medline, Google Scholar, and Cochran databases from 2010 to 2021 using the following keywords: "Orofacial/Oral Infections," "Viral/Fungal/Bacterial Infections", "Oral Microbiota" And "Oral Microflora" without limiting our search to languages and study designs. According to the evidence, the most common infections in the clinic include herpes simplex virus, human papillomavirus, Candida albicans, Aspergillus, Actinomycosis, and Streptococcus mutans. The purpose of this study is to review the new findings on characteristics, epidemiology, risk factors, clinical manifestations, diagnosis, and new treatment for these types of infectious diseases.
Collapse
|
23
|
Andersone A, Janceva S, Lauberte L, Ramata-Stunda A, Nikolajeva V, Zaharova N, Rieksts G, Telysheva G. Anti-Inflammatory, Anti-Bacterial, and Anti-Fungal Activity of Oligomeric Proanthocyanidins and Extracts Obtained from Lignocellulosic Agricultural Waste. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020863. [PMID: 36677921 PMCID: PMC9861313 DOI: 10.3390/molecules28020863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
It has now been proven that many pathogens that cause infections and inflammation gradually mutate and become resistant to antibiotics. Chemically synthesized drugs treating inflammation most often only affect symptoms, but side effects could lead to the failure of human organs' functionality. On the other hand, plant-derived natural compounds have a long-term healing effect. It was shown that sea buckthorn (SBT) twigs are a rich source of biologically active compounds, including oligomeric proanthocyanidins (PACs). This study aimed to assess the anti-pathogenic and anti-inflammatory activity of water/ethanol extracts and PACs obtained from the lignocellulosic biomass of eight SBT cultivars. The anti-pathogenic activity of extracts and PACs was studied against pathogenic bacteria Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Bacillus cereus and fungus Candida albicans in 96-well plates by the two-fold serial broth microdilution method. The anti-bacterial activity of purified PACs was 4 and 10 times higher than for water and water/ethanol extracts, respectively, but the extracts had higher anti-fungal activity. Purified PACs showed the ability to reduce IL-8 and IL-6 secretion from poly-I:C-stimulated peripheral blood mononuclear cells. For the extracts and PACs of SBT cultivar 'Maria Bruvele' in the concentration range 0.0313-4.0 mg/mL, no toxic effect was observed.
Collapse
Affiliation(s)
- Anna Andersone
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
- Ekokompozit Ltd., Dzerbenes Street 27, LV-1006 Riga, Latvia
| | - Sarmite Janceva
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
- Correspondence: ; Tel.: +371-25148850
| | - Liga Lauberte
- Laboratory of Finished Dosage Forms, Riga Stradins University, LV-1007 Riga, Latvia
| | - Anna Ramata-Stunda
- Faculty of Biology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia
| | - Vizma Nikolajeva
- Faculty of Biology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia
| | - Natalija Zaharova
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
- Ekokompozit Ltd., Dzerbenes Street 27, LV-1006 Riga, Latvia
| | - Gints Rieksts
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
- Laboratory of Heat and Mass Transfer, The Institute of Physics of University of Latvia, LV-2169 Salaspils, Latvia
| | - Galina Telysheva
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
| |
Collapse
|
24
|
Najmi MA, Nayab T, Alam BF, Abbas T, Ashgar S, Hussain T, Qasim SSB, Heboyan A. Role of mineral trioxide aggregate in dentistry: A bibliometric analysis using Scopus database. J Appl Biomater Funct Mater 2023; 21:22808000231154065. [PMID: 36785515 DOI: 10.1177/22808000231154065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
OBJECTIVES Mineral trioxide aggregate (MTA) has a long history of providing predictable clinical outcomes in dental applications especially in endodontic procedures. This bibliometric analysis aimed at evaluating the advancements of research in mineral trioxide aggregate and its use in the field of dentistry, together with the detection of most significant authors, organizations, countries, journals, papers, and the exploration of commonly used keywords using a structured approach. MATERIALS AND METHOD The search was conducted using the Elsevier's Scopus database, gathering publication information related to MTA published from 1993 and 2021 July. Metadata comprising of titles, abstracts, keywords, authors, organizations, and countries were obtained. Bibliometric evaluators with respect to authors, articles published, journals, keywords, and top countries were scrutinized. Data was analyzed using VOS viewer. RESULTS Between 1993 and 2021, an uptrend in the research performed on MTA was identified. Researchers from United States, Brazil, and Iran actively contributed on MTA, while papers from USA were highly cited. The Journal of Endodontics along with International Endodontic Journal were the top contributing academic journals. Hacettepe University, Turkey and Cardiff University from United Kingdom were the top most contributing organizations. Mahmoud Torabinejad was the most cited author. Most commonly used keywords included Mineral trioxide aggregate, silicate, oxide, root canal filling material. CONCLUSION The global rise in the number of publications on mineral trioxide aggregate, tremendous networking and citations have been identified amongst various organizations, authors, and nations through this bibliometric analysis.
Collapse
Affiliation(s)
- Muhammad Arqam Najmi
- Department of Dental Materials, Bahria University Dental College, Karachi, Pakistan
| | - Talha Nayab
- Department of Dental Materials Science, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Beenish Fatima Alam
- Department of Oral Biology, Bahria University Dental College, Karachi, Pakistan
| | - Tanveer Abbas
- School of Health and society, University of Wollongong, Wollongong, Australia
| | - Shama Ashgar
- Department of Operative Dentistry, Bahria University Dental College, Karachi, Pakistan
| | - Talib Hussain
- Department of Oral Biology, Women Medical and Dental College, Abbottabad, Pakistan
| | - Syed Saad Bin Qasim
- Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, Safat, Kuwait
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| |
Collapse
|
25
|
Tong F, Wang P, Chen Z, Liu Y, Wang L, Guo J, Li Z, Cai H, Wei J. Combined Ferromagnetic Nanoparticles for Effective Periodontal Biofilm Eradication in Rat Model. Int J Nanomedicine 2023; 18:2371-2388. [PMID: 37192894 PMCID: PMC10182795 DOI: 10.2147/ijn.s402410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023] Open
Abstract
Introduction The critical challenge for periodontitis therapy is thoroughly eliminating the dental plaque biofilm, particularly penetrating the deep periodontal tissue. Regular therapeutic strategies are insufficient to penetrate the plaque without disturbing the commensal microflora of the oral cavity. Here, we constructed a Fe3O4 magnetic nanoparticle loading minocycline (FPM NPs) to penetrate the biofilm physically and effectively eliminate periodontal biofilm. Methods In order to penetrate and remove the biofilm effectively, Fe3O4 magnetic nanoparticles were modified with minocycline using a co-precipitation method. The particle size and dispersion of the nanoparticles were characterized by transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. The antibacterial effects were examined to verify the magnetic targeting of FPM NPs. Confocal laser scanning microscopy was employed to check the effect of FPM + MF and develop the best FPM NPs treatment strategy. Additionally, the therapeutic effect of FPM NPs was investigated in periodontitis rat models. The expression of IL-1β, IL-6, and TNF-α in periodontal tissues was measured by qRT-PCR and Western blot. Results The multifunctional nanoparticles exhibited intense anti-biofilm activity and good biocompatibility. The magnetic forces could pull FMP NPs against the biofilm mass and kill bacteria deep in the biofilms both in vivo and in vitro. The integrity of the bacterial biofilm is disrupted under the motivation of the magnetic field, allowing for improved drug penetration and antibacterial performance. The periodontal inflammation recovered well after FPM NPs treatment in rat models. Furthermore, FPM NPs could be monitored in real-time and have magnetic targeting potentials. Conclusion FPM NPs exhibit good chemical stability and biocompatibility. The novel nanoparticle presents a new approach for treating periodontitis and provides experimental support for using magnetic-targeted nanoparticles in clinic applications.
Collapse
Affiliation(s)
- Fei Tong
- School of Stomatology, Nanchang University, Nanchang, 330006, People’s Republic of China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi Province, 330031, People’s Republic of China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province, 330006, People’s Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People’s Republic of China
| | - Pei Wang
- School of Stomatology, Nanchang University, Nanchang, 330006, People’s Republic of China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province, 330006, People’s Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People’s Republic of China
| | - Ziqiang Chen
- School of Stomatology, Nanchang University, Nanchang, 330006, People’s Republic of China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province, 330006, People’s Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People’s Republic of China
| | - Yifan Liu
- School of Stomatology, Nanchang University, Nanchang, 330006, People’s Republic of China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province, 330006, People’s Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People’s Republic of China
| | - Lianguo Wang
- School of Stomatology, Nanchang University, Nanchang, 330006, People’s Republic of China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province, 330006, People’s Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People’s Republic of China
| | - Jun Guo
- School of Stomatology, Nanchang University, Nanchang, 330006, People’s Republic of China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province, 330006, People’s Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People’s Republic of China
| | - Zhihua Li
- School of Stomatology, Nanchang University, Nanchang, 330006, People’s Republic of China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province, 330006, People’s Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People’s Republic of China
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi Province, 330031, People’s Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People’s Republic of China
- Correspondence: Hu Cai, School of Chemistry and Chemical Engineering, Nanchang University, 999# Xuefu Road, Honggutan District, Nanchang, Jiangxi, 330031, People’s Republic of China, Tel +86 791 83969514, Email
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang, 330006, People’s Republic of China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi Province, 330031, People’s Republic of China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province, 330006, People’s Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People’s Republic of China
- Junchao Wei, School of Stomatology, Nanchang University, 49# Fuzhou Road, Donghu District, Nanchang, Jiangxi, 330006, People’s Republic of China, Tel +86 791 86236950, +86 791 6361141, Email
| |
Collapse
|
26
|
Aghili SS, Pourzal A, Mosaddad SA, Amookhteh S. COVID-19 Risk Management in Dental Offices: A Review Article. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND: As all the dental staff, including nurses and practitioners, are exposed to various routes of contamination due to the novel COVID-19 virus, which is still unknown to the scientific world, developing strategies to reduce the risk of transmission and decontaminate surfaces in a dental office would be of high importance. Although there is still insufficient data on managing this virus in dental offices, several studies have suggested protocols for improving care.
AIM: This study aimed to review present investigations and reach a conclusion on what we know and need to know to combat this virus.
MATERIALS AND METHODS: In this review, Scopus, PubMed, and MEDLINE databases were searched using the keywords “COVID-19,” “SARS-CoV-2,” “Medical Disinfectants,” “Personal Protective Equipment’s,” and “Surface Decontamination.” Articles were reviewed, and finally, relevant articles published during 2000–2022 were included in the final paper.
RESULTS: The present research concluded that using a combination of the face shield and N95 masks protected the eyes, nose, and mouth. To have more efficient protection, water-resistant long-sleeved gowns and gloves were highly suggested. To overcome aerosols, high-performance air filters and ultraviolet were found quite effective. Allowing the patient to use antiseptic mouthwash before starting the treatment could reduce oral microorganisms and the following airborne contamination.
CONCLUSION: This review has gathered all available data regarding dentistry and COVID-19 in order to conclude what has been achieved yet in the prevention of this virus through dental offices; however, more investigations are needed to have a definitive protocol against the virus.
Collapse
|
27
|
İlgün S, Karatoprak GŞ, Polat DÇ, Şafak EK, Yıldız G, Küpeli Akkol E, Sobarzo-Sánchez E. Phytochemical Composition and Biological Activities of Arctium minus (Hill) Bernh.: A Potential Candidate as Antioxidant, Enzyme Inhibitor, and Cytotoxic Agent. Antioxidants (Basel) 2022; 11:antiox11101852. [PMID: 36290576 PMCID: PMC9598467 DOI: 10.3390/antiox11101852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
Arctium minus (Hill) Bernh. (Asteraceae), which has a wide distribution area in Turkey, is a medicinally important plant. Eighty percent methanol extracts of the leaf, flower head, and root parts of A. minus were prepared and their sub-fractions were obtained. Spectrophotometric and chromatographic (high-performance liquid chromatography) techniques were used to assess the phytochemical composition. The extracts were evaluated for antioxidant activity by diphenyl-2-picrylhydrazil radical (DPPH●), 2,2′-Azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS●+) radical scavenging, and β-carotene linoleic acid bleaching assays. Furthermore, the extracts were subjected to α-amylase, α-glucosidase, lipoxygenase, and tyrosinase enzyme inhibition tests. The cytotoxic effects of extracts were investigated on MCF-7 and MDA-MB-231 breast cancer cell lines. The richest extract in terms of phenolic compounds was identified as the ethyl acetate sub-fraction of the root extract (364.37 ± 7.18 mgGAE/gextact). Furthermore, chlorogenic acid (8.855 ± 0.175%) and rutin (8.359 ± 0.125%) were identified as the primary components in the leaves’ ethyl acetate sub-fraction. According to all methods, it was observed that the extracts with the highest antioxidant activity were the flower and leaf ethyl acetate fractions. Additionally, ABTS radical scavenging activity of roots’ ethyl acetate sub-fraction (2.51 ± 0.09 mmol/L Trolox) was observed to be as effective as that of flower and leaf ethyl acetate fractions at 0.5 mg/mL. In the β-carotene linoleic acid bleaching assay, leaves’ methanol extract showed the highest antioxidant capacity (1422.47 ± 76.85) at 30 min. The enzyme activity data showed that α-glucosidase enzyme inhibition of leaf dichloromethane extract was moderately high, with an 87.12 ± 8.06% inhibition value. Lipoxygenase enzyme inhibition was weakly detected in all sub-fractions. Leaf methanol extract, leaf butanol, and root ethyl acetate sub-fractions showed 99% tyrosinase enzyme inhibition. Finally, it was discovered that dichloromethane extracts of leaves, roots, and flowers had high cytotoxic effects on the MDA-MB-231 cell line, with IC50 values of 21.39 ± 2.43, 13.41 ± 2.37, and 10.80 ± 1.26 µg/mL, respectively. The evaluation of the plant extracts in terms of several bioactivity tests revealed extremely positive outcomes. The data of this study, in which all parts of the plant were investigated in detail for the first time, offer promising results for future research.
Collapse
Affiliation(s)
- Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Derya Çiçek Polat
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| | - Esra Köngül Şafak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Gülsüm Yıldız
- Department of Pharmacognosy, Faculty of Pharmacy, Van Yüzüncü Yıl University, Van 65080, Turkey
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey
- Correspondence: (E.K.A.); (E.S.-S.); Tel.: +90-0312-202-3185 (E.K.A.); +90-569-5397-2783 (E.S.-S.)
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 1783, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Correspondence: (E.K.A.); (E.S.-S.); Tel.: +90-0312-202-3185 (E.K.A.); +90-569-5397-2783 (E.S.-S.)
| |
Collapse
|
28
|
Moghaddam A, Ranjbar R, Yazdanian M, Tahmasebi E, Alam M, Abbasi K, Hosseini ZS, Tebyaniyan H. The Current Antimicrobial and Antibiofilm Activities of Synthetic/Herbal/Biomaterials in Dental Application. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8856025. [PMID: 35958811 PMCID: PMC9363208 DOI: 10.1155/2022/8856025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Herbal and chemical products are used for oral care and biofilm treatment and also have been reported to be controversial in the massive trials conducted in this regard. The present review is aimed at evaluating the potential of relevant herbal and chemical products and comparing their outcomes to conventional oral care products and summarizing the current state of evidence of the antibiofilm properties of different products by evaluating studies from the past eleven years. Chlorhexidine gluconate (CHX), essential oils (EOs), and acetylpyridinium chloride were, respectively, the most commonly studied agents in the included studies. As confirmed by all systematic reviews, CHX and EO significantly control the plaque formation and gingival indices. Fluoride is another interesting reagent in oral care products that has shown promising results of oral health improvement, but the evidence quality needs to be refined. The synergy between natural plants and chemical products should be targeted in the future to accede to the formation of new, efficient, and healthy anticaries strategies. Moreover, to discover their biofilm-interfering or biofilm-inhibiting activities, effective clinical trials are needed. In this review article, therapeutic applications of herbal/chemical materials in oral biofilm infections are discussed in recent years (2010-2022).
Collapse
Affiliation(s)
- Ali Moghaddam
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
- School of Dentistry, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Hosseini
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Tebyaniyan
- Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|