1
|
Skalny AV, Aschner M, Tsatsakis A, Rocha JB, Santamaria A, Spandidos DA, Martins AC, Lu R, Korobeinikova TV, Chen W, Chang JS, Chao JC, Li C, Tinkov AA. Role of vitamins beyond vitamin D 3 in bone health and osteoporosis (Review). Int J Mol Med 2024; 53:9. [PMID: 38063255 PMCID: PMC10712697 DOI: 10.3892/ijmm.2023.5333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
The objective of the present review was to summarize the molecular mechanisms associated with the effects of the vitamins A, C, E and K, and group B vitamins on bone and their potential roles in the development of osteoporosis. Epidemiological findings have demonstrated an association between vitamin deficiency and a higher risk of developing osteoporosis; vitamins are positively related to bone health upon their intake at the physiological range. Excessive vitamin intake can also adversely affect bone formation, as clearly demonstrated for vitamin A. Vitamins E (tocopherols and tocotrienols), K2 (menaquinones 4 and 7) and C have also been shown to promote osteoblast development through bone morphogenetic protein (BMP)/Smad and Wnt/β‑catenin signaling, as well as the TGFβ/Smad pathway (α‑tocopherol). Vitamin A metabolite (all‑trans retinoic acid) exerts both inhibitory and stimulatory effects on BMP‑ and Wnt/β‑catenin‑mediated osteogenesis at the nanomolar and micromolar range, respectively. Certain vitamins significantly reduce receptor activator of nuclear factor kappa‑B ligand (RANKL) production and RANKL/RANK signaling, while increasing the level of osteoprotegerin (OPG), thus reducing the RANKL/OPG ratio and exerting anti‑osteoclastogenic effects. Ascorbic acid can both promote and inhibit RANKL signaling, being essential for osteoclastogenesis. Vitamin K2 has also been shown to prevent vascular calcification by activating matrix Gla protein through its carboxylation. Therefore, the maintenance of a physiological intake of vitamins should be considered as a nutritional strategy for the prevention of osteoporosis.
Collapse
Affiliation(s)
- Anatoly V. Skalny
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Division of Morphology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Joao B.T. Rocha
- Department of Biochemistry and Molecular Biology, CCNE, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Abel Santamaria
- Faculty of Science, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Tatiana V. Korobeinikova
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jung-Su Chang
- College of Nutrition, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Jane C.J. Chao
- College of Nutrition, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Chong Li
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Alexey A. Tinkov
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
| |
Collapse
|
2
|
Song W, Zhao L, Gao Y, Han C, Gao S, Guo M, Bai J, Wang L, Yin W, Wu F, Zhang P. Dual growth factor-modified microspheres nesting human-derived umbilical cord mesenchymal stem cells for bone regeneration. J Biol Eng 2023; 17:43. [PMID: 37430290 DOI: 10.1186/s13036-023-00360-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/01/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Modular tissue engineering (MTE) is a novel "bottom-up" approach that aims to mimic complex tissue microstructural features. The constructed micromodules are assembled into engineered biological tissues with repetitive functional microunits and form cellular networks. This is emerging as a promising strategy for reconstruction of biological tissue. RESULTS Herein, we constructed a micromodule for MTE and developed engineered osteon-like microunits by inoculating human-derived umbilical cord mesenchymal stem cells (HUMSCs) onto nHA/PLGA microspheres with surface modification of dual growth factors (BMP2/bFGF). By evaluating the results of proliferation and osteogenic differentiation ability of HUMSCs in vitro, the optimal ratio of the dual growth factor (BMP2/bFGF) combination was derived as 5:5. In vivo assessments showed the great importance of HUMSCs for osteogneic differentiation. Ultimately, direct promotion of early osteo-differentiation manifested as upregulation of Runx-2 gene expression. The vascularization capability was evaluated by tube formation assays, demonstrating the importance of HUMSCs in the microunits for angiogenesis. CONCLUSIONS The modification of growth factors and HUMSCs showed ideal biocompatibility and osteogenesis combined with nHA/PLGA scaffolds. The micromodules constructed in the current study provide an efficient stem cell therapy strategy for bone defect repair.
Collapse
Affiliation(s)
- Wenzhi Song
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, 130031, PR China
| | - Lanlan Zhao
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, 130031, PR China
| | - Yuqi Gao
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, 130031, PR China
| | - Chunyu Han
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, 130031, PR China
| | - Shengrui Gao
- Department of Otorhinolaryngology, First Clinical Hospital of Jilin University, Changchun, 130021, PR China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| | - Jianfei Bai
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, 130031, PR China
| | - Liqiang Wang
- Department of Ophthalmology, Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Wanzhong Yin
- Department of Otorhinolaryngology, First Clinical Hospital of Jilin University, Changchun, 130021, PR China.
| | - Feng Wu
- Foshan Hospital of Traditional Chinese Medicine/Foshan Hospital of TCM, Foshan, China.
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| |
Collapse
|
3
|
Roa Fuentes LA, Bloemen M, Carels CE, Wagener FA, Von den Hoff JW. Retinoic acid effects on in vitro palatal fusion and WNT signaling. Eur J Oral Sci 2022; 130:e12899. [PMID: 36303276 PMCID: PMC10092745 DOI: 10.1111/eos.12899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 12/13/2022]
Abstract
Retinoic acid is the main active vitamin A derivate and a key regulator of embryonic development. Excess of retinoic acid can disturb palate development in mice leading to cleft palate. WNT signaling is one of the main pathways in palate development. We evaluated the effects of retinoic acid on palate fusion and WNT signaling in in vitro explant cultures. Unfused palates from E13.5 mouse embryos were cultured for 4 days with 0.5 μM, 2 μM or without retinoic acid. Apoptosis, proliferation, WNT signaling and bone formation were analyzed by histology and quantitative PCR. Retinoic acid treatment with 0.5 and 2.0 μM reduced palate fusion from 84% (SD 6.8%) in the controls to 56% (SD 26%) and 16% (SD 19%), respectively. Additionally, 2 μM retinoic acid treatment increased Axin2 expression. Retinoic acid also increased the proliferation marker Pcna as well as the number of Ki-67-positive cells in the palate epithelium. At the same time, the WNT inhibitors Dkk1, Dkk3, Wif1 and Sfrp1 were downregulated at least two-fold. Retinoic acid also down-regulated Alpl and Col1a2 gene expression. Alkaline phosphatase (ALP) activity was notably reduced in the osteogenic areas of the retinoic acid- treated palates. Our data suggest that retinoic acid impairs palate fusion and bone formation by upregulation of WNT signaling.
Collapse
Affiliation(s)
- Laury Amelia Roa Fuentes
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.,MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterial Engineering (IBE), Maastricht University, Maastricht, The Netherlands
| | - Marjon Bloemen
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Carine El Carels
- Department of Human Genetics, KU University Leuven, Leuven, Belgium
| | - Frank Adtg Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Zakeri S, Aminian H, Sadeghi S, Esmaeilzadeh-Gharehdaghi E, Razmara E. Krüppel-like factors in bone biology. Cell Signal 2022; 93:110308. [PMID: 35301064 DOI: 10.1016/j.cellsig.2022.110308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022]
Abstract
The krüppel-like factor (KLF) family is a group of zinc finger transcription factors and contributes to different cellular processes such as differentiation, proliferation, migration, and apoptosis. While different studies show the roles of this family in skeletal development-specifically in chondrocyte and osteocyte development and bone homeostasis-there are few reviews summarizing their importance. To fill this gap, this review discusses current knowledge on different functions of the KLF family during skeletal development, including their roles in stem cell maintenance and differentiation, cell apoptosis, and cell cycle. To understand the importance of the KLF family, we also review genotype-phenotype correlations in different animal models. We also discuss how KLF proteins function through different signaling pathways and display their paramount importance in skeletal development. To highlight their roles in cartilage- or bone-related cells, we also use single-cell RNA sequencing publicly available data on mouse hindlimb. We also challenge our knowledge of how the KLF family is epigenetically regulated-e.g., using DNA methylation, histone modifications, and noncoding RNAs-during chondrocyte and osteocyte development.
Collapse
Affiliation(s)
- Sina Zakeri
- Department of Veterinary Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hesam Aminian
- Department of Biology, Faculty of Sciences, Nour Danesh Institute of Higher Education, Meymeh, Isfahan, Iran
| | - Soheila Sadeghi
- Department of Biology, Faculty of Basic Sciences, Sanandaj Branch, Islamic Azad University, Kurdistan, Iran
| | | | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Sun P, Shi A, Shen C, Liu Y, Wu G, Feng J. Human salivary histatin-1 (Hst1) promotes bone morphogenetic protein 2 (BMP2)-induced osteogenesis and angiogenesis. FEBS Open Bio 2020; 10:1503-1515. [PMID: 32484586 PMCID: PMC7396425 DOI: 10.1002/2211-5463.12906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/25/2020] [Accepted: 05/28/2020] [Indexed: 12/26/2022] Open
Abstract
Large‐volume bone defects can result from congenital malformation, trauma, infection, inflammation and cancer. At present, it remains challenging to treat these bone defects with clinically available interventions. Allografts, xenografts and most synthetic materials have no intrinsic osteoinductivity, and so an alternative approach is to functionalize the biomaterial with osteoinductive agents, such as bone morphogenetic protein 2 (BMP2). Because it has been previously demonstrated that human salivary histatin‐1 (Hst1) promotes endothelial cell adhesion, migration and angiogenesis, we examine here whether Hst1 can promote BMP2‐induced bone regeneration. Rats were given subcutaneous implants of absorbable collagen sponge membranes seeded with 0, 50, 200 or 500 μg Hst1 per sample and 0 or 2 μg BMP2 per sample. At 18 days postsurgery, rats were sacrificed, and implanted regional tissue was removed for micro computed tomography (microCT) analyses of new bone (bone volume, trabecular number and trabecular separation). Four samples per group were decalcified and subjected to immunohistochemical staining to analyze osteogenic and angiogenic markers. We observed that Hst1 increased BMP2‐induced new bone formation in a dose‐dependent manner. Co‐administration of 500 μg Hst1 and BMP2 resulted in the highest observed bone volume and trabecular number, the lowest trabecular separation and the highest expression of osteogenic markers and angiogenic markers. Our results suggest that coadministration of Hst1 may enhance BMP2‐induced osteogenesis and angiogenesis, and thus may have potential for development into a treatment for large‐volume bone defects.
Collapse
Affiliation(s)
- Ping Sun
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Andi Shi
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands.,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam (VU), Amsterdam Movement Sciences (AMS), Amsterdam, the Netherlands.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Chenxi Shen
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam (VU), Amsterdam Movement Sciences (AMS), Amsterdam, the Netherlands
| | - Yi Liu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands.,Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands
| | - Jianying Feng
- School of Dentistry, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Sun W, Shi A, Ma D, Bolscher JGM, Nazmi K, Veerman ECI, Bikker FJ, Lin H, Wu G. All-trans retinoic acid and human salivary histatin-1 promote the spreading and osteogenic activities of pre-osteoblasts in vitro. FEBS Open Bio 2020; 10:396-406. [PMID: 31957262 PMCID: PMC7050254 DOI: 10.1002/2211-5463.12792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/03/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cell‐based bone tissue engineering techniques utilize both osteogenic cells and biomedical materials, and have emerged as a promising approach for large‐volume bone repair. The success of such techniques is highly dependent on cell adhesion, spreading, and osteogenic activities. In this study, we investigated the effect of co‐administration of all‐trans retinoic acid (ATRA) and human salivary peptide histatin‐1 (Hst1) on the spreading and osteogenic activities of pre‐osteoblasts on bio‐inert glass surfaces. Pre‐osteoblasts (MC3T3‐E1 cell line) were seeded onto bio‐inert glass slides in the presence and absence of ATRA and Hst1. Cell spreading was scored by measuring surface areas of cellular filopodia and lamellipodia using a point‐counting method. The distribution of fluorogenic Hst1 within osteogenic cells was also analyzed. Furthermore, specific inhibitors of retinoic acid receptors α, β, and γ, such as ER‐50891, LE‐135, and MM‐11253, were added to identify the involvement of these receptors. Cell metabolic activity, DNA content, and alkaline phosphatase (ALP) activity were assessed to monitor their effects on osteogenic activities. Short‐term (2 h) co‐administration of 10 μm ATRA and Hst1 to pre‐osteoblasts resulted in significantly higher spreading of pre‐osteoblasts compared to ATRA or Hst1 alone. ER‐50891 and LE‐135 both nullified these effects of ATRA. Co‐administration of ATRA and Hst1 was associated with significantly higher metabolic activity, DNA content, and ALP activity than either ATRA or Hst1 alone. In conclusion, co‐administration of Hst1 with ATRA additively stimulated the spreading and osteogenicity of pre‐osteoblasts on bio‐inert glass surfaces in vitro.
Collapse
Affiliation(s)
- Wei Sun
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China.,Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), The Netherlands
| | - Andi Shi
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, China
| | - Dandan Ma
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), The Netherlands
| | - Jan G M Bolscher
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), The Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), The Netherlands
| | - Enno C I Veerman
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), The Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), The Netherlands
| | - Haiyan Lin
- Savaid Stomatology School, Hangzhou Medical College, China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), The Netherlands
| |
Collapse
|
7
|
Ma X, Fan C, Wang Y, Du Y, Zhu Y, Liu H, Lv L, Liu Y, Zhou Y. MiR-137 knockdown promotes the osteogenic differentiation of human adipose-derived stem cells via the LSD1/BMP2/SMAD4 signaling network. J Cell Physiol 2019; 235:909-919. [PMID: 31241766 DOI: 10.1002/jcp.29006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
MicroRNAs are a group of endogenous regulators that participate in several cellular physiological processes. However, the role of miR-137 in the osteogenic differentiation of human adipose-derived stem cells (hASCs) has not been reported. This study verified a general downward trend in miR-137 expression during the osteogenic differentiation of hASCs. MiR-137 knockdown promoted the osteogenesis of hASCs in vitro and in vivo. Mechanistically, inhibition of miR-137 activated the bone morphogenetic protein 2 (BMP2)-mothers against the decapentaplegic homolog 4 (SMAD4) pathway, whereas repressed lysine-specific histone demethylase 1 (LSD1), which was confirmed as a negative regulator of osteogenesis in our previous studies. Furthermore, LSD1 knockdown enhanced the expression of BMP2 and SMAD4, suggesting the coordination of LSD1 in the osteogenic regulation of miR-137. This study indicated that miR-137 negatively regulated the osteogenic differentiation of hASCs via the LSD1/BMP2/SMAD4 signaling network, revealing a new potential therapeutic target of hASC-based bone tissue engineering.
Collapse
Affiliation(s)
- Xiaohan Ma
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Cong Fan
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.,Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuejun Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yangge Du
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hao Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
8
|
Cruz ACC, Cardozo FTGDS, Magini RDS, Simões CMO. Retinoic acid increases the effect of bone morphogenetic protein type 2 on osteogenic differentiation of human adipose-derived stem cells. J Appl Oral Sci 2019; 27:e20180317. [PMID: 30810639 PMCID: PMC6382324 DOI: 10.1590/1678-7757-2018-0317] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/26/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Bone morphogenetic protein type 2 (BMP-2) and retinoic acid (RA) are osteoinductive factors that stimulate endogenous mechanisms of bone repair which can be applied on management of osseous defects in oral and maxillofacial fields. OBJECTIVE Considering the different results of RA on osteogenesis and its possible use to substitute/potency BMP-2 effects, this study evaluated the outcomes of BMP-2, RA, and BMP-2+RA treatments on in vitro osteogenic differentiation of human adipose-derived stem cells (ASCs) and the signaling pathway(s) involved. MATERIAL AND METHODS ASCs were treated every other day with basic osteogenic medium (OM) alone or supplemented with BMP-2, RA, or BMP-2+RA. Alkaline phosphatase (ALP) activity was determined using the r-nitrophenol method. Extracellular matrix mineralization was evaluated using von Kossa staining and calcium quantification. Expression of osteonectin and osteocalcin mRNA were determined using qPCR. Smad1, Smad4, phosphorylated Smad1/5/8, BMP-4, and BMP-7 proteins expressions were analyzed using western blotting. Signaling pathway was evaluated using the IPA® software. RESULTS RA promoted the highest ALP activity at days 7, 14, 21, and 28, in comparison to BMP-2 and BMP-2+RA. BMP-2+RA best stimulated phosphorylated Smad1/5/8 protein expression at day 7 and Smad4 expression at days 7, 14, 21, and 28. Osteocalcin and osteonectin mRNA expressions were best stimulated by BMP-2+RA at day 7. Matrix mineralization was most improved by BMP-2+RA at days 12 and 32. Additionally, BMP-2+RA promoted the highest BMP signaling pathway activation at days 7 and 14, and demonstrated more activation of differentiation of bone-forming cells than OM alone. CONCLUSIONS In summary, RA increased the effect of BMP-2 on osteogenic differentiation of human ASCs.
Collapse
Affiliation(s)
- Ariadne Cristiane Cabral Cruz
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Odontologia, Departamento de Odontologia, Florianópolis, Santa Catarina,Brasil
| | | | - Ricardo de Souza Magini
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Odontologia, Departamento de Odontologia, Florianópolis, Santa Catarina,Brasil
| | - Cláudia Maria Oliveira Simões
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Farmácia, Departamento de Ciências Farmacêuticas, Florianópolis, Santa Catarina,Brasil
| |
Collapse
|