1
|
Kofsky JM, Babulic JL, Boddington ME, De León González FV, Capicciotti CJ. Glycosyltransferases as versatile tools to study the biology of glycans. Glycobiology 2023; 33:888-910. [PMID: 37956415 DOI: 10.1093/glycob/cwad092] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
All cells are decorated with complex carbohydrate structures called glycans that serve as ligands for glycan-binding proteins (GBPs) to mediate a wide range of biological processes. Understanding the specific functions of glycans is key to advancing an understanding of human health and disease. However, the lack of convenient and accessible tools to study glycan-based interactions has been a defining challenge in glycobiology. Thus, the development of chemical and biochemical strategies to address these limitations has been a rapidly growing area of research. In this review, we describe the use of glycosyltransferases (GTs) as versatile tools to facilitate a greater understanding of the biological roles of glycans. We highlight key examples of how GTs have streamlined the preparation of well-defined complex glycan structures through chemoenzymatic synthesis, with an emphasis on synthetic strategies allowing for site- and branch-specific display of glyco-epitopes. We also describe how GTs have facilitated expansion of glyco-engineering strategies, on both glycoproteins and cell surfaces. Coupled with advancements in bioorthogonal chemistry, GTs have enabled selective glyco-epitope editing of glycoproteins and cells, selective glycan subclass labeling, and the introduction of novel biomolecule functionalities onto cells, including defined oligosaccharides, antibodies, and other proteins. Collectively, these approaches have contributed great insight into the fundamental biological roles of glycans and are enabling their application in drug development and cellular therapies, leaving the field poised for rapid expansion.
Collapse
Affiliation(s)
- Joshua M Kofsky
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Jonathan L Babulic
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
| | - Marie E Boddington
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
| | | | - Chantelle J Capicciotti
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
- Department of Surgery, Queen's University, 76 Stuart Street, Kingston, ON K7L 2V7, Canada
| |
Collapse
|
2
|
Wen J, Chen Y, Liao C, Ma X, Wang M, Li Q, Wang D, Li Y, Zhang X, Li L, Zhou H, Zou J, Liu L, Peng D. Engineered mesenchymal stem cell exosomes loaded with miR-34c-5p selectively promote eradication of acute myeloid leukemia stem cells. Cancer Lett 2023; 575:216407. [PMID: 37769796 DOI: 10.1016/j.canlet.2023.216407] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
Most patients with acute myeloid leukemia (AML) relapse eventually because of the inability to effectively eliminate leukemia stem cells (LSCs), prompting the search of new therapies to eradicate LSCs. Our previous study demonstrated that miR-34c-5p promotes the clearance of LSCs in an AML mouse model, highlighting its potential as a therapeutic target for eradicating LSCs, but the effective delivery of miR-34c-5p to LSCs remains a great challenge. Here, we employed simultaneous two-step modifications to engineer mesenchymal stem cells (MSCs) and MSC-derived exosomes to create exosomes overexpressing the fused protein lysosome-associated membrane protein 2-interleukin 3 (Lamp2b-IL3) and hematopoietic cell E-selectin/L-selectin ligand (HCELL), and demonstrated that the engineered exosomes exhibited an enhanced ability for bone marrow homing and selective targeting of LSCs. Additionally, using a humanized AML mouse model, we confirmed that the engineered exosomes, loaded with miR-34c-5p, could selectively promote eradication of LSCs and impede the AML development in vivo. In summary, we successfully designed an effective delivery system and provided new insights into the development of novel therapies for delivering miRNA or other molecules to LSCs with greater cellular targeting specificity.
Collapse
Affiliation(s)
- Jin Wen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenxi Liao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Ma
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyuan Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingnan Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolan Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Li
- Department of Pediatrics, Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Danyue Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Hu W, Wang W, Jiang X, Wang Z, Lin R. Mesenchymal stem cells can prevent or promote the progression of colon cancer based on their timing of administration. J Transl Med 2023; 21:227. [PMID: 36978120 PMCID: PMC10045613 DOI: 10.1186/s12967-023-04028-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) therapy has been shown to have some therapeutic effects in rodent models and patients with IBD; however, its role in colon tumor models is controversial. In this study, the potential role and mechanisms of bone marrow-derived MSCs (BM-MSCs) in colitis-associated colon cancer (CAC) were investigated. METHODS The CAC mouse model was established with azoxymethane (AOM) and dextran sulfate sodium (DSS). The mice were administered an intraperitoneal injection of MSCs once weekly for different periods. The progression of CAC and the cytokine expression in tissues was assessed. Immunofluorescence staining was used to detect MSCs localization. Levels of immune cells in the spleen and lamina propria of the colon were detected using flow cytometry. A co-culture of MSCs and naïve T cells was performed to determine the effect of MSCs on naïve T cell differentiation. RESULTS Early administration of MSCs inhibited the occurrence of CAC, while late administration promoted the progression of CAC. The inhibitory effect of early injection in mice was characterized by the expression of inflammatory cytokines in colon tissue was decreased, and induction of T regulatory cells (Tregs) infiltration via TGF-β. The promotive effect of late injection was characterized by a shift of T helper (Th) 1/Th2 immune balance toward a Th2 phenotype through IL-4 secretion. IL-12 can reverse this shift to Th2 accumulation in mice. CONCLUSION MSCs can curb the progression of colon cancer by inducing Treg accumulation via TGF-β at the early stage of inflammatory transformation but promote the progression of colon cancer by inducing a shift in Th1/Th2 immune balance to Th2 through IL-4 secretion at the late stage. And the immune balance of Th1/Th2 influenced by MSCs could be reversed by IL-12.
Collapse
Affiliation(s)
- Weiqian Hu
- Department of Digestive, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weijun Wang
- Department of Digestive, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Jiang
- Department of Digestive, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zeyu Wang
- Department of Digestive, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong Lin
- Department of Digestive, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Liao C, Wang Q, An J, Chen J, Li X, Long Q, Xiao L, Guan X, Liu J. CD44 Glycosylation as a Therapeutic Target in Oncology. Front Oncol 2022; 12:883831. [PMID: 35936713 PMCID: PMC9351704 DOI: 10.3389/fonc.2022.883831] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022] Open
Abstract
The interaction of non-kinase transmembrane glycoprotein CD44 with ligands including hyaluronic acid (HA) is closely related to the occurrence and development of tumors. Changes in CD44 glycosylation can regulate its binding to HA, Siglec-15, fibronectin, TM4SF5, PRG4, FGF2, collagen and podoplanin and activate or inhibit c-Src/STAT3/Twist1/Bmi1, PI3K/AKT/mTOR, ERK/NF-κB/NANOG and other signaling pathways, thereby having a profound impact on the tumor microenvironment and tumor cell fate. However, the glycosylation of CD44 is complex and largely unknown, and the current understanding of how CD44 glycosylation affects tumors is limited. These issues must be addressed before targeted CD44 glycosylation can be applied to treat human cancers.
Collapse
Affiliation(s)
- Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Chen
- Department of Urology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaolan Li
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Jianguo Liu
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| |
Collapse
|
5
|
Fan M, Shi H, Yao H, Wang W, Zhang Y, Jiang C, Lin R. Glutamate regulates gliosis of BMSCs to promote ENS regeneration through α-KG and H3K9/H3K27 demethylation. Stem Cell Res Ther 2022; 13:255. [PMID: 35715822 PMCID: PMC9205030 DOI: 10.1186/s13287-022-02936-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Background There is a lack of effective therapies for enteric nervous system (ENS) injury. Our previous study showed that transplanted bone marrow-derived mesenchymal stem cells (BMSCs) play a “glia-like cells” role in initiating ENS regeneration in denervated mice. Cellular energy metabolism is an important factor in maintaining the biological characteristics of stem cells. However, how cellular energy metabolism regulates the fate of BMSCs in the ENS-injured microenvironment is unclear. Methods The biological characteristics, energy metabolism, and histone methylation levels of BMSCs following ENS injury were determined. Then, glutamate dehydrogenase 1 (Glud1) which catalyzes the oxidative deamination of glutamate to α-KG was overexpressed (OE) in BMSCs. Further, OE-Glud1 BMSCs were targeted–transplanted into the ENS injury site of denervated mice to determine their effects on ENS regeneration. Results In vitro, in the ENS-injured high-glutamate microenvironment, the ratio of α-ketoglutarate (α-KG) to succinate (P < 0.05), the histone demethylation level (P < 0.05), the protein expression of glial cell markers (P < 0.05), and the gene expression of Glud1 (P < 0.05) were significantly increased. And the binding of H3K9me3 to the GFAP, S100B, and GDNF promoter was enhanced (P < 0.05). Moreover, α-KG treatment increased the monomethylation and decreased the trimethylation on H3K9 (P < 0.01) and H3K27 (P < 0.05) in BMSCs and significantly upregulated the protein expression of glial cell markers (P < 0.01), which was reversed by the α-KG competitive inhibitor D-2-hydroxyglutarate (P < 0.05). Besides, overexpression of Glud1 in BMSCs exhibited increases in monomethylation and decreases in trimethylation on H3K9 (P < 0.05) and H3K27 (P < 0.05), and upregulated protein expression of glial cell markers (P < 0.01). In vivo, BMSCs overexpressing Glud1 had a strong promotion effect on ENS regeneration in denervated mice through H3K9/H3K27 demethylation (P < 0.05), and upregulating the expression of glial cell protein (P < 0.05). Conclusions BMSCs overexpressing Glud1 promote the expression of glial cell markers and ENS remodeling in denervated mice through regulating intracellular α-KG and H3K9/H3K27 demethylation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02936-7.
Collapse
Affiliation(s)
- Mengke Fan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huiying Shi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hailing Yao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weijun Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yurui Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen Jiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|