1
|
Ge J, You M, Fan Y, Zhou Y, Jin L, Zhai G, Liu F, Wang S. Genetic Loci Associated with Nail Plate Morphology in East Asian Populations. J Invest Dermatol 2024:S0022-202X(24)02170-5. [PMID: 39384015 DOI: 10.1016/j.jid.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 10/11/2024]
Affiliation(s)
- Jieyu Ge
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mengxiang You
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Fan
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yong Zhou
- Clinical Research Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China; Fudan-Taizhou Institute of Health Sciences, Taizhou, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China
| | - Guangtao Zhai
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fan Liu
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
2
|
Zhang Y, Jiang Y, Yang X, Huang Y, Pan A, Liao Y. Adipose tissue senescence: Biological changes, hallmarks and therapeutic approaches. Mech Ageing Dev 2024; 222:111988. [PMID: 39265709 DOI: 10.1016/j.mad.2024.111988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Adipose tissue (AT), the largest energy storage reservoir and endocrine organ, plays a crucial role in regulating systemic energy metabolism. As one of the most vulnerable tissues during aging, the plasticity of AT is impaired. With age, AT undergoes redistribution, characterized by expansion of visceral adipose tissue (VAT) and reduction of peripheral subcutaneous adipose tissue (SAT). Additionally, age-related changes in AT include reduced adipogenesis of white adipocytes, decreased proliferation and differentiation capacity of mesenchymal stromal/stem cells (MSCs), diminished thermogenic capacity in brown/beige adipocytes, and dysregulation of immune cells. Specific and sensitive hallmarks enable the monitoring and evaluation of the biological changes associated with aging. In this study, we have innovatively proposed seven characteristic hallmarks of AT senescence, including telomere attrition, epigenetic alterations, genomic instability, mitochondrial dysfunction, disabled macroautophagy, cellular senescence, and chronic inflammation, which are intricately interconnected and mutually regulated. Finally, we discussed anti-aging strategies targeting AT, offering insights into mitigating or delaying metabolic disturbances caused by AT senescence.
Collapse
Affiliation(s)
- Yajuan Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Yaoyao Jiang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xiaoyue Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Yumei Huang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China.
| |
Collapse
|
3
|
Wang X, He W, Huang H, Han J, Wang R, Li H, Long Y, Wang G, Han X. Recent Advances in Hydrogel Technology in Delivering Mesenchymal Stem Cell for Osteoarthritis Therapy. Biomolecules 2024; 14:858. [PMID: 39062572 PMCID: PMC11274544 DOI: 10.3390/biom14070858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoarthritis (OA), a chronic joint disease affecting over 500 million individuals globally, is characterized by the destruction of articular cartilage and joint inflammation. Conventional treatments are insufficient for repairing damaged joint tissue, necessitating novel therapeutic approaches. Mesenchymal stem cells (MSCs), with their potential for differentiation and self-renewal, hold great promise as a treatment for OA. However, challenges such as MSC viability and apoptosis in the ischemic joint environment hinder their therapeutic effectiveness. Hydrogels with biocompatibility and degradability offer a three-dimensional scaffold that support cell viability and differentiation, making them ideal for MSC delivery in OA treatment. This review discusses the pathological features of OA, the properties of MSCs, the challenges associated with MSC therapy, and methods for hydrogel preparation and functionalization. Furthermore, it highlights the advantages of hydrogel-based MSC delivery systems while providing insights into future research directions and the clinical potential of this approach.
Collapse
Affiliation(s)
- Xiangjiang Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Wentao He
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Hao Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collage of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Jiali Han
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Ruren Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Hongyi Li
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Ying Long
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Guiqing Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Xianjing Han
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| |
Collapse
|
4
|
Ren S, Li C, Xiong H, Wu Q, Wu X, Xiong Z, Dong L, Shu B, Wei W, Ma C, Li X, Chen J. The Rejuvenation and Functional Restoration of Aged Adipose Stem Cells by DUXAP10 Knockdown via the Regulation of the miR-214-3p/RASSF5 Axis. Stem Cells Transl Med 2024; 13:462-476. [PMID: 38459853 PMCID: PMC11092281 DOI: 10.1093/stcltm/szae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/16/2024] [Indexed: 03/11/2024] Open
Abstract
Adipose stem cell (ASC)-based therapies provide an encouraging option for tissue repair and regeneration. However, the function of these cells declines with aging, which limits their clinical transformation. Recent studies have outlined the involvement of long non-coding RNAs in stem cell aging. Here, we reanalyzed our published RNA sequencing (RNA-seq) data profiling differences between ASCs from young and old donors and identified a lncRNA named double homeobox A pseudogene 10 (DUXAP10) as significantly accumulated in aged ASCs. Knocking down DUXAP10 promoted stem cell proliferation and migration and halted cell senescence and the secretion of proinflammatory cytokines. In addition, DUXAP10 was located in the cytoplasm and functioned as a decoy for miR-214-3p. miR-214-3p was downregulated in aged ASCs, and its overexpression rejuvenated aged ASCs and reversed the harm caused by DUXAP10. Furthermore, Ras Association Domain Family Member 5 (RASSF5) was the target of miR-214-3p and was upregulated in aged ASCs. Overexpressing DUXAP10 and inhibiting miR-214-3p both enhanced RASSF5 content in ASCs, while DUXAP10 knockdown promoted the therapeutic ability of aged ASCs for skin wound healing. Overall, this study offers new insights into the mechanism of age-related ASC dysfunction and names DUXAP10 and miR-214-3p as potential targets for energizing aged stem cells.
Collapse
Affiliation(s)
- Sen Ren
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Chengcheng Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hewei Xiong
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qian Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Xiaohui Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Zhongwei Xiong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Lixing Dong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Bing Shu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Chao Ma
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Medical Research Institute, Wuhan University, Wuhan, People’s Republic of China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
5
|
Tavares e Silva J, Pessoa J, Nóbrega-Pereira S, Bernardes de Jesus B. The Impact of Long Noncoding RNAs in Tissue Regeneration and Senescence. Cells 2024; 13:119. [PMID: 38247811 PMCID: PMC10814083 DOI: 10.3390/cells13020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Overcoming senescence with tissue engineering has a promising impact on multiple diseases. Here, we provide an overview of recent studies in which cellular senescence was inhibited through the up/downregulation of specific lncRNAs. This approach prevented senescence in the bones, joints, nervous system, heart, and blood vessels, with a potential impact on regeneration and the prevention of osteoarthritis and osteoporosis, as well as neurodegenerative and cardiovascular diseases. Senescence of the skin and liver could also be prevented through the regulation of cellular levels of specific lncRNAs, resulting in the rejuvenation of cells from these organs and their potential protection from disease. From these exciting achievements, which support tissue regeneration and are not restricted to stem cells, we propose lncRNA regulation through RNA or gene therapies as a prospective preventive and therapeutic approach against aging and multiple aging-related diseases.
Collapse
Affiliation(s)
| | | | | | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (J.T.e.S.); (J.P.); (S.N.-P.)
| |
Collapse
|
6
|
Rasouli M, Naeimzadeh Y, Hashemi N, Hosseinzadeh S. Age-Related Alterations in Mesenchymal Stem Cell Function: Understanding Mechanisms and Seeking Opportunities to Bypass the Cellular Aging. Curr Stem Cell Res Ther 2024; 19:15-32. [PMID: 36642876 DOI: 10.2174/1574888x18666230113144016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 01/17/2023]
Abstract
Undoubtedly, mesenchymal stem cells (MSCs) are the most common cell therapy candidates in clinical research and therapy. They not only exert considerable therapeutic effects to alleviate inflammation and promote regeneration, but also show low-immunogenicity properties, which ensure their safety following allogeneic transplantation. Thanks to the necessity of providing a sufficient number of MSCs to achieve clinically efficient outcomes, prolonged in vitro cultivation is indisputable. However, either following long-term in vitro expansion or aging in elderly individuals, MSCs face cellular senescence. Senescent MSCs undergo an impairment in their function and therapeutic capacities and secrete degenerative factors which negatively affect young MSCs. To this end, designing novel investigations to further elucidate cellular senescence and to pave the way toward finding new strategies to reverse senescence is highly demanded. In this review, we will concisely discuss current progress on the detailed mechanisms of MSC senescence and various inflicted changes following aging in MSC. We will also shed light on the examined strategies underlying monitoring and reversing senescence in MSCs to bypass the comprised therapeutic efficacy of the senescent MSCs.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Xie GB, Liu SG, Gu GS, Lin ZY, Yu JR, Chen RB, Xie WJ, Xu HJ. LUNCRW: Prediction of potential lncRNA-disease associations based on unbalanced neighborhood constraint random walk. Anal Biochem 2023; 679:115297. [PMID: 37619903 DOI: 10.1016/j.ab.2023.115297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are associated with various complex human diseases. They can serve as disease biomarkers and hold considerable promise for the prevention and treatment of various diseases. The traditional random walk algorithms generally exclude the effect of non-neighboring nodes on random walking. In order to overcome the issue, the neighborhood constraint (NC) approach is proposed in this study for regulating the direction of the random walk by computing the effects of both neighboring nodes and non-neighboring nodes. Then the association matrix is updated by matrix multiplication for minimizing the effect of the false negative data. The heterogeneous lncRNA-disease network is finally analyzed using an unbalanced random walk method for predicting the potential lncRNA-disease associations. The LUNCRW model is therefore developed for predicting potential lncRNA-disease associations. The area under the curve (AUC) values of the LUNCRW model in leave-one-out cross-validation and five-fold cross-validation were 0.951 and 0.9486 ± 0.0011, respectively. Data from published case studies on three diseases, including squamous cell carcinoma, hepatocellular carcinoma, and renal cell carcinoma, confirmed the predictive potential of the LUNCRW model. Altogether, the findings indicated that the performance of the LUNCRW method is superior to that of existing methods in predicting potential lncRNA-disease associations.
Collapse
Affiliation(s)
- Guo-Bo Xie
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Shi-Gang Liu
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Guo-Sheng Gu
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Zhi-Yi Lin
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Jun-Rui Yu
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Rui-Bin Chen
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Wei-Jie Xie
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Hao-Jie Xu
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| |
Collapse
|
8
|
Xia X, Zhao S, Song X, Zhang M, Zhu X, Li C, Chen W, Zhao D. The potential use and experimental validation of genomic instability-related lncRNA in pancreatic carcinoma. Medicine (Baltimore) 2023; 102:e35300. [PMID: 37713870 PMCID: PMC10508516 DOI: 10.1097/md.0000000000035300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
This study explored the potential role of long noncoding RNA (lncRNAs) associated with genomic instability in the diagnosis and treatment of pancreatic adenocarcinoma (PAAD). Transcriptome and single-nucleotide variation data of PAAD samples were downloaded from the cancer genome atlas database to explore genomic instability-associated lncRNAs. We constructed a genomic instability-associated lncRNA prognostic signature. Then gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses were used to explore the physiological role of lncRNAs involved in genomic instability. Tumor microenvironments, immunotherapy response, immune cell infiltration, immune checkpoint, and drug sensitivity were compared between high-risk and low-risk groups. In vitro experiments were performed for external validation. Six lncRNAs associated with genomic instability were identified, capable of predicting the prognosis of PAAD. Patients were assigned to low-risk or high-risk groups using these biomarkers, with better or worse prognosis, respectively. The tumor immune score, immune cell infiltration, and efficacy of immunotherapy were worse in the high-risk group. A drug sensitivity analysis revealed the high- and low-risk groups had different half-maximal inhibitory concentrations. The expression of cancer susceptibility candidate 8 was significantly higher in tumor tissues than in normal tissues, while the expression of LYPLAL1-AS1 exhibited an opposite pattern. They may be potential diagnostic or prognostic biomarkers for patients with pancreatic cancer. Genomic instability-associated lncRNAs were explored in this study and predicted the prognosis of PAAD and stratified patients risk in PAAD. These lncRNAs also predicted the efficacy of immunotherapy and potential therapeutic targets in PAAD.
Collapse
Affiliation(s)
- Xiuli Xia
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Gastroenterology, Handan Central Hospital, Handan, China
| | - Shushan Zhao
- Department of Gastroenterology, Handan Central Hospital, Handan, China
| | - Xiaoming Song
- Department of Gastroenterology, Handan Central Hospital, Handan, China
| | - Mengyue Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinying Zhu
- Department of Gastroenterology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Changjuan Li
- Department of Gastroenterology, The First Hospital of Handan, Handan, China
| | - Wenting Chen
- Digestive Endoscopy Center, The First Affiliated Hospital of Hebei North. University, Zhangjiakou, China
| | - Dongqiang Zhao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Wang L, Zhang H, Xiao X, Wang S, Zhao RC. Small Extracellular Vesicles Maintain Homeostasis of Senescent Mesenchymal Stem Cells at Least Through Excreting Harmful Lipids. Stem Cells Dev 2023; 32:565-579. [PMID: 37262010 DOI: 10.1089/scd.2023.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play an essential role in multiple physiological processes in vivo and a promising cell-based therapy for various diseases. Nonetheless, MSCs suffer from senescence with expansion culture, leading to a limitation for their clinical application. Recently, it was reported that small extracellular vesicles (sEVs) are involved in regulation of senescence in tumor cells and fibroblasts. However, the biological roles of sEVs in senescent MSCs (Sen MSCs) are poorly understood. In this study, we established a replicative senescence model of MSCs by successive passages and compared the phenotypic changes between presenescent MSCs (Pre-Sen MSCs) and Sen MSCs and found that Sen MSCs exhibited a diminished adipogenic and osteogenic differentiation potential and elevated senescence-associated secretory phenotype levels. In addition, we found that sEV secretion was increased in Sen MSCs, and inhibition of sEV secretion led to apoptosis, DNA damage, and decreased cell viability, suggesting that increased sEV secretion plays an important role in maintaining Sen MSC homeostasis. To further investigate the molecular mechanisms, metabolomic profiling of Pre-Sen MSC-derived sEVs (Pre-Sen-sEVs) and Sen MSC-derived sEVs (Sen-sEVs) was performed. The results showed that lipid metabolites were significantly increased in Sen-sEVs and these significantly upregulated lipid metabolites were shown to be toxic for inducing cellular senescence and apoptosis in previous studies. Kyoto Encyclopedia of Genes and Genomes analysis revealed enrichment of differential metabolites between Pre-Sen-sEVs and Sen-sEVs mainly in 25 signaling pathways, of which 21 metabolic pathways have been shown to be closely associated with senescence. Taken together, our findings suggested that increased sEV secretion maintains Sen MSC homeostasis, at least in part, by excreting harmful lipids, thus providing new insights into the regulation of senescence by sEVs.
Collapse
Affiliation(s)
- Liping Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China
| | - Huan Zhang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China
| | - Xian Xiao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China
| | - Shihua Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China
- Department of Cell Biology, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
10
|
Khorkova O, Stahl J, Joji A, Volmar CH, Zeier Z, Wahlestedt C. Long non-coding RNA-targeting therapeutics: discovery and development update. Expert Opin Drug Discov 2023; 18:1011-1029. [PMID: 37466388 DOI: 10.1080/17460441.2023.2236552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION lncRNAs are major players in regulatory networks orchestrating multiple cellular functions, such as 3D chromosomal interactions, epigenetic modifications, gene expression and others. Due to progress in the development of nucleic acid-based therapeutics, lncRNAs potentially represent easily accessible therapeutic targets. AREAS COVERED Currently, significant efforts are directed at studies that can tap the enormous therapeutic potential of lncRNAs. This review describes recent developments in this field, particularly focusing on clinical applications. EXPERT OPINION Extensive druggable target range of lncRNA combined with high specificity and accelerated development process of nucleic acid-based therapeutics open new prospects for treatment in areas of extreme unmet medical need, such as genetic diseases, aggressive cancers, protein deficiencies, and subsets of common diseases caused by known mutations. Although currently wide acceptance of lncRNA-targeting nucleic acid-based therapeutics is impeded by the need for parenteral or direct-to-CNS administration, development of less invasive techniques and orally available/BBB-penetrant nucleic acid-based therapeutics is showing early successes. Recently, mRNA-based COVID-19 vaccines have demonstrated clinical safety of all aspects of nucleic acid-based therapeutic technology, including multiple chemical modifications of nucleic acids and nanoparticle delivery. These trends position lncRNA-targeting drugs as significant players in the future of drug development, especially in the area of personalized medicine.
Collapse
Affiliation(s)
- Olga Khorkova
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Jack Stahl
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Aswathy Joji
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| |
Collapse
|
11
|
Khorkova O, Stahl J, Joji A, Volmar CH, Zeier Z, Wahlestedt C. Natural antisense transcripts as drug targets. Front Mol Biosci 2022; 9:978375. [PMID: 36250017 PMCID: PMC9563854 DOI: 10.3389/fmolb.2022.978375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The recent discovery of vast non-coding RNA-based regulatory networks that can be easily modulated by nucleic acid-based drugs has opened numerous new therapeutic possibilities. Long non-coding RNA, and natural antisense transcripts (NATs) in particular, play a significant role in networks that involve a wide variety of disease-relevant biological mechanisms such as transcription, splicing, translation, mRNA degradation and others. Currently, significant efforts are dedicated to harnessing these newly emerging NAT-mediated biological mechanisms for therapeutic purposes. This review will highlight the recent clinical and pre-clinical developments in this field and survey the advances in nucleic acid-based drug technologies that make these developments possible.
Collapse
Affiliation(s)
- Olga Khorkova
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| | - Jack Stahl
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| | - Aswathy Joji
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
- Department of Chemistry, University of Miami, Miami, FL, United States
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| | - Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
- Department of Chemistry, University of Miami, Miami, FL, United States
- *Correspondence: Claes Wahlestedt,
| |
Collapse
|
12
|
A novel molecular subtypes and risk model based on inflammatory response-related lncrnas for bladder cancer. Hereditas 2022; 159:32. [PMID: 35964079 PMCID: PMC9375404 DOI: 10.1186/s41065-022-00245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Background Inflammation and long noncoding RNAs (lncRNAs) are gradually becoming important in the development of bladder cancer (BC). Nevertheless, the potential of inflammatory response-related lncRNAs (IRRlncRNAs) as a prognostic signature remains unexplored in BC. Methods The Cancer Genome Atlas (TCGA) provided RNA expression profiles and clinical information of BC samples, and GSEA Molecular Signatures database provided 1171 inflammation-related genes. IRRlncRNAs were identified using Pearson correlation analysis. After that, consensus clustering was performed to form molecular subtypes. After performing least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses, a risk model constructed based on the prognostic IRRlncRNAs was validated in an independent cohort. Kaplan–Meier (KM) analysis, univariate and multivariate Cox regression, clinical stratification analysis, and time-dependent receiver operating characteristic (ROC) curves were utilized to assess clinical effectiveness and accuracy of the risk model. In clusters and risk model, functional enrichment was investigated using GSEA and GSVA, and immune cell infiltration analysis was demonstrated by ESTIMATE and CIBERSORT analysis. Results A total of 174 prognostic IRRlncRNAs were confirmed, and 406 samples were divided into 2 clusters, with cluster 2 having a significantly inferior prognosis. Moreover, cluster 2 exhibited a higher ESTIMATE score, immune infiltration, and PD-L1 expression, with close relationships with the inflammatory response. Further, 12 IRRlncRNAs were identified and applied to construct the risk model and divide BC samples into low-risk and high-risk groups successfully. KM, ROC, and clinical stratification analysis demonstrated that the risk model performed well in predicting prognosis. The risk score was identified as an independently significant indicator, enriched in immune, cell cycle, and apoptosis-related pathways, and correlated with 9 immune cells. Conclusion We developed an inflammatory response-related subtypes and steady prognostic risk model based on 12 IRRlncRNAs, which was valuable for individual prognostic prediction and stratification and outfitted new insight into inflammatory response in BC. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-022-00245-w.
Collapse
|