1
|
Nyarkoh R, Odoom A, Donkor ES. Prevalence of Shigella species and antimicrobial resistance patterns in Africa: systematic review and meta-analysis. BMC Infect Dis 2024; 24:1217. [PMID: 39472797 PMCID: PMC11520789 DOI: 10.1186/s12879-024-09945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/17/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Shigellosis continues to pose a significant public health problem in Africa; however, there is a lack of comprehensive knowledge regarding its prevalence, serogroup distribution, and antimicrobial resistance profiles. Therefore, the objective of this systematic review and meta-analysis was to determine the overall prevalence of Shigella, the distribution of species, and the patterns of antimicrobial resistance across Africa. METHODS Following PRISMA guidelines, a systematic search strategy was conducted using the PubMed, Web of Science and Scopus databases from January 31, 2024 to February 10, 2024. The study quality was assessed using the Joanna Briggs Institute checklist, and data were analyzed using the R statistical language and the R package 'meta'. The random effects model was employed to estimate the pooled prevalence, while heterogeneity was assessed using the I2 statistic and prediction interval. RESULTS A total of 116 studies from 29 African countries were included in this meta-analysis, involving the examination of 99,510 samples. The overall pooled estimate of Shigella prevalence was determined to be 5.9% (95% CI: 4.9 - 7.0%). Regional prevalence showed prevalences of Southern Africa (6.9 [95% CI: 3.0 - 12.2%]), Northern Africa (6.7% [95% CI: 4.1 - 9.8%]), Eastern Africa (6.2% [95% CI: 4.9 - 7.6%]), Central Africa (4.5% [95% CI: 2.6 - 6.8%]) and Western Africa (4.0% [95% CI: 2.5 - 5.9%]). Shigella prevalence was found to be higher in children (6.6%, 95% CI: 3.2 - 11.1%) than in adults (3.6%, 95% CI: 1.6 - 6.3%). The most prevalent species was S. flexneri (53.6%, 95% CI: 46.1%-61.0%), followed by S. sonnei (11.5%, 95% CI: 7.7%-15.7%), S. dysenteriae (10.1%, 95% CI: 6.2 - 14.5%) and S. boydii (7.7%, 95% CI: 4.7 - 11.1%). Among the currently recommended first-line antibiotics, ciprofloxacin and ceftriaxone showed resistance prevalences of 10.0% (95% CI: 4.5%-16.9%) and 8.5% (95% CI: 2.4-16.9%) respectively. CONCLUSION This review highlights the burden of shigellosis in Africa. S. flexneri remains the most prevalent species associated with shigellosis cases with S. sonnei being the second most dominant. The antimicrobial resistance patterns observed in the study suggest local antimicrobial patterns in choosing antibiotics for the treatment of Shigellosis. RECOMMENDATION There is the need to explore alternative treatments for shigellosis with particular focus on vaccine development. There is also the need for more genomic epidemiology studies exploring the dissemination and risk of drug-resistant S. sonnei clones in Africa.
Collapse
Affiliation(s)
- Rabbi Nyarkoh
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P. O. Box KB 4236, Accra, Ghana
| | - Alex Odoom
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P. O. Box KB 4236, Accra, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P. O. Box KB 4236, Accra, Ghana.
| |
Collapse
|
2
|
Al-Khafaji NSK, Almjalawi BSA, Ewadh RMJ, Al-Dahmoshi HOM, Abed SY, Nasrolahi A, Nwobodo DC, Kanaan MHG, Abdullah SS, Saki M. Prevalence of plasmid-mediated quinolone resistance genes and biofilm formation in different species of quinolone-resistant clinical Shigella isolates: a cross-sectional study. Eur J Med Res 2024; 29:419. [PMID: 39143645 PMCID: PMC11323402 DOI: 10.1186/s40001-024-02007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The purpose of this study was to look into the presence of plasmid-mediated quinolone resistance (PMQR) genes and biofilm formation in several species of clinical Shigella isolates that were resistant to quinolones. METHODS The stool samples of 150 patients (younger than 10 years) with diarrhea were collected in this cross-sectional study (November 2020 to December 2021). After cultivation of samples on Hektoen Enteric agar and xylose lysine deoxycholate agar, standard microbiology tests, VITEK 2 system, and polymerase chain reaction (PCR) were utilized to identify Shigella isolates. The broth microdilution method was used to determine antibiotic susceptibility. PMQR genes including qnrA, qnrB, qnrC, qnrD, qnrE, qnrS, qnrVC, qepA, oqxAB, aac(6')-Ib-cr, and crpP and biofilm formation were investigated in quinolone-resistant isolates by PCR and microtiter plate method, respectively. An enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) technique was used to determine the clonal relatedness of quinolone-resistant isolates. RESULTS A total of 95 Shigella isolates including S. sonnei (53, 55.8%), S. flexneri (39, 41.1%), and S. boydii (3, 3.2%) were identified. The highest resistance rates of the isolates were against ampicillin (92.6%, n = 88/95). Overall, 42 of 95 (44.2%) isolates were simultaneously resistant against two or more quinolones including 26 (61.9%) S. sonnei and 16 (38.1%) S. flexneri. All isolates were multidrug-resistant (resistance to more than 3 antibiotics). The occurrence of PMQR genes was as follows: qnrS (52.4%), qnrA and aac(6')-Ib-cr (33.3%), and qnrB (19.0%). The prevalence in species was as follows: 61.5% and 37.5% (qnrS), 19.2% and 56.3% (qnrA), 38.5% and 25.0 (aac(6')-Ib-cr), and 19.2% and 18.8% (qnrB) for S. sonnei and S. flexneri, respectively. The other PMQR genes were not detected. In total, 52.8% (28/53) of quinolone-susceptible and 64.3% (27/42) of quinolone-resistant isolates were biofilm producers. Biofilm formation was not significantly different between quinolone-resistant and quinolone-susceptible isolates (P-value = 0.299). Quinolone-resistant isolates showed a high genetic diversity according to the ERIC-PCR. CONCLUSION It seems that qnrS, qnrA, and aac(6')-Ib-cr play a significant role in the quinolone resistance among Shigella isolates in our region. Also the quinolone-resistant S. flexneri and S. sonnei isolates had a high genetic diversity. Hence, antibiotic therapy needs to be routinely revised based on the surveillance findings.
Collapse
Affiliation(s)
- Noor S K Al-Khafaji
- Department of Biology, College of Science, University of Babylon, Hilla, Iraq
| | | | | | | | - Suhad Y Abed
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - David Chinemerem Nwobodo
- Department of Microbiology, Renaissance University, Enugu, Nigeria
- Department of Pharmaceutical Science, University of Shizuoka, Shizuoka, Japan
| | | | | | - Morteza Saki
- Infectious Ophthalmologic Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
3
|
Zhao M, Wang X, He J, Zhou K, Xie M, Ding H. Serovar and sequence type distribution and phenotypic and genotypic antimicrobial resistance of Salmonella originating from pet animals in Chongqing, China. Microbiol Spectr 2024; 12:e0354223. [PMID: 38757951 PMCID: PMC11218468 DOI: 10.1128/spectrum.03542-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/13/2024] [Indexed: 05/18/2024] Open
Abstract
A total of 334 Salmonella isolates were recovered from 6,223 pet rectal samples collected at 50 pet clinics, 42 pet shops, 7 residential areas, and 4 plazas. Forty serovars were identified that included all strains except for one isolate that did not cluster via self-agglutination, with Salmonella Typhimurium monophasic variant, Salmonella Kentucky, Salmonella Enteritidis, Salmonella Pomona, and Salmonella Give being the predominant serovars. Fifty-one sequence types were identified among the isolates, and ST198, ST11, ST19, ST451, ST34, and ST155 were the most common. The top four dominant antimicrobials to which isolates were resistant were sulfisoxazole, ampicillin, doxycycline, and tetracycline, and 217 isolates exhibited multidrug resistance. The prevalence of β-lactamase genes in Salmonella isolates was 59.6%, and among these isolates, 185 harbored blaTEM, followed by blaCTX-M (66) and blaOXA (10). Moreover, six PMQR genes, namely, including qnrA (4.8%), qnrB (4.2%), qnrD (0.9%), qnrS (18.9%), aac(6')-Ib-cr (16.5%), and oqxB (1.5%), were detected. QRDR mutations (76.6%) were very common in Salmonella isolates, with the most frequent mutation in parC (T57S) (47.3%). Furthermore, we detected six tetracycline resistance genes in 176 isolates, namely, tet(A) (39.5%), tet(B) (8.1%), tet(M) (7.7%), tet(D) (5.4%), tet(J) (3.3%), and tet(C) (1.8%), and three sulfonamide resistance genes in 303 isolates, namely, sul1 (84.4%), sul2 (31.1%), and sul3 (4.2%). Finally, we found 86 isolates simultaneously harboring four types of resistance genes that cotransferred 2-7 resistance genes to recipient bacteria. The frequent occurrence of antimicrobial resistance, particularly in dogs and cats, suggests that antibiotic misuse may be driving multidrug-resistant Salmonella among pets.IMPORTANCEPet-associated human salmonellosis has been reported for many years, and antimicrobial resistance in pet-associated Salmonella has become a serious public health problem and has attracted increasing attention. There are no reports of Salmonella from pets and their antimicrobial resistance in Chongqing, China. In this study, we investigated the prevalence, serovar diversity, sequence types, and antimicrobial resistance of Salmonella strains isolated from pet fecal samples in Chongqing. In addition, β-lactamase, QRDR, PMQR, tetracycline and sulfonamide resistance genes, and mutations in QRDRs in Salmonella isolates were examined. Our findings demonstrated the diversity of serovars and sequence types of Salmonella isolates. The isolates were widely resistant to antimicrobials, notably with a high proportion of multidrug-resistant strains, which highlights the potential direct or indirect transmission of multidrug-resistant Salmonella from pets to humans. Furthermore, resistance genes were widely prevalent in the isolates, and most of the resistance genes were spread horizontally between strains.
Collapse
Affiliation(s)
- Meiyuan Zhao
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xudong Wang
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Jiawei He
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Kexin Zhou
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Mengqi Xie
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Honglei Ding
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Tang F, Li C, Li R, Xi L, Wang F, Tian J, Luo W. Antibiotic-Resistance Profiles and Genetic Diversity of Shigella Isolates in China: Implications for Control Strategies. Foodborne Pathog Dis 2024; 21:378-385. [PMID: 38557159 DOI: 10.1089/fpd.2023.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The urgent need for comprehensive and systematic analyses of Shigella as the key pathogen led us to meticulously explore the epidemiology and molecular attributes of Shigella isolates. Accordingly, we procured 24 isolates (10 from Xinjiang and 14 from Wuhan, China) and performed serotype identification and antimicrobial susceptibility testing. Resistance gene detection and homology analysis by polymerase chain reaction and pulsed-field gel electrophoresis (PFGE), respectively, were performed for genetic diversity analysis. All isolates were identified as Shigella flexneri, with 70% (35.4-91.9%) and 30% (8.1-64.6%) of the Xinjiang isolates and 85.7% (56.2-97.5%) and 14.3% (2/14, 2.5-43.9%) of the Wuhan isolates belonging to serotype 2a and serotype 2b, respectively. All isolates displayed resistance to at least two antibiotics and complete resistance to ampicillin. Multidrug resistance (MDR) was recorded in 70.8% (48.8-86.6%) of isolates, with Xinjiang isolates exhibiting relatively higher resistance to ampicillin-sulbactam, piperacillin, ceftriaxone, and aztreonam. Conversely, Wuhan isolates displayed higher MDR and resistance to tetracycline, ciprofloxacin, levofloxacin, and cefepime relative to Xinjiang isolates. Molecular scrutiny of antibiotic-resistance determinants revealed that blaTEM was the main mechanism of ampicillin resistance, blaCTX-M was the main gene for resistance to third- and fourth-generation cephalosporins, and tetB was the predominant gene associated with tetracycline resistance. Four Xinjiang and seven Wuhan isolates shared T1-clone types (>85%), and two Xinjiang and one Wuhan isolates were derived from the T6 clone with a high similarity of 87%. Six PFGE patterns (T1, T2, T5, T6-3, T8, and T10) of S. flexneri were associated with MDR. Thus, there is a critical need for robust surveillance and control strategies in managing Shigella infections, along with the development of targeted interventions and antimicrobial stewardship programs tailored to the distinct characteristics of Shigella isolates in different regions of China.
Collapse
Affiliation(s)
- Feng Tang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Changzhen Li
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ran Li
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Lei Xi
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Fang Wang
- Center for Public Health Laboratory Service, Wuhan Center for Disease Control and Prevention, Wuhan, China
| | - Juling Tian
- Department of Laboratory Medicine, The First People's Hospital of Urumqi, Urumqi, China
| | - Wanjun Luo
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
5
|
Alfonseca-Silva E, Cruz-Villa JC, Gutiérrez L, Sumano H. Successful treatment of recurrent subclinical mastitis in cows caused by enrofloxacin resistant bacteria by means of the sequential intramammary infusion of enrofloxacin HCl-2H 2O and ceftiofur HCl: a clinical trial. J Vet Sci 2021; 22:e78. [PMID: 34697924 PMCID: PMC8636650 DOI: 10.4142/jvs.2021.22.e78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 11/28/2022] Open
Abstract
Background Recurrent subclinical mastitis (RScM) due to resistant bacteria has low clinical and bacteriological cure rates, often requiring the culling of cows. The sequential intra-mammary administration of enrofloxacin hydrochloride-dihydrate (enro-C) followed by ceftiofur HCl may be useful for treating these cases. Objectives This study assessed the bacteriological and clinical cure-efficacies of the sequentially intramammary administration of enro-C, followed by ceftiofur HCl to treat RScM in Holstein/Friesian cows. Methods This trial was conducted in a herd with a high prevalence of RScM, and 20 Holstein/Friesian cows were included: 45% suffering subclinical mastitis and 38.9% of the mammary quarters affected. Twenty-nine bacterial isolates in vitro resistant to enro-C were obtained (coagulase-negative Staphylococcus spp, 55.2%; Staphylococcus aureus, 27.6%; Escherichia coli, 6.9%; Streptococcus uberis, 6.9%; Corynebacterium bovis, 3.4%). Polymerase chain reaction-isolated the following genes linked to enro-C resistance: chromosomal (gyrA) and plasmid (aac(6')-lb-cr). The treatments were as follows: twice-daily intramammary infusions of enro-C (300 mg/10 mL) for 5 days. Cows clinically considered treatment failures were also treated with intramammary ceftiofur (125 mg/10 mL, twice daily for 5 days. The clinical and bacteriological cure rates were carried out when completing each treatment phase and at 14 and 21 days, aided by a California mastitis test, somatic cell count, and failure to identify the initially causative bacteria. Results Enro-C achieved 65% clinical and bacteriological cure rates, and 100% cure rates were obtained after the rescue treatment with ceftiofur HCl. Conclusions Outstanding clinical and bacteriological cure rates in cows affected by RScM were achieved with the consecutive intramammary infusions of enro-C, followed by ceftiofur HCl.
Collapse
Affiliation(s)
- Edgar Alfonseca-Silva
- Department of Microbiology and Immunology, School of Veterinary Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Juan Carlos Cruz-Villa
- Department of Microbiology and Immunology, School of Veterinary Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Lilia Gutiérrez
- Department of Physiology and Pharmacology, School of Veterinary Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Hector Sumano
- Department of Physiology and Pharmacology, School of Veterinary Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico.
| |
Collapse
|
6
|
Bandyopadhyay S, Bhattacharyya D, Samanta I, Banerjee J, Habib M, Dutta TK, Dutt T. Characterization of Multidrug-Resistant Biofilm-Producing Escherichia coli and Klebsiella pneumoniae in Healthy Cattle and Cattle with Diarrhea. Microb Drug Resist 2021; 27:1457-1469. [PMID: 33913759 DOI: 10.1089/mdr.2020.0298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This study describes comparative occurrence and characterization of multidrug-resistant (MDR) Escherichia coli and Klebsiella pneumoniae (KP) in healthy cattle (HC) and cattle with diarrhea (DC) in India. During 2018-2020, 72 MDR isolates, including 35 E. coli (DC: 27; HC 8) and 37 K. pneumoniae (DC: 34; HC: 3), from 251 rectal swabs (DC: 219; HC: 32) were investigated for extended-spectrum beta-lactamase (ESBL), AmpC type β-lactamase and carbapenemase production, antimicrobial susceptibility profile, biofilm production, and efflux pump activity. Fifty-five MDR isolates were ESBL producers (ESBLPs) (DC: 50; HC: 5) and ESBLPs from DC were coresistant to multiple antibiotics. The blaCTX-M gene (50) was the most frequently detected β-lactamases followed by blaAmpC (22), blaTEM1 (13), blaCMY-6 (6), blaOXA1 (5), blaPER (2), blaDHA, and blaFOX and blaSHV12 (1 each). Plasmid-mediated quinolone resistance determinants qnrB, qnrS, qnrA, and qepA were detected in 18, 16, 2, and 3 isolates, respectively. Twenty three isolates revealed mutation in gyrA and parC genes. Tetracycline-resistance markers tetA, tetB, tetC, and tetE were detected in 33, 10, 3, and 2 isolates, respectively. Only one of the 41 imipenem-resistant isolates harbored blaNDM-5 and two were colistin-resistant. Altogether, 20 MDR isolates were strong biofilm producers and 19 harbored different virulence factors. This is the first ever report from India on the presence of MDR Enterobacteriaceae with resistance to even last-resort antimicrobials in the bovine diarrhea.
Collapse
Affiliation(s)
| | | | - Indranil Samanta
- Department of Veterinary Microbiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Jaydeep Banerjee
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, India
| | - Md Habib
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, India
| | - Tapan K Dutta
- C.V.Sc. & A.H, Central Agricultural University, Aizawl, India
| | - Triveni Dutt
- Division of Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
7
|
Yu X, Zhang D, Song Q. Profiles of gyrA Mutations and Plasmid-Mediated Quinolone Resistance Genes in Shigella Isolates with Different Levels of Fluoroquinolone Susceptibility. Infect Drug Resist 2020; 13:2285-2290. [PMID: 32765004 PMCID: PMC7367718 DOI: 10.2147/idr.s257877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/25/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Fluoroquinolone-resistant Shigella is considered a serious public health problem and has been put on the WHO global priority list of antibiotic-resistant bacteria. This study was aimed to investigate the fluoroquinolone resistance in Shigella and its relevant genetic mechanisms. Materials and Methods Shigella isolates that were isolated from diarrheal patient’s feces in Ningbo China from 2011 to 2018 were tested for susceptibility to ampicillin, gentamicin, tetracycline, nalidixic acid, ciprofloxacin, and cefotaxime. Genes related to quinolone resistance were amplified by PCR. Results A total of 118 Shigella isolates were collected, including 76 S. flexneri isolates, 40 S. sonnei isolates, and 2 S. boydii isolates. Ciprofloxacin susceptibility test identified 10 (9%) susceptible, 65 (55%) intermediate, and 43 (36%) resistant isolates. Of 76 S. flexneri isolates, 37 were ciprofloxacin resistant, a prevalence significantly higher than 6 of 40 S. sonnei isolates (P=0.01). The isolates collected during 2014–2018 displayed a significant increase in the prevalence of ciprofloxacin resistance (P=0.05) than those collected during 2011–2013. All the ciprofloxacin-intermediate and resistant isolates had mutations of gyrA(S83L) and parC (S80I), whereas only the ciprofloxacin-resistant isolates had gyrA (D87N) mutation and qnrB gene. Additionally, 30% of the ciprofloxacin-resistant isolates were positive for aac(6´)-Ib-cr gene. Conclusion This study shows the currently increasing prevalence of ciprofloxacin resistance. The reduced fluoroquinolone susceptibility is highly associated with gyrA (S83L) and parC (S80I) mutations, while the fluoroquinolone resistance is highly associated with gyrA (D87N) mutation, qnrB gene and perhaps aac(6´)-Ib-cr gene.
Collapse
Affiliation(s)
- Xuxia Yu
- Department of Hospital Infection, Ningbo City First Hospital, Ningbo, Zhejiang Province, People's Republic of China
| | - Danyang Zhang
- Department of Microbiology, Ningbo Municipal Centre for Disease Control and Prevention, Ningbo, Zhejiang Province, People's Republic of China
| | - Qifa Song
- Central Laboratory, Ningbo City First Hospital, Ningbo, Zhejiang Province, People's Republic of China
| |
Collapse
|
8
|
Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020; 25:E1340. [PMID: 32187986 PMCID: PMC7144564 DOI: 10.3390/molecules25061340] [Citation(s) in RCA: 572] [Impact Index Per Article: 114.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial resistance represents an enormous global health crisis and one of the most serious threats humans face today. Some bacterial strains have acquired resistance to nearly all antibiotics. Therefore, new antibacterial agents are crucially needed to overcome resistant bacteria. In 2017, the World Health Organization (WHO) has published a list of antibiotic-resistant priority pathogens, pathogens which present a great threat to humans and to which new antibiotics are urgently needed the list is categorized according to the urgency of need for new antibiotics as critical, high, and medium priority, in order to guide and promote research and development of new antibiotics. The majority of the WHO list is Gram-negative bacterial pathogens. Due to their distinctive structure, Gram-negative bacteria are more resistant than Gram-positive bacteria, and cause significant morbidity and mortality worldwide. Several strategies have been reported to fight and control resistant Gram-negative bacteria, like the development of antimicrobial auxiliary agents, structural modification of existing antibiotics, and research into and the study of chemical structures with new mechanisms of action and novel targets that resistant bacteria are sensitive to. Research efforts have been made to meet the urgent need for new treatments; some have succeeded to yield activity against resistant Gram-negative bacteria by deactivating the mechanism of resistance, like the action of the β-lactamase Inhibitor antibiotic adjuvants. Another promising trend was by referring to nature to develop naturally derived agents with antibacterial activity on novel targets, agents such as bacteriophages, DCAP(2-((3-(3,6-dichloro-9H-carbazol-9-yl)-2-hydroxypropyl)amino)-2(hydroxymethyl)propane1,3-diol, Odilorhabdins (ODLs), peptidic benzimidazoles, quorum sensing (QS) inhibitors, and metal-based antibacterial agents.
Collapse
Affiliation(s)
| | | | - Rafik Karaman
- Department of Bioorganic & Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine; (Z.B.); (B.J.)
| |
Collapse
|
9
|
Teimourpour R, Babapour B, Esmaelizad M, Arzanlou M, Peeri-Doghaheh H. Molecular characterization of quinolone resistant Shigella spp. isolates from patients in Ardabil, Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2019; 11:496-501. [PMID: 32148681 PMCID: PMC7048964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
BACKGROUND AND OBJECTIVES Shigella is an etiological agent of shigellosis. Antibiotic therapy has a critical role in decreasing serious complications of shigellosis. The present study aimed to determine the multi-drug resistance strains and to detect fluoroquinolone related mutations. MATERIALS AND METHODS In this descriptive, cross sectional study, a total of 113 Shigella isolates were collected from 1280 patients admitted to Bu-Ali hospital in Ardabil province during 2015-17. Antibiotic resistance pattern of isolates was evaluated using Kirby Bauer method and finally, the MICs of ciprofloxacin were determined. In order to determine any mutations in QRDR region, parC and gyrA genes of resistant strains were amplified and sequenced. RESULTS Shigella spp. isolates were identified using ipaH amplification and rfc and wbgz genes were used for molecular detection of S. flexneri and S. soneii, respectively. Our results showed that the predominant species in Ardabil province was S. sonnei (69.91%). Most of isolates (82%) were resistant to trimethoprim/sulfamethoxazole (TMP/SMX); 51% were nalidixic acid resistant and 4.4% were floroquinolones resistant. All examined isolates were susceptible to imipenem (100%). Mutation in gyrA and parC genes were detected in all fluoroquinolone resistant isolates (5 isolates). Although, in this study the rate of resistance to ciprofloxacin was low, but in the lack of preventive strategy it will be a major challenge of public health in future. CONCLUSION This study provided information on the prevalence and antimicrobial susceptibility patterns of Shigella isolates in Ardabil province, Iran. Also this study showed a high-level of resistance to commonly used antibiotics among Shigella isolates.
Collapse
Affiliation(s)
- Roghayeh Teimourpour
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Behnam Babapour
- Microbiology Laboratory, Bu-Ali Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Majid Esmaelizad
- Department of Biotechnology, Central Laboratory, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Mohsen Arzanlou
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hadi Peeri-Doghaheh
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran,Corresponding author: Hadi Peeri-Doghaheh, Ph.D, Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran., Telefax: +984555333776,
| |
Collapse
|
10
|
Ranjbar R, Farahani A. Shigella: Antibiotic-Resistance Mechanisms And New Horizons For Treatment. Infect Drug Resist 2019; 12:3137-3167. [PMID: 31632102 PMCID: PMC6789722 DOI: 10.2147/idr.s219755] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Shigella spp. are a common cause of diarrheal disease and have remained an important pathogen responsible for increased rates of morbidity and mortality caused by dysentery each year around the globe. Antibiotic treatment of Shigella infections plays an essential role in reducing prevalence and death rates of the disease. However, treatment of these infections remains a challenge, due to the global rise in broad-spectrum resistance to many antibiotics. Drug resistance in Shigella spp. can result from many mechanisms, such as decrease in cellular permeability, extrusion of drugs by active efflux pumps, and overexpression of drug-modifying and -inactivating enzymes or target modification by mutation. Therefore, there is an increasing need for identification and evolution of alternative therapeutic strategies presenting innovative avenues against Shigella infections, as well as paying further attention to this infection. The current review focuses on various antibiotic-resistance mechanisms of Shigella spp. with a particular emphasis on epidemiology and new mechanisms of resistance and their acquisition, and also discusses the status of novel strategies for treatment of Shigella infection and vaccine candidates currently under evaluation in preclinical or clinical phases.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Farahani
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Zhang WX, Chen HY, Tu LH, Xi MF, Chen M, Zhang J. Fluoroquinolone Resistance Mechanisms in Shigella Isolates in Shanghai, China, Between 2010 and 2015. Microb Drug Resist 2018; 25:212-218. [PMID: 30307807 DOI: 10.1089/mdr.2018.0113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the antimicrobial susceptibility of Shigella isolated in Shanghai, China and to determine the genetic basis of its resistance to fluoroquinolones. MATERIALS AND METHODS A total of 402 strains of Shigella, including 145 Shigella flexneri and 257 Shigella sonnei isolates, were analyzed. The Kirby-Bauer disk diffusion method was used to determine the susceptibility of the strains to 13 antimicrobials. Minimum inhibitory concentration of ciprofloxacin was determined by E-test. Mutations within the quinolone resistance-determining regions (QRDRs) of gyrA and parC and in the plasmid-mediated quinolone resistance (PMQR) genes, including qnrA, qnrB, qnrS, and aac (6')-Ib-cr, were detected by polymerase chain reaction. All the products were then sequenced. RESULTS Most of the Shigella isolates were found to be resistant to nalidixic acid (96.4%), streptomycin (96.4%), ampicillin (86.2%), tetracycline (79.8%), and sulfamethoxazole/trimethoprim (80.6%). S. flexneri isolates showed a significantly higher resistance to cefepime (33.6%), ciprofloxacin (54.2%), norfloxacin (34.1%), and levofloxacin (12.1%) compared with that observed for the S. sonnei strains (χ2 analysis, p < 0.05). Three mutations (Ser83, Asp87, and His211) in gyrA and one mutation (Ser80) in parC were detected. Of 257 S. sonnei isolates, 11.7% possessed gyrA mutations and 2% had parC mutations. Of 145 S. flexneri isolates, 98.6% possessed gyrA mutations and 97.9% had parC mutations. The plasmid-mediated resistance genes of qnrS and aac (6')-Ib-cr were detected among 17 strains (4.2%). CONCLUSIONS The mutation percentage within the QRDR of S. flexneri was as high as 98.6 in gyrA and 97.9 in parC. The significant abundance of mutations within QRDRs conferred high levels of fluoroquinolone resistance. Moreover, the PMQR genes, particularly qnrS, played an important role in the decreased susceptibility of Shigella to fluoroquinolones.
Collapse
Affiliation(s)
- Wen-Xia Zhang
- 1 Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - Hong-You Chen
- 2 Laboratory of Bacterial, Shanghai Center for Disease Control and Prevention , Shanghai, China
| | - Li-Hong Tu
- 2 Laboratory of Bacterial, Shanghai Center for Disease Control and Prevention , Shanghai, China
| | - Man-Fang Xi
- 2 Laboratory of Bacterial, Shanghai Center for Disease Control and Prevention , Shanghai, China
| | - Min Chen
- 2 Laboratory of Bacterial, Shanghai Center for Disease Control and Prevention , Shanghai, China
| | - Jue Zhang
- 1 Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai, China
| |
Collapse
|
12
|
Xue C, Cai J, Kang H, Chen Y, Wang K, Qian H, Bao C, Li N, Guo Z, Zhang Z, Wang J, Ma P, Gu B. Two novel mutations in parE among Shigella flexneri isolated from Jiangsu Province of China, 2016. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:306. [PMID: 30211194 DOI: 10.21037/atm.2018.07.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background The study was conducted to assess the resistance capacity of quinolone against Shigella flexneri, and to investigate the involved quinolone resistance mechanism. The data were collected from Jiangsu Province, China in 2016. Methods The number of 81 S. flexneri was obtained from 12 cities in Jiangsu Province of China during 2016. Slide agglutination was taken for serotyping, and susceptibility test was identified by the disc diffusion method. PCR aimed to amplify the quinolone resistance-determining region (QRDR) genes and screen for plasmid-mediated quinolone resistance (PMQR) determinants. Chromosomal mutation was confirmed by sequencing and Blast comparison. Results 2a was the commonest serotype, accounting for 40.7% (33/81) of the 81 S. flexneri. 70.4% (57/81) isolates expressed resistance against nalidixic acid, and the resistance against ciprofloxacin even reached up to a high proportion of 58.0% (47/81). A total of 8 point mutations were identified, including 2 novel mutations discovered in parE (Ser458Leu and Gly408Asp). The common mutation Ser83Leu in gyrA was still the most prevalent here with a percentage of 70.4% (57/81), followed by the approximate mutation of 69.1% (56/81) in parC (Ser80Ile) and His211Tyr in gyrA. Meanwhile, 35.8% (29/81) isolates were confirmed with mutation of Gln517Arg in gyrB. In addition, qnrS positive isolates occupied a proportion of 7.4% (6/81), but only 1 strain was observed with aac(6')-Ib-cr. All PMQR positive isolates were resistant to nalidixic acid. However, 5 of them didn't stay susceptible to ciprofloxacin any more. Conclusions This is the first time that a study researches the occurrence of mutations in parE among S. flexneri, Ser458Leu and Gly408Asp included. The study indicates that the high resistance to fluoroquinolone remains a serious problem in Jiangsu, China. Thus, the prevention and control of current infection urge for a comprehensive and systematic surveillance based on persistent surveys.
Collapse
Affiliation(s)
- Cun Xue
- Medical Technology School, Xuzhou Medical University, Xuzhou 221004, China
| | - Jinchi Cai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Haiquan Kang
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Ying Chen
- Medical Technology School, Xuzhou Medical University, Xuzhou 221004, China
| | - Kaixuan Wang
- Medical Technology School, Xuzhou Medical University, Xuzhou 221004, China
| | - Huimin Qian
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Changjun Bao
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Na Li
- Medical Technology School, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhen Guo
- Medical Technology School, Xuzhou Medical University, Xuzhou 221004, China
| | - Zheng Zhang
- Medical Technology School, Xuzhou Medical University, Xuzhou 221004, China
| | - Jing Wang
- School of Foreign Languages, Shaanxi Normal University, Xi'an 710062, China
| | - Ping Ma
- Medical Technology School, Xuzhou Medical University, Xuzhou 221004, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Bing Gu
- Medical Technology School, Xuzhou Medical University, Xuzhou 221004, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
13
|
Chung The H, Baker S. Out of Asia: the independent rise and global spread of fluoroquinolone-resistant Shigella. Microb Genom 2018; 4. [PMID: 29595412 PMCID: PMC5989582 DOI: 10.1099/mgen.0.000171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Shigella are ranked among the most prevalent aetiologies of diarrhoeal disease worldwide, disproportionately affecting young children in developing countries and high-risk communities in developed settings. Antimicrobial treatment, most commonly with fluoroquinolones, is currently recommended for Shigella infections to alleviate symptoms and control disease transmission. Resistance to fluoroquinolones has emerged in differing Shigella species (S. dysenteriae, flexneri and sonnei) since the turn of the 21st century, originating in endemic areas, and latterly spreading into non-endemic regions. Despite occurring independently, the emergence of fluoroquinolone resistance in these different Shigella species shares striking similarities regarding their epidemiology and resistance mechanisms. Here, we review and discuss the current epidemiology of fluoroquinolone-resistant Shigella species, particularly in the light of recent genomic insights.
Collapse
Affiliation(s)
- Hao Chung The
- Enteric Infections, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- Enteric Infections, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| |
Collapse
|