1
|
Messmer ML, Salapa HE, Popescu BF, Levin MC. RNA Binding Protein Dysfunction Links Smoldering/Slowly Expanding Lesions to Neurodegeneration in Multiple Sclerosis. Ann Neurol 2025; 97:313-328. [PMID: 39422285 DOI: 10.1002/ana.27114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Despite the advances in treatments for multiple sclerosis (MS), unremitting neurodegeneration continues to drive disability and disease progression. Smoldering/slowly expanding lesions (SELs) and dysfunction of the RNA binding protein (RBP) heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) are pathologic hallmarks of MS cortex and intricately tied to disability and neurodegeneration, respectively. We hypothesized that neuronal hnRNP A1 dysfunction contributes to neurodegeneration and is exacerbated by smoldering/SELs in progressive MS. METHODS Neuronal hnRNP A1 pathology (nucleocytoplasmic mislocalization of hnRNP A1) was examined in healthy control and MS brains using immunohistochemistry. MS cases were stratified by severity of hnRNP A1 pathology to examine the link between RBP dysfunction, demyelination, and neurodegeneration. RESULTS We found that smoldering/SELs were only present within a subset of MS tissues characterized by elevated neuronal hnRNP A1 pathology (MS-A1high) in adjacent cortical gray matter. In contrast to healthy controls and MS with low hnRNP A1 pathology (MS-A1low), MS-A1high showed elevated markers of neurodegeneration, including neuronal loss and injury, brain atrophy, axonal loss, and axon degeneration. Additionally, we discovered a subpopulation of morphologically intact neurons lacking expression of NeuN, a neuron-specific RBP, in cortical projection neurons in MS-A1high cases. INTERPRETATION hnRNP A1 dysfunction contributes to neurodegeneration and may be exacerbated by smoldering/SELs in progressive MS. The discovery of NeuN-negative neurons suggests that some cortical neurons may only be injured and not lost. By characterizing RBP pathology in MS cortex, this study has important implications for understanding the pathogenic mechanisms driving neurodegeneration, the substrate of disability and disease progression. ANN NEUROL 2025;97:313-328.
Collapse
Affiliation(s)
- Miranda L Messmer
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hannah E Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bogdan F Popescu
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael C Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
van den Berg KR, Johansson ME, Dirkx MF, Bloem BR, Helmich RC. Changes in Action Tremor in Parkinson's Disease over Time: Clinical and Neuroimaging Correlates. Mov Disord 2025; 40:292-304. [PMID: 39679819 PMCID: PMC11832800 DOI: 10.1002/mds.30081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND The various symptoms of Parkinson's disease (PD) may change differently over time as the disease progresses. Tremor usually manifests early in the disease, but unlike other motor symptoms, its severity may diminish over time. The cerebral mechanisms underlying these symptom-specific longitudinal trajectories are unclear. Previous magnetic resonance imaging (MRI) studies have shown structural changes in brain regions associated with PD tremor, suggesting that structural changes over time may define clinical trajectories. OBJECTIVES The aims were to investigate the longitudinal trajectory of PD tremor in relation to bradykinesia and rigidity, and assess whether tremor progression is related to structural changes in tremor-related areas. METHODS We used data from the Personalized Parkinson Project: a two-year longitudinal study involving 520 PD patients and 60 healthy controls, who were measured twice clinically and with MRI. Mixed-effects models were used to compare tremor, bradykinesia, and rigidity progression; investigate gray matter changes in tremor-related regions (cerebello-thalamo-cortical circuit and pallidum); and calculate associations between symptom severity and brain structure. Associations across the whole brain were included to assess anatomical specificity. RESULTS Bradykinesia and rigidity worsened over 2 years, whereas tremor behaved differently: resting tremor severity remained stable, whereas postural and kinetic tremor severity decreased. Attenuation of postural and kinetic tremor was associated with, but not restricted to, atrophy in tremor-related areas. Opposite relationships were observed for bradykinesia and rigidity. CONCLUSIONS Action tremor (postural and kinetic) is an early symptom of PD, which reduces with disease progression. Longitudinal brain atrophy correlates with tremor and other motor symptoms in opposite ways. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kevin R.E. van den Berg
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Martin E. Johansson
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Michiel F. Dirkx
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Bastiaan R. Bloem
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Rick C. Helmich
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
3
|
Frigerio I, Broeders TAA, Lin CP, Bouwman MMA, Koubiyr I, Barkhof F, Berendse HW, Van De Berg WDJ, Douw L, Jonkman LE. Pathologic Substrates of Structural Brain Network Resilience and Topology in Parkinson Disease Decedents. Neurology 2024; 103:e209678. [PMID: 39042844 PMCID: PMC11314958 DOI: 10.1212/wnl.0000000000209678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/20/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVES In Parkinson disease (PD), α-synuclein spreading through connected brain regions leads to neuronal loss and brain network disruptions. With diffusion-weighted imaging (DWI), it is possible to capture conventional measures of brain network organization and more advanced measures of brain network resilience. We aimed to investigate which neuropathologic processes contribute to regional network topologic changes and brain network resilience in PD. METHODS Using a combined postmortem MRI and histopathology approach, PD and control brain donors with available postmortem in situ 3D T1-weighted MRI, DWI, and brain tissue were selected from the Netherlands Brain Bank and Normal Aging Brain Collection Amsterdam. Probabilistic tractography was performed, and conventional network topologic measures of regional eigenvector centrality and clustering coefficient, and brain network resilience (change in global efficiency upon regional node failure) were calculated. PSer129 α-synuclein, phosphorylated-tau, β-amyloid, neurofilament light-chain immunoreactivity, and synaptophysin density were quantified in 8 cortical regions. Group differences and correlations were assessed with rank-based nonparametric tests, with age, sex, and postmortem delay as covariates. RESULTS Nineteen clinically defined and pathology-confirmed PD (7 F/12 M, 81 ± 7 years) and 15 control (8 F/7 M, 73 ± 9 years) donors were included. With regional conventional measures, we found lower eigenvector centrality only in the parahippocampal gyrus in PD (d = -1.08, 95% CI 0.003-0.010, p = 0.021), which did not associate with underlying pathology. No differences were found in regional clustering coefficient. With the more advanced measure of brain network resilience, we found that the PD brain network was less resilient to node failure of the dorsal anterior insula compared with the control brain network (d = -1.00, 95% CI 0.0012-0.0015, p = 0.018). This change was not directly driven by neuropathologic processes within the dorsal anterior insula or in connected regions but was associated with higher Braak α-synuclein staging (rs = -0.40, p = 0.036). DISCUSSION Although our cohort might suffer from selection bias, our results highlight that regional network disturbances are more complex to interpret than previously believed. Regional neuropathologic processes did not drive regional topologic changes, but a global increase in α-synuclein pathology had a widespread effect on brain network reorganization in PD.
Collapse
Affiliation(s)
- Irene Frigerio
- From the Department of Anatomy and Neurosciences (I.F., T.A.A.B., C.-P.L., M.M.A.B., I.K., W.D.J.V.D.B., L.D., L.E.J.), and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, United Kingdom; and Department of Neurology (H.W.B.), Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands
| | - Tommy A A Broeders
- From the Department of Anatomy and Neurosciences (I.F., T.A.A.B., C.-P.L., M.M.A.B., I.K., W.D.J.V.D.B., L.D., L.E.J.), and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, United Kingdom; and Department of Neurology (H.W.B.), Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands
| | - Chen-Pei Lin
- From the Department of Anatomy and Neurosciences (I.F., T.A.A.B., C.-P.L., M.M.A.B., I.K., W.D.J.V.D.B., L.D., L.E.J.), and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, United Kingdom; and Department of Neurology (H.W.B.), Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands
| | - Maud M A Bouwman
- From the Department of Anatomy and Neurosciences (I.F., T.A.A.B., C.-P.L., M.M.A.B., I.K., W.D.J.V.D.B., L.D., L.E.J.), and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, United Kingdom; and Department of Neurology (H.W.B.), Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands
| | - Ismail Koubiyr
- From the Department of Anatomy and Neurosciences (I.F., T.A.A.B., C.-P.L., M.M.A.B., I.K., W.D.J.V.D.B., L.D., L.E.J.), and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, United Kingdom; and Department of Neurology (H.W.B.), Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands
| | - Frederik Barkhof
- From the Department of Anatomy and Neurosciences (I.F., T.A.A.B., C.-P.L., M.M.A.B., I.K., W.D.J.V.D.B., L.D., L.E.J.), and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, United Kingdom; and Department of Neurology (H.W.B.), Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands
| | - Henk W Berendse
- From the Department of Anatomy and Neurosciences (I.F., T.A.A.B., C.-P.L., M.M.A.B., I.K., W.D.J.V.D.B., L.D., L.E.J.), and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, United Kingdom; and Department of Neurology (H.W.B.), Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands
| | - Wilma D J Van De Berg
- From the Department of Anatomy and Neurosciences (I.F., T.A.A.B., C.-P.L., M.M.A.B., I.K., W.D.J.V.D.B., L.D., L.E.J.), and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, United Kingdom; and Department of Neurology (H.W.B.), Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands
| | - Linda Douw
- From the Department of Anatomy and Neurosciences (I.F., T.A.A.B., C.-P.L., M.M.A.B., I.K., W.D.J.V.D.B., L.D., L.E.J.), and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, United Kingdom; and Department of Neurology (H.W.B.), Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands
| | - Laura E Jonkman
- From the Department of Anatomy and Neurosciences (I.F., T.A.A.B., C.-P.L., M.M.A.B., I.K., W.D.J.V.D.B., L.D., L.E.J.), and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, United Kingdom; and Department of Neurology (H.W.B.), Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands
| |
Collapse
|
4
|
Lv H, Wang Q, Liu F, Jin L, Ren P, Li L. A biochemical feedback signal for hypothermia treatment for neonatal hypoxic-ischemic encephalopathy: focusing on central nervous system proteins in biofluids. Front Pediatr 2024; 12:1288853. [PMID: 38766393 PMCID: PMC11100326 DOI: 10.3389/fped.2024.1288853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Hypothermia has been widely used to treat moderate to severe neonatal hypoxic-ischemic encephalopathy (HIE), yet evaluating the effects of hypothermia relies on clinical neurology, neuroimaging, amplitude-integrated electroencephalography, and follow-up data on patient outcomes. Biomarkers of brain injury have been considered for estimating the effects of hypothermia. Proteins specific to the central nervous system (CNS) are components of nervous tissue, and once the CNS is damaged, these proteins are released into biofluids (cerebrospinal fluid, blood, urine, tears, saliva), and they can be used as markers of brain damage. Clinical reports have shown that CNS-specific marker proteins (CNSPs) were early expressed in biofluids after brain damage and formed unique biochemical profiles. As a result, these markers may serve as an indicator for screening brain injury in infants, monitoring disease progression, identifying damage region of brain, and assessing the efficacy of neuroprotective measures. In clinical work, we have found that there are few reports on using CNSPs as biological signals in hypothermia for neonatal HIE. The aim of this article is to review the classification, origin, biochemical composition, and physiological function of CNSPs with changes in their expression levels after hypothermia for neonatal HIE. Hopefully, this review will improve the awareness of CNSPs among pediatricians, and encourage future studies exploring the mechanisms behind the effects of hypothermia on these CNSPs, in order to reduce the adverse outcome of neonatal HIE.
Collapse
Affiliation(s)
- Hongyan Lv
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei, China
- Department of Neonatal Pathology, Handan Maternal and Child Health Care Hospital, Handan, Hebei, China
| | - Qiuli Wang
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei, China
| | - Fang Liu
- Department of Pediatrics, The 980 Hospital of the PLA Joint Logistics Support Force, Shijiazhuang, China
| | - Linhong Jin
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei, China
| | - Pengshun Ren
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei, China
| | - Lianxiang Li
- Department of Neonatal Pathology, Handan Maternal and Child Health Care Hospital, Handan, Hebei, China
| |
Collapse
|
5
|
Nuber S, Zhang X, McCaffery TD, Moors TE, Adom MA, Hahn WN, Martin D, Ericsson M, Tripathi A, Dettmer U, Svenningsson P, Selkoe DJ. Generation of G51D and 3D mice reveals decreased α-synuclein tetramer-monomer ratios promote Parkinson's disease phenotypes. NPJ Parkinsons Dis 2024; 10:47. [PMID: 38424059 PMCID: PMC10904737 DOI: 10.1038/s41531-024-00662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Mutations in the α-Synuclein (αS) gene promote αS monomer aggregation that causes neurodegeneration in familial Parkinson's disease (fPD). However, most mouse models expressing single-mutant αS transgenes develop neuronal aggregates very slowly, and few have dopaminergic cell loss, both key characteristics of PD. To accelerate neurotoxic aggregation, we previously generated fPD αS E46K mutant mice with rationally designed triple mutations based on the α-helical repeat motif structure of αS (fPD E46K→3 K). The 3 K variant increased αS membrane association and decreased the physiological tetramer:monomer ratio, causing lipid- and vesicle-rich inclusions and robust tremor-predominant, L-DOPA responsive PD-like phenotypes. Here, we applied an analogous approach to the G51D fPD mutation and its rational amplification (G51D → 3D) to generate mutant mice. In contrast to 3 K mice, G51D and 3D mice accumulate monomers almost exclusively in the cytosol while also showing decreased αS tetramer:monomer ratios. Both 1D and 3D mutant mice gradually accumulate insoluble, higher-molecular weight αS oligomers. Round αS neuronal deposits at 12 mos immunolabel for ubiquitin and pSer129 αS, with limited proteinase K resistance. Both 1D and 3D mice undergo loss of striatal TH+ fibers and midbrain dopaminergic neurons by 12 mos and a bradykinesia responsive to L-DOPA. The 3D αS mice have decreased tetramer:monomer equilibria and recapitulate major features of PD. These fPD G51D and 3D mutant mice should be useful models to study neuronal αS-toxicity associated with bradykinetic motor phenotypes.
Collapse
Affiliation(s)
- Silke Nuber
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Xiaoqun Zhang
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Thomas D McCaffery
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Tim E Moors
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Marie-Alexandre Adom
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Wolf N Hahn
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Dylan Martin
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Maria Ericsson
- Electron Microscopy Laboratory, Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Arati Tripathi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Per Svenningsson
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Lin CP, Frigerio I, Bol JGJM, Bouwman MMA, Wesseling AJ, Dahl MJ, Rozemuller AJM, van der Werf YD, Pouwels PJW, van de Berg WDJ, Jonkman LE. Microstructural integrity of the locus coeruleus and its tracts reflect noradrenergic degeneration in Alzheimer's disease and Parkinson's disease. Transl Neurodegener 2024; 13:9. [PMID: 38336865 PMCID: PMC10854137 DOI: 10.1186/s40035-024-00400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Degeneration of the locus coeruleus (LC) noradrenergic system contributes to clinical symptoms in Alzheimer's disease (AD) and Parkinson's disease (PD). Diffusion magnetic resonance imaging (MRI) has the potential to evaluate the integrity of the LC noradrenergic system. The aim of the current study was to determine whether the diffusion MRI-measured integrity of the LC and its tracts are sensitive to noradrenergic degeneration in AD and PD. METHODS Post-mortem in situ T1-weighted and multi-shell diffusion MRI was performed for 9 AD, 14 PD, and 8 control brain donors. Fractional anisotropy (FA) and mean diffusivity were derived from the LC, and from tracts between the LC and the anterior cingulate cortex, the dorsolateral prefrontal cortex (DLPFC), the primary motor cortex (M1) or the hippocampus. Brain tissue sections of the LC and cortical regions were obtained and immunostained for dopamine-beta hydroxylase (DBH) to quantify noradrenergic cell density and fiber load. Group comparisons and correlations between outcome measures were performed using linear regression and partial correlations. RESULTS The AD and PD cases showed loss of LC noradrenergic cells and fibers. In the cortex, the AD cases showed increased DBH + immunoreactivity in the DLPFC compared to PD cases and controls, while PD cases showed reduced DBH + immunoreactivity in the M1 compared to controls. Higher FA within the LC was found for AD, which was correlated with loss of noradrenergic cells and fibers in the LC. Increased FA of the LC-DLPFC tract was correlated with LC noradrenergic fiber loss in the combined AD and control group, whereas the increased FA of the LC-M1 tract was correlated with LC noradrenergic neuronal loss in the combined PD and control group. The tract alterations were not correlated with cortical DBH + immunoreactivity. CONCLUSIONS In AD and PD, the diffusion MRI-detected alterations within the LC and its tracts to the DLPFC and the M1 were associated with local noradrenergic neuronal loss within the LC, rather than noradrenergic changes in the cortex.
Collapse
Affiliation(s)
- Chen-Pei Lin
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands.
| | - Irene Frigerio
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - John G J M Bol
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Maud M A Bouwman
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - Alex J Wesseling
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195, Berlin, Germany
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Annemieke J M Rozemuller
- Amsterdam UMC, Department of Pathology, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity and Attention Program, Amsterdam, The Netherlands
| | - Petra J W Pouwels
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam UMC, Department of Radiology and Nuclear Medicine, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Frigerio I, Bouwman MMA, Noordermeer RTGMM, Podobnik E, Popovic M, Timmermans E, Rozemuller AJM, van de Berg WDJ, Jonkman LE. Regional differences in synaptic degeneration are linked to alpha-synuclein burden and axonal damage in Parkinson's disease and dementia with Lewy bodies. Acta Neuropathol Commun 2024; 12:4. [PMID: 38173031 PMCID: PMC10765668 DOI: 10.1186/s40478-023-01711-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Regional differences in synaptic degeneration may underlie differences in clinical presentation and neuropathological disease progression in Parkinson's Disease (PD) and Dementia with Lewy bodies (DLB). Here, we mapped and quantified synaptic degeneration in cortical brain regions in PD, PD with dementia (PDD) and DLB, and assessed whether regional differences in synaptic loss are linked to axonal degeneration and neuropathological burden. We included a total of 47 brain donors, 9 PD, 12 PDD, 6 DLB and 20 non-neurological controls. Synaptophysin+ and SV2A+ puncta were quantified in eight cortical regions using a high throughput microscopy approach. Neurofilament light chain (NfL) immunoreactivity, Lewy body (LB) density, phosphorylated-tau and amyloid-β load were also quantified. Group differences in synaptic density, and associations with neuropathological markers and Clinical Dementia Rating (CDR) scores, were investigated using linear mixed models. We found significantly decreased synaptophysin and SV2A densities in the cortex of PD, PDD and DLB cases compared to controls. Specifically, synaptic density was decreased in cortical regions affected at Braak α-synuclein stage 5 in PD (middle temporal gyrus, anterior cingulate and insula), and was additionally decreased in cortical regions affected at Braak α-synuclein stage 4 in PDD and DLB compared to controls (entorhinal cortex, parahippocampal gyrus and fusiform gyrus). Synaptic loss associated with higher NfL immunoreactivity and LB density. Global synaptophysin loss associated with longer disease duration and higher CDR scores. Synaptic neurodegeneration occurred in temporal, cingulate and insular cortices in PD, as well as in parahippocampal regions in PDD and DLB. In addition, synaptic loss was linked to axonal damage and severe α-synuclein burden. These results, together with the association between synaptic loss and disease progression and cognitive impairment, indicate that regional synaptic loss may underlie clinical differences between PD and PDD/DLB. Our results might provide useful information for the interpretation of synaptic biomarkers in vivo.
Collapse
Affiliation(s)
- Irene Frigerio
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands.
| | - Maud M A Bouwman
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - Ruby T G M M Noordermeer
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Ema Podobnik
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Marko Popovic
- Department Molecular cell biology & Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Evelien Timmermans
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Memon A, Moore JA, Kang C, Ismail Z, Forkert ND. Visual Functions Are Associated with Biomarker Changes in Alzheimer's Disease. J Alzheimers Dis 2024; 99:623-637. [PMID: 38669529 DOI: 10.3233/jad-231084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background While various biomarkers of Alzheimer's disease (AD) have been associated with general cognitive function, their association to visual-perceptive function across the AD spectrum warrant more attention due to its significant impact on quality of life. Thus, this study explores how AD biomarkers are associated with decline in this cognitive domain. Objective To explore associations between various fluid and imaging biomarkers and visual-based cognitive assessments in participants across the AD spectrum. Methods Data from participants (N = 1,460) in the Alzheimer's Disease Neuroimaging Initiative were analyzed, including fluid and imaging biomarkers. Along with the Mini-Mental State Examination (MMSE), three specific visual-based cognitive tests were investigated: Trail Making Test (TMT) A and TMT B, and the Boston Naming Test (BNT). Locally estimated scatterplot smoothing curves and Pearson correlation coefficients were used to examine associations. Results MMSE showed the strongest correlations with most biomarkers, followed by TMT-B. The p-tau181/Aβ1-42 ratio, along with the volume of the hippocampus and entorhinal cortex, had the strongest associations among the biomarkers. Conclusions Several biomarkers are associated with visual processing across the disease spectrum, emphasizing their potential in assessing disease severity and contributing to progression models of visual function and cognition.
Collapse
Affiliation(s)
- Ashar Memon
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jasmine A Moore
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Program, University of Calgary, Calgary, AB, Canada
| | - Chris Kang
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Zahinoor Ismail
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Departments of Clinical Neurosciences, Psychiatry, Community Health Sciences, and Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Nils D Forkert
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Departments of Clinical Neurosciences, Psychiatry, Community Health Sciences, and Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Departments of Clinical Neurosciences, Psychiatry, Community Health Sciences, and Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Jellinger KA. Pathobiology of Cognitive Impairment in Parkinson Disease: Challenges and Outlooks. Int J Mol Sci 2023; 25:498. [PMID: 38203667 PMCID: PMC10778722 DOI: 10.3390/ijms25010498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cognitive impairment (CI) is a characteristic non-motor feature of Parkinson disease (PD) that poses a severe burden on the patients and caregivers, yet relatively little is known about its pathobiology. Cognitive deficits are evident throughout the course of PD, with around 25% of subtle cognitive decline and mild CI (MCI) at the time of diagnosis and up to 83% of patients developing dementia after 20 years. The heterogeneity of cognitive phenotypes suggests that a common neuropathological process, characterized by progressive degeneration of the dopaminergic striatonigral system and of many other neuronal systems, results not only in structural deficits but also extensive changes of functional neuronal network activities and neurotransmitter dysfunctions. Modern neuroimaging studies revealed multilocular cortical and subcortical atrophies and alterations in intrinsic neuronal connectivities. The decreased functional connectivity (FC) of the default mode network (DMN) in the bilateral prefrontal cortex is affected already before the development of clinical CI and in the absence of structural changes. Longitudinal cognitive decline is associated with frontostriatal and limbic affections, white matter microlesions and changes between multiple functional neuronal networks, including thalamo-insular, frontoparietal and attention networks, the cholinergic forebrain and the noradrenergic system. Superimposed Alzheimer-related (and other concomitant) pathologies due to interactions between α-synuclein, tau-protein and β-amyloid contribute to dementia pathogenesis in both PD and dementia with Lewy bodies (DLB). To further elucidate the interaction of the pathomechanisms responsible for CI in PD, well-designed longitudinal clinico-pathological studies are warranted that are supported by fluid and sophisticated imaging biomarkers as a basis for better early diagnosis and future disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
10
|
Vo A, Tremblay C, Rahayel S, Shafiei G, Hansen JY, Yau Y, Misic B, Dagher A. Network connectivity and local transcriptomic vulnerability underpin cortical atrophy progression in Parkinson's disease. Neuroimage Clin 2023; 40:103523. [PMID: 38016407 PMCID: PMC10687705 DOI: 10.1016/j.nicl.2023.103523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/30/2023]
Abstract
Parkinson's disease pathology is hypothesized to spread through the brain via axonal connections between regions and is further modulated by local vulnerabilities within those regions. The resulting changes to brain morphology have previously been demonstrated in both prodromal and de novo Parkinson's disease patients. However, it remains unclear whether the pattern of atrophy progression in Parkinson's disease over time is similarly explained by network-based spreading and local vulnerability. We address this gap by mapping the trajectory of cortical atrophy rates in a large, multi-centre cohort of Parkinson's disease patients and relate this atrophy progression pattern to network architecture and gene expression profiles. Across 4-year follow-up visits, increased atrophy rates were observed in posterior, temporal, and superior frontal cortices. We demonstrated that this progression pattern was shaped by network connectivity. Regional atrophy rates were strongly related to atrophy rates across structurally and functionally connected regions. We also found that atrophy progression was associated with specific gene expression profiles. The genes whose spatial distribution in the brain was most related to atrophy rate were those enriched for mitochondrial and metabolic function. Taken together, our findings demonstrate that both global and local brain features influence vulnerability to neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Andrew Vo
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Christina Tremblay
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Shady Rahayel
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada; Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Canada
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Justine Y Hansen
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Yvonne Yau
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
11
|
Sanghai N, Tranmer GK. Biochemical and Molecular Pathways in Neurodegenerative Diseases: An Integrated View. Cells 2023; 12:2318. [PMID: 37759540 PMCID: PMC10527779 DOI: 10.3390/cells12182318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative diseases (NDDs) like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are defined by a myriad of complex aetiologies. Understanding the common biochemical molecular pathologies among NDDs gives an opportunity to decipher the overlapping and numerous cross-talk mechanisms of neurodegeneration. Numerous interrelated pathways lead to the progression of neurodegeneration. We present evidence from the past pieces of literature for the most usual global convergent hallmarks like ageing, oxidative stress, excitotoxicity-induced calcium butterfly effect, defective proteostasis including chaperones, autophagy, mitophagy, and proteosome networks, and neuroinflammation. Herein, we applied a holistic approach to identify and represent the shared mechanism across NDDs. Further, we believe that this approach could be helpful in identifying key modulators across NDDs, with a particular focus on AD, PD, and ALS. Moreover, these concepts could be applied to the development and diagnosis of novel strategies for diverse NDDs.
Collapse
Affiliation(s)
- Nitesh Sanghai
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
| | - Geoffrey K. Tranmer
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|