1
|
Onen H, Kaddumukasa MA, Kayondo JK, Akol AM, Tripet F. A review of applications and limitations of using aquatic macroinvertebrate predators for biocontrol of the African malaria mosquito, Anopheles gambiae sensu lato. Parasit Vectors 2024; 17:257. [PMID: 38867296 PMCID: PMC11170859 DOI: 10.1186/s13071-024-06332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/25/2024] [Indexed: 06/14/2024] Open
Abstract
Macroinvertebrate predators such as backswimmers (Heteroptera: Notonectidae), dragonflies (Odonata: Aeshnidae), and predatory diving beetles (Coleoptera: Dytiscidae) naturally inhabit aquatic ecosystems. Some aquatic ecosystems inhabited by these macroinvertebrate predator taxa equally form malaria vector larval habitats. The presence of these predators in malaria vector larval habitats can negatively impact on development, adult body size, fecundity, and longevity of the malaria vectors, which form important determinants of their fitness and future vectorial capacity. These potential negative impacts caused by aquatic macroinvertebrate predators on malaria vectors warrant their consideration as biocontrol agents in an integrated program to combat malaria. However, the use of these macroinvertebrate predators in malaria biocontrol is currently constrained by technical bottlenecks linked to their generalist predatory tendencies and often long life cycles, demanding complex rearing systems. We reviewed the literature on the use of aquatic macroinvertebrate predators for biocontrol of malaria vectors from the An. gambiae s.l. complex. The available information from laboratory and semi-field studies has shown that aquatic macroinvertebrates have the potential to consume large numbers of mosquito larvae and could thus offer an additional approaches in integrated malaria vector management strategies. The growing number of semi-field structures available in East and West Africa provides an opportunity to conduct ecological experimental studies to reconsider the potential of using aquatic macroinvertebrate predators as a biocontrol tool. To achieve a more sustainable approach to controlling malaria vector populations, additional, non-chemical interventions could provide a more sustainable approach, in comparison with the failing chemical control tools, and should be urgently considered for integration with the current mosquito vector control campaigns.
Collapse
Affiliation(s)
- Hudson Onen
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, School of Biosciences, Makerere University, P.O Box 7062, Kampala, Uganda.
- Department of Entomology, Uganda Virus Research Institute (UVRI), P.O Box 49, Entebbe, Uganda.
- Department of Biological Sciences, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda.
| | - Martha A Kaddumukasa
- Department of Biological Sciences, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
| | - Jonathan K Kayondo
- Department of Entomology, Uganda Virus Research Institute (UVRI), P.O Box 49, Entebbe, Uganda
| | - Anne M Akol
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, School of Biosciences, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Frédéric Tripet
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Rahong P, Techakijvej C, Phalaraksh C. Predators as biocontrol agents of mosquito larvae in small and large habitats in Chiang Mai, Thailand. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2023; 48:78-88. [PMID: 37843450 DOI: 10.52707/1081-1710-48.2.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/21/2023] [Indexed: 10/17/2023]
Abstract
Controlling mosquito-borne disease is a major global challenge due to the rise of insecticide-resistant mosquitoes. In response, we conducted a study in Chiang Mai Province, Thailand, which is one of the largest and the most popular cities for tourists in Southeast Asia, to explore the potential of local species as biological control agents for mosquito larvae. Mosquito larvae and aquatic predators were sampled from large and small habitats, while relevant physico-chemical parameters were measured. The study identified 560 predators and 1,572 mosquitoes, with most mosquito species belonging to the genus Culex. Additionally, the study identified 16 predator taxa, including four fish taxa and 12 taxa of predatory aquatic insects belonging to four orders: Coleoptera, Hemiptera, Odonata, and Diptera. The study found that several locally occurring predator species, namely Poecillia, Laccophilus, Lutzia, Toxorhynchites splendens, Agrionoptera, and Pseudarion, shared habitats with mosquitoes, indicating their potential as effective biological control agents for mosquito control. Conductivity, dissolved oxygen, and pH were the important physico-chemical parameters that affect both predators and mosquito larvae. Consequently, promoting native predators and reducing mosquito larvae through habitat management would be a sustainable and ecologically friendly approach in large habitats where it is not possible to remove mosquito oviposition sites. In smaller habitats, releasing local aquatic predators and removing oviposition sites may be a suitable strategy.
Collapse
Affiliation(s)
- Panida Rahong
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chotiwut Techakijvej
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chitchol Phalaraksh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand,
| |
Collapse
|
3
|
Orondo PW, Zhou G, Ochwedo KO, Wang X, Ondeto BM, Lee MC, Nyanjom SG, Atieli H, Githeko AK, Kazura JW, Yan G. Effect of predators on Anopheles arabiensis and Anopheles funestus larval survivorship in Homa Bay County Western Kenya. Malar J 2023; 22:298. [PMID: 37798779 PMCID: PMC10557226 DOI: 10.1186/s12936-023-04741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND The rise of insecticide resistance against malaria vectors in sub-Saharan Africa has resulted in the need to consider other methods of vector control. The potential use of biological methods, including larvivorous fish, Bacillus thuringiensis israelensis (Bti) and plant shading, is sustainable and environmentally friendly options. This study examined the survivorship of Anopheles arabiensis and Anopheles funestus larvae and habitat productivity in four permanent habitat types in Homa Bay county, western Kenya. METHODS Predator densities were studied in a laboratory setup while habitat productivity and larval survivorship was studied in field setup. RESULTS Fish were observed as the most efficient predator (75.8% larval reduction rate) followed by water boatman (69%), and dragonfly nymph (69.5%) in predation rates. Lower predation rates were observed in backswimmers (31%), water beetles (14.9%), water spiders (12.2%), mayflies (7.3%), and tadpoles (6.9%). Increase in predator density in the field setup resulted in decreased Culex larval density. Larval and pupa age-specific distribution was determined and their survivorship curves constructed. Combined larvae (Stage I-IV) to pupa mortality was over 97% for An. arabiensis and 100% for An. funestus. The highest larval stage survival rate was from larval stages I to II and the lowest from larval stage IV to pupa. Stage-specific life tables indicated high mortality rates at every developmental stage, especially at the larval stage II and III. CONCLUSION Determination of the efficiency of various larval predators and habitat productivity will help with the correct identification of productive habitats and selection of complementary vector control methods through environmental management and/or predator introduction (for instance fish) in the habitats.
Collapse
Affiliation(s)
- Pauline Winnie Orondo
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya.
- International Center of Excellence for Malaria Research, Tom Mboya University, College of Maseno University, Homa Bay, Kenya.
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Kevin O Ochwedo
- International Center of Excellence for Malaria Research, Tom Mboya University, College of Maseno University, Homa Bay, Kenya
| | - Xiaoming Wang
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Benyl M Ondeto
- International Center of Excellence for Malaria Research, Tom Mboya University, College of Maseno University, Homa Bay, Kenya
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Steven G Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Harrysone Atieli
- International Center of Excellence for Malaria Research, Tom Mboya University, College of Maseno University, Homa Bay, Kenya
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - James W Kazura
- Center for Global Health & Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA.
| |
Collapse
|
4
|
Olagunju EA. Is the presence of mosquitoes an indicator of poor environmental sanitation? JOURNAL OF WATER AND HEALTH 2023; 21:385-401. [PMID: 37338318 PMCID: wh_2023_280 DOI: 10.2166/wh.2023.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The World Health Organization has designated mosquitoes as the most lethal animal since they are known to spread pathogen-transmitting organisms. Understanding the many environmental elements that contribute to the spread of these vectors is one of the many strategies used to stop them. If there are mosquitoes around people, it may indicate that there is not an appropriate environmental sanitation program in place in the community or region. Environmental sanitation involves improving any elements of the physical environment that could have a negative impact on a person's survival, health, or physical environment. Keywords containing 'Aedes,' 'Culex,' 'Anopheles,' 'dengue,' 'malaria,' 'yellow fever,' 'Zika,' 'West Nile,' 'chikungunya,' 'resident,' 'environment,' 'sanitation,' 'mosquito control,' and 'breeding sites' of published articles on PubMed, Google Scholar, and ResearchGate were reviewed. It was discovered that the general population should be involved in mosquito and mosquito-borne disease control. Collaboration between health professionals and the general population is essential. The purpose of this paper is to increase public awareness of environmental health issues related to diseases carried by mosquitoes.
Collapse
Affiliation(s)
- Emmanuel Ajibola Olagunju
- Department of Crop and Environmental Protection, Faculty of Agricultural Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria E-mail:
| |
Collapse
|
5
|
Gopinath PM, Darekar AS, Kanimozhi S, Mukherjee A, Chandrasekaran N. Female mosquito-a potential vector for transporting plastic residues to humans. CHEMOSPHERE 2022; 301:134666. [PMID: 35452648 DOI: 10.1016/j.chemosphere.2022.134666] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/02/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
With the prodigious use of plastics in the industrial sector and daily life, plastic has become one of the fastest-growing sources of pollution in the aquatic environment. Therefore, ingestion of micro/nanoplastics (MP/NPs) by aquatic organisms is inevitable. But the knowledge on the definite effect, ontogenetic transfer, and translocation of NPs remains incipient. Thus, this study examines the abundance of MPs in mosquito larvae collected from the sewage pit. Additionally, this study demonstrates the MPs-mediated biochemical alterations and effects on development of mosquito, and then ontogenetic transfer and translocation of NPs in Aedes aegypti. Totally 1241 MPs belonging to polyethylene, polycarbonate, polypropylene, polystyrene, polyvinyl chloride and nylon with sizes ranging from 0.5 μm to 80 μm in diameter were isolated from the mosquito larvae. Indeed all the four stages of mosquito larvae feed on NPs and subsequently transfer them to non-feeding pupa and then to flying adult mosquitoes, further to the offspring. However, the NPs exposure and accumulation did not affect the survival of mosquitoes, but altered the biochemical constituents, thereby delaying the development of mosquitoes. Notably the female mosquitoes that emerged from the NPs treatment group showed increased blood-feeding activity and increased starvation resistance capacity. The puzzling accumulation of NPs/residues in different organs, especially in the salivary gland signifies that female mosquitoes could potentially inject polymer residues into humans and animals. At the outset, these observations emphasize that the mosquitoes act as a vector of NPs in the aqueous environment and transport them to terrestrial animals.
Collapse
Affiliation(s)
| | - Ankita Shivaji Darekar
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India
| | - Subramanian Kanimozhi
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India.
| |
Collapse
|
6
|
Larval mosquito management and risk to aquatic ecosystems: A comparative approach including current tactics and gene-drive Anopheles techniques. Transgenic Res 2022; 31:489-504. [PMID: 35798930 PMCID: PMC9489571 DOI: 10.1007/s11248-022-00315-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022]
Abstract
Genetic engineering of mosquitoes represents a promising tactic for reducing human suffering from malaria. Gene-drive techniques being developed that suppress or modify populations of Anopheles gambiae have the potential to be used with, or even possibly obviate, microbial and synthetic insecticides. However, these techniques are new and therefore there is attendant concern and uncertainty from regulators, policymakers, and the public about their environmental risks. Therefore, there is a need to assist decision-makers and public health stewards by assessing the risks associated with these newer mosquito management tactics so the risks can be compared as a basis for informed decision making. Previously, the effect of gene-drive mosquitoes on water quality in Africa was identified as a concern by stakeholders. Here, we use a comparative risk assessment approach for the effect of gene-drive mosquitoes on water quality in Africa. We compare the use of existing larvicides and the proposed genetic techniques in aquatic environments. Based on our analysis, we conclude that the tactic of gene-drive Anopheles for malaria management is unlikely to result in risks to aquatic environments that exceed current tactics for larval mosquitoes. As such, these new techniques would likely comply with currently recommended safety standards.
Collapse
|
7
|
Obi OA, Adebote DA, Nock IH, Josiah JG. Ecology of Aedes vittatus (Diptera: Culicidae) in rock pools across agroecosystem in Northern Savanna, Nigeria. J Vector Borne Dis 2022; 59:265-274. [PMID: 36511044 DOI: 10.4103/0972-9062.342395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND & OBJECTIVES This study focuses on modulating dexterity of some ecological variables of Aedes vittatus classically breeding in rocky habitats. The study provides a useful insight into ecological variables that underpin or hinder profuse breeding of Ae. vittatus in rock pools and its probable role in disease transmission. METHODS HANNA HI98129 pH/EC/TDS/TEMP meter was used in situ while standard protocols were used to determine other hydro-chemical variables. Aedes vittatus larvae were obtained with soup ladle and modified ladle dippers. D-frame net was used to capture macroinvertebrates while plankton net was used to obtain samples of microalgae. Tadpoles and water turtles were collected with fine mesh invertebrate net. Macrophytes were uprooted and identified at the Herbarium Unit, Department of Botany, Ahmadu Bello University, Zaria. The influence of physicochemical variables was correlated with distribution of Ae. vittatus using Principal Component Analysis. Regression and ANOVA were used to test for association between predictor variables and mosquito abundance and for the difference amongst inselbergs. RESULTS Linear larval density of Ae. vittatus in rock pools which tapered across Guinea savanna were obtained from twenty-one sites with average density of 139.6 in Sudan savanna. Guinea savanna had an average larval density of 75.5 with lower subsets of moving average densities compared to Sudan savanna. One hundred and sixty-one aquatic insects belonging to four insect orders cohabited rock pools with Ae. vittatus. Toads and frogs' tadpoles were of Bufonidae and Pyxicephalidae families while water turtles belong to Emydidae. pH, TDS (ppm), EC (μs/cm) and alkalinity (mg/l) differed significantly (p<0.05) with the abundance of Ae. vittatus in rock pools. Temperature, depth, water hardness and total suspended solid had direct influence on the distribution of Ae. vittatus in rock pools across sites. Significant positive correlation exists between aquatic insects and abundance of Ae. vittatus. Hydroperiod length, concentration of nitrate and pH were determinants that leverage profuse breeding of Ae. vittatus and survival of rock pool biota. INTERPRETATION & CONCLUSION Results revealed that the bearing influence of rock pool variables is inevitable for breeding of Ae. vittatus. A well defined measure of efficacy incorporating indigenous communities for sustained vector control on inselbergs will go a long way in decimating population of Ae. vittatus and limit the risk of spread of yellow fever hitherto areas not thriving.
Collapse
Affiliation(s)
- Okechukwu A Obi
- Department of Zoology, Federal University of Agriculture, Makurdi, Benue State, Nigeria
| | - David A Adebote
- Department of Zoology, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Ishaya H Nock
- Department of Zoology, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - James G Josiah
- Department of Biotechnology, School of Sciences, Mewar International University, Masaka, Nasarawa State, Nigeria
| |
Collapse
|
8
|
Van Duong C, Phuong Tran UT, Van Nguyen V, Bae YJ. Predator selection and predator-prey interactions for the biological control of mosquito dengue vectors in northern Vietnam. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2021; 46:163-172. [PMID: 35230021 DOI: 10.52707/1081-1710-46.2.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/17/2021] [Indexed: 06/14/2023]
Abstract
Predators and their interactions with target prey influence the efficiency of control strategies. In the present study, we demonstrate the implementation of natural predator selection for controlling dengue vectors in northern Vietnam through field-based observation of aquatic insect predators in natural habitats and lab-based assessment of predatorial capacities for several aquatic insect predators. The selected species was then used to evaluate the predatory-prey interaction using functional responses (FRs) toward 3rd- and 4th-instar larvae of four major medical mosquito species (Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles minimus). The preference of selected predators for Ae. aegypti larvae over other mosquito larvae was also investigated. Both field observation and lab experiments indicated that the giant water bug Diplonychus rusticus was abundant and exhibited the highest predatory capacity for mosquito larvae. The predator exhibited type II FRs when offered each of the four prey species, and the greatest attack rates were observed for Ae. aegypti and Ae. albopictus, with only negligible differences observed in the handling times of the prey species. Further, Manly's selectivity (α) values calculated from the prey choice experiments showed that Ae. aegypti was preferred over both Cx. quinquefasciatus and An. minimus. Together, these findings indicate that D. rusticus could be successfully used to facilitate the biological control of both Ae. aegypti and Ae. albopictus within the species' distributional overlap in Southeast Asia.
Collapse
Affiliation(s)
- Cuong Van Duong
- Department of Environmental Science and Ecological Engineering, College of Life Sciences, Korea University, Seoul 02841, Korea
| | - Uyen Thi Phuong Tran
- Department of Applied Zoology, Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Vinh Van Nguyen
- Department of Applied Zoology, Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Yeon Jae Bae
- Department of Environmental Science and Ecological Engineering, College of Life Sciences, Korea University, Seoul 02841, Korea,
| |
Collapse
|
9
|
Debrah I, Afrane YA, Amoah LE, Ochwedo KO, Mukabana WR, Zhong D, Zhou G, Lee M, Onyango SA, Magomere EO, Atieli H, Githeko AK, Yan G. Larval ecology and bionomics of Anopheles funestus in highland and lowland sites in western Kenya. PLoS One 2021; 16:e0255321. [PMID: 34634069 PMCID: PMC8504749 DOI: 10.1371/journal.pone.0255321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Background An. funestus is a major Afrotropical vector of human malaria. This study sought to investigate the larval ecology, sporozoite infection rates and blood meal sources of An. funestus in western Kenya. Methods Larval surveys were carried out in Bungoma (Highland) and Kombewa (lowland) of western Kenya. Aquatic habitats were identified, characterized, georeferenced and carefully examined for mosquito larvae and predators. Indoor resting mosquitoes were sampled using pyrethrum spray catches. Adults and larvae were morphologically and molecularly identified to species. Sporozoite infections and blood meal sources were detected using real-time PCR and ELISA respectively. Results Of the 151 aquatic habitats assessed, 62/80 (78%) in Bungoma and 58/71(82%) in Kombewa were positive for mosquito larvae. Of the 3,193 larvae sampled, An. funestus larvae constitute 38% (1224/3193). Bungoma recorded a higher number of An. funestus larvae (85%, 95%, CI, 8.722–17.15) than Kombewa (15%, 95%, CI, 1.33–3.91). Molecular identification of larvae showed that 89% (n = 80) were An. funestus. Approximately 59%, 35% and 5% of An. funestus larvae co-existed with An. gambiae s.l, Culex spp and An. coustani in the same habitats respectively. Of 1,221 An. funestus s.l adults sampled, molecular identifications revealed that An. funestus constituted 87% (n = 201) and 88% (n = 179) in Bungoma and Kombewa, respectively. The Plasmodium falciparum sporozoite rate of An. funestus in Bungoma and Kombewa was 2% (3/174) and 1% (2/157), respectively, and the human blood index of An. funestus was 84% (48/57) and 89% (39/44) and for Bungoma and Kombewa, respectively. Conclusion Man-made ponds had the highest abundance of An. funestus larvae. Multiple regression and principal component analyses identified the distance to the nearest house as the key environmental factor associated with the abundance of An. funestus larvae in aquatic habitats. This study serves as a guide for the control of An. funestus and other mosquito species to complement existing vector control strategies.
Collapse
Affiliation(s)
- Isaiah Debrah
- Department of Biochemistry, Cell and Molecular Biology, West Africa Centre for Cell Biology of Infectious Pathogen, University of Ghana, Accra, Ghana
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homabay, Kenya
| | - Yaw A. Afrane
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Linda E. Amoah
- Department of Biochemistry, Cell and Molecular Biology, West Africa Centre for Cell Biology of Infectious Pathogen, University of Ghana, Accra, Ghana
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kevin O. Ochwedo
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homabay, Kenya
| | | | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, United States of America
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, United States of America
| | - Ming‑Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, United States of America
| | - Shirley A. Onyango
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homabay, Kenya
| | - Edwin O. Magomere
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homabay, Kenya
| | - Harrysone Atieli
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homabay, Kenya
| | | | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Onen H, Odong R, Chemurot M, Tripet F, Kayondo JK. Predatory and competitive interaction in Anopheles gambiae sensu lato larval breeding habitats in selected villages of central Uganda. Parasit Vectors 2021; 14:420. [PMID: 34419140 PMCID: PMC8380324 DOI: 10.1186/s13071-021-04926-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background Malaria is often persistent in communities surrounded by mosquito breeding habitats. Anopheles gambiae sensu lato exploit a variety of aquatic habitats, but the biotic determinants of its preferences are poorly understood. This study aimed to identify and quantify macroinvertebrates in different habitat types with determined water physico-chemical parameters to establish those preferred by An. gambiae s.l. larvae as well as their predators and competitors. Methods A field survey was conducted in Kibuye and Kayonjo villages located in the vicinity of the River Sezibwa, north-eastern Uganda to identify Anopheline larval habitats shared by aquatic insects. Habitats were geo-recorded and as streams, ponds, temporary pools and roadside ditches. From October to December 2017, random microhabitats/quadrats were selected from each habitat type, their water physico-chemical parameters (electrical conductivity, total dissolved solids, temperature and pH) were measured, and they were sampled for macroinvertebrates using standard dippers. All collected arthropod macroinvertebrates were then morphologically identified to family level and enumerated. Results Principal component analysis showed that the four larval habitat types were characterized by distinct physico-chemical parameter profiles. Ponds and streams had the highest number and diversity of macroinvertebrate insect taxa and sustained few An. gambiae s.l. larvae. Anopheles gambiae s.l. were more common in roadside ditches and particularly abundant in temporary pools which it commonly shared with Dytiscidae (predaceous diving beetles) and Culex spp. Cluster correlation analysis conducted on the abundance of these taxa within quadrats suggested that An. gambiae s.l. and Dytiscidae have the most similar patterns of microhabitat use, followed by Cybaeidae (water spiders). Whilst Culex spp. co-occurred with An. gambiae s.l. in some habitats, there was only partial niche overlap and no clear evidence of competition between the two mosquito taxa. Conclusions Ponds and streams are habitats that host the largest diversity and abundance of aquatic insect taxa. Anopheles gambiae s.l. larvae distinctively preferred temporary pools and roadside ditches, where they were exposed to few predators and no apparent competition by Culex spp. Further studies should aim to test the impact of Dytiscidae and Cybaeidae on An. gambiae s.l. dynamics experimentally. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04926-9.
Collapse
Affiliation(s)
- Hudson Onen
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, School of Biosciences, Makerere University, PO Box 7062, Kampala, Uganda. .,Department of Entomology, Uganda Virus Research Institute (UVRI), PO Box 49, Entebbe, Uganda. .,Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, SFD, ST5 5BG, UK.
| | - Robinson Odong
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, School of Biosciences, Makerere University, PO Box 7062, Kampala, Uganda
| | - Moses Chemurot
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, School of Biosciences, Makerere University, PO Box 7062, Kampala, Uganda
| | - Frédéric Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, SFD, ST5 5BG, UK.
| | - Jonathan K Kayondo
- Department of Entomology, Uganda Virus Research Institute (UVRI), PO Box 49, Entebbe, Uganda
| |
Collapse
|
11
|
Buxton M, Wasserman RJ, Nyamukondiwa C. Disease Vector Relative Spatio-Temporal Abundances to Water Bodies and Thermal Fitness Across Malaria Endemic Semi-Arid Areas. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:682-691. [PMID: 33107574 DOI: 10.1093/jme/tjaa221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The biophysical environment plays an important role in the spatio-temporal abundance and distribution of mosquitoes. This has implications for the spread of vectors and diseases they cause across diverse landscapes. Here, we assessed vector mosquito abundances in relation to large water bodies, from three malaria districts in a semi-arid environment. Furthermore, we explored thermal limits to activity of the dominant and most medically important malaria vector across malaria-endemic areas. Mosquitoes were trapped near permanent water bodies across different districts. Critical thermal limits (critical thermal-maxima and -minima) to activity of wild adults and 4th instar larvae Anopheles arabiensis (Diptera: Culicidae) were assessed. Our results showed that Anopheles spp. dominate mosquito communities across all three districts, but that their numbers were far greater in Okavango than in other regions. At the Okavango sites, the numbers of Anopheles spp. decreased with distance from main water source. Anopheles spp. sampled in this region comprised Anopheles gambiae (Giles,1902) and Anopheles funestus (Giles, 1900) species complexes, with the former dominating in numbers. Thermal activity assays showed An. arabiensis females had wider thermal tolerance windows than males while larval thermal activity limits differed significantly across space. These results confirm that the Okavango district should be prioritized for vector control measures. Moreover, intervention strategies should consider recommendations for proximity effects to large water bodies, given the differential risk associated with distance from water. The wider thermal window on female vectors has implications for possible future malaria transmission and diverse habitat utilization under changing environments.
Collapse
Affiliation(s)
- Mmabaledi Buxton
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Ryan J Wasserman
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
- Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
12
|
Eba K, Duchateau L, Olkeba BK, Boets P, Bedada D, Goethals PLM, Mereta ST, Yewhalaw D. Bio-Control of Anopheles Mosquito Larvae Using Invertebrate Predators to Support Human Health Programs in Ethiopia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041810. [PMID: 33673292 PMCID: PMC7917980 DOI: 10.3390/ijerph18041810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022]
Abstract
Mosquitoes have been a nuisance and health threat to humans for centuries due to their ability to transmit different infectious diseases. Biological control methods have emerged as an alternative or complementary approach to contain vector populations in light of the current spread of insecticide resistance in mosquitoes. Thus, this study aimed to evaluate the predation efficacy of selected potential predators against Anopheles mosquito larvae. Potential invertebrate predators and Anopheles larvae were collected from natural habitats, mainly (temporary) wetlands and ponds in southwest Ethiopia and experiments were conducted under laboratory conditions. Optimal predation conditions with respect to larval instar, water volume and number of predators were determined for each of the seven studied predators. Data analyses were carried out using the Poisson regression model using one way ANOVA at the 5% significant level. The backswimmer (Notonectidae) was the most aggressive predator on Anopheles mosquito larvae with a daily mean predation of 71.5 larvae (95% CI: [65.04;78.59]). Our study shows that larval instar, water volume and number of predators have a significant effect on each predator, except for dragonflies (Libellulidae), with regard to the preference of the larval instar. A selection of mosquito predators has the potential to control Anopheles mosquito larvae, suggesting that they can be used as complementary approach in an integrated malaria vector control strategy.
Collapse
Affiliation(s)
- Kasahun Eba
- Biometrics Research Centre, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
- Department of Environmental Health Science and Technology, Jimma University, Jimma 378, Ethiopia; (B.K.O.); (S.T.M.)
- Correspondence:
| | - Luc Duchateau
- Biometrics Research Centre, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Beekam Kebede Olkeba
- Department of Environmental Health Science and Technology, Jimma University, Jimma 378, Ethiopia; (B.K.O.); (S.T.M.)
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Building F, 9000 Ghent, Belgium; (P.B.); (P.L.M.G.)
- Department of Environmental Health Science, Hawassa University, Hawassa 1560, Ethiopia
| | - Pieter Boets
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Building F, 9000 Ghent, Belgium; (P.B.); (P.L.M.G.)
- Provincial Centre of Environmental Research, Godshuizenlaan 95, 9000 Ghent, Belgium
| | - Dechasa Bedada
- Department of Statistics, Jimma University, Jimma 378, Ethiopia;
| | - Peter L. M. Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Building F, 9000 Ghent, Belgium; (P.B.); (P.L.M.G.)
| | - Seid Tiku Mereta
- Department of Environmental Health Science and Technology, Jimma University, Jimma 378, Ethiopia; (B.K.O.); (S.T.M.)
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Jimma University, Jimma 378, Ethiopia;
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma 378, Ethiopia
| |
Collapse
|
13
|
Buxton M, Nyamukondiwa C, Dalu T, Cuthbert RN, Wasserman RJ. Implications of increasing temperature stress for predatory biocontrol of vector mosquitoes. Parasit Vectors 2020; 13:604. [PMID: 33261665 PMCID: PMC7706185 DOI: 10.1186/s13071-020-04479-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Predators play a critical role in regulating larval mosquito prey populations in aquatic habitats. Understanding predator-prey responses to climate change-induced environmental perturbations may foster optimal efficacy in vector reduction. However, organisms may differentially respond to heterogeneous thermal environments, potentially destabilizing predator-prey trophic systems. METHODS Here, we explored the critical thermal limits of activity (CTLs; critical thermal-maxima [CTmax] and minima [CTmin]) of key predator-prey species. We concurrently examined CTL asynchrony of two notonectid predators (Anisops sardea and Enithares chinai) and one copepod predator (Lovenula falcifera) as well as larvae of three vector mosquito species, Aedes aegypti, Anopheles quadriannulatus and Culex pipiens, across instar stages (early, 1st; intermediate, 2nd/3rd; late, 4th). RESULTS Overall, predators and prey differed significantly in CTmax and CTmin. Predators generally had lower CTLs than mosquito prey, dependent on prey instar stage and species, with first instars having the lowest CTmax (lowest warm tolerance), but also the lowest CTmin (highest cold tolerance). For predators, L. falcifera exhibited the narrowest CTLs overall, with E. chinai having the widest and A. sardea intermediate CTLs, respectively. Among prey species, the global invader Ae. aegypti consistently exhibited the highest CTmax, whilst differences among CTmin were inconsistent among prey species according to instar stage. CONCLUSION These results point to significant predator-prey mismatches under environmental change, potentially adversely affecting natural mosquito biocontrol given projected shifts in temperature fluctuations in the study region. The overall narrower thermal breadth of native predators relative to larval mosquito prey may reduce natural biotic resistance to pests and harmful mosquito species, with implications for population success and potentially vector capacity under global change.
Collapse
Affiliation(s)
- Mmabaledi Buxton
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana.
| | - Tatenda Dalu
- Department of Ecology and Resource Management, University of Venda, Thohoyandou, 0950, South Africa
| | - Ross N Cuthbert
- GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel, 24105, Kiel, Germany
| | - Ryan J Wasserman
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
- Department of Zoology and Entomology, Rhodes University, Makhanda, 6140, South Africa
| |
Collapse
|
14
|
Gowelo S, Chirombo J, Koenraadt CJM, Mzilahowa T, van den Berg H, Takken W, McCann RS. Characterisation of anopheline larval habitats in southern Malawi. Acta Trop 2020; 210:105558. [PMID: 32485166 PMCID: PMC7673143 DOI: 10.1016/j.actatropica.2020.105558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Increasing the knowledgebase of anopheline larval ecology could enable targeted deployment of malaria control efforts and consequently reduce costs of implementation. In Malawi, there exists a knowledge gap in anopheline larval ecology and, therefore, basis for targeted deployment of larval source management (LSM) for malaria control, specifically larvicides. We set out to characterize anopheline larval habitats in the Majete area of Malawi on the basis of habitat ecology and anopheline larval productivity to create a basis for larval control initiatives in the country. METHODS Longitudinal surveys were conducted in randomly selected larval habitats over a period of fifteen months in Chikwawa district, southern Malawi. Biotic and abiotic parameters of the habitats were modelled to determine their effect on the occurrence and densities of anopheline larvae. RESULTS Seventy aquatic habitats were individually visited between 1-7 times over the study period. A total of 5,123 immature mosquitoes (3,359 anophelines, 1,497 culicines and 267 pupae) were collected. Anopheline and culicine larvae were observed in sympatry in aquatic habitats. Of the nine habitat types followed, dams, swamps, ponds, borehole runoffs and drainage channels were the five most productive habitat types for anopheline mosquitoes. Anopheline densities were higher in aquatic habitats with bare soil making up part of the surrounding land cover (p<0.01) and in aquatic habitats with culicine larvae (p<0.01) than in those surrounded by vegetation and not occupied by culicine larvae. Anopheline densities were significantly lower in highly turbid habitats than in clearer habitats (p<0.01). Presence of predators in the aquatic habitats significantly reduced the probability of anopheline larvae being present (p=0.04). CONCLUSIONS Anopheline larval habitats are widespread in the study area. Presence of bare soil, culicine larvae, predators and the level of turbidity of water are the main determinants of anopheline larval densities in aquatic habitats in Majete, Malawi. While the most productive aquatic habitats should be prioritised, for the most effective control of vectors in the area all available aquatic habitats should be targeted, even those that are not characterized by the identified predictors. Further research is needed to determine whether targeted LSM would be cost-effective when habitat characterisation is included in cost analyses and to establish what methods would make the characterisation of habitats easier.
Collapse
Affiliation(s)
- Steven Gowelo
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands; Training and Research Unit of Excellence, School of Public Health, College of Medicine, Blantyre, Malawi
| | - James Chirombo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | | | - Henk van den Berg
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Robert S McCann
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands; Training and Research Unit of Excellence, School of Public Health, College of Medicine, Blantyre, Malawi; Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Medeiros-Sousa AR, de Oliveira-Christe R, Camargo AA, Scinachi CA, Milani GM, Urbinatti PR, Natal D, Ceretti-Junior W, Marrelli MT. Influence of water's physical and chemical parameters on mosquito (Diptera: Culicidae) assemblages in larval habitats in urban parks of São Paulo, Brazil. Acta Trop 2020; 205:105394. [PMID: 32070677 DOI: 10.1016/j.actatropica.2020.105394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/25/2019] [Accepted: 02/12/2020] [Indexed: 11/28/2022]
Abstract
Water's physical and chemical characteristics are important constraints in aquatic ecosystems, acting on the development, survival, and adaptation of different organisms. Immature forms of mosquitoes develop in widely diverse aquatic environments and are mainly found in permanent or temporary freshwater bodies with little or no movement. The current study aimed to investigate whether variations in larval habitats' pH, salinity, dissolved oxygen, and water temperature influence the composition of Culicidae assemblages and the presence and abundance of Aedes albopictus and Ae. aegypti. From August 2012 to July 2013, captures of immature forms and measurement of water's physical and chemical profiles were performed monthly in natural and artificial breeding sites in four urban parks in the city of São Paulo, Brazil. Changes in species composition related to the parameters' variation were assessed by multivariate analysis. Regression trees were performed to evaluate the effect of breeding sites' physical and chemical variations on the presence and abundance of Ae. albopictus and Ae. aegypti. The observations suggest ranges of conditions for the measured variables in which most species tend to be found more frequently, and pH and salinity are the variables most closely associated with variations in mosquito composition. Ae. aegypti and Ae. albopictus were present in both natural and artificial breeding sites and were observed under significantly varying conditions of pH, salinity, dissolved oxygen, and temperature. For Ae. albopictus, larval habitat type and pH were the best predictors of incidence and abundance. For Ae. aegypti, pH and salinity were the best predictors of abundance, while dissolved oxygen and larval habitat type were better predictors of presence. This information broadens our understanding of the ecology and interaction of the investigated species with abiotic factors in the aquatic environments, providing useful data for studies that seek to elucidate the underlying mechanisms of selection and colonization of breeding sites by these mosquitoes. This study also reinforces previous observations indicating that Ae. albopictus and Ae. aegypti can colonize diverse types of larval habitats with widely varying physical and chemical conditions.
Collapse
Affiliation(s)
- Antônio Ralph Medeiros-Sousa
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo 715, São Paulo, SP, Brazil.
| | - Rafael de Oliveira-Christe
- Tropical Medicine Institute, University of São Paulo, Av. Dr. Eneas Carvalho de Aguiar 470, São Paulo, SP, Brazil
| | - Amanda Alves Camargo
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo 715, São Paulo, SP, Brazil
| | - Claudia Araujo Scinachi
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo 715, São Paulo, SP, Brazil
| | - Gerlice Maria Milani
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo 715, São Paulo, SP, Brazil
| | - Paulo Roberto Urbinatti
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo 715, São Paulo, SP, Brazil
| | - Delsio Natal
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo 715, São Paulo, SP, Brazil
| | - Walter Ceretti-Junior
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo 715, São Paulo, SP, Brazil
| | - Mauro Toledo Marrelli
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo 715, São Paulo, SP, Brazil; Tropical Medicine Institute, University of São Paulo, Av. Dr. Eneas Carvalho de Aguiar 470, São Paulo, SP, Brazil
| |
Collapse
|
16
|
Anopheles larval species composition and characterization of breeding habitats in two localities in the Ghibe River Basin, southwestern Ethiopia. Malar J 2020; 19:65. [PMID: 32046734 PMCID: PMC7014609 DOI: 10.1186/s12936-020-3145-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 01/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Documentation of the species composition of Anopheles mosquitoes and characterization of larval breeding sites is of major importance for the implementation of larval control as part of malaria vector control interventions in Ethiopia. The aims of this study were to determine the Anopheles larval species composition, larval density, available habitat types and the effects of related environmental and physico-chemical parameters of habitats in the Ghibe River basin of southwestern Ethiopia. METHODS Anopheles larvae were sampled from November 2014 to October 2016 on a monthly basis and 3rd and 4th instars were identified microscopically to species. The larval habitats were characterized based on habitat perimeter, water depth, intensity of light, water current, water temperature, water pH, water turbidity, distance to the nearest house, vegetation coverage, permanence of the habitat, surface debris coverage, emergent plant coverage, habitat type and substrate type. RESULTS In total, 9277 larvae of Anopheles mosquitoes and 494 pupae were sampled from borrow pits, hoof prints, rain pools, pools at river edges, pools in drying river beds, rock pools, tire tracks and swamps. Anopheles larval density was highest in pools in drying river beds (35.2 larvae per dip) and lowest in swamps (2.1 larvae per dip) at Darge, but highest in rain pools (11.9 larvae per dip), borrow pits (11.2 larvae per dip) and pools at river edges (7.9 larvae per dip), and lowest in swamps (0.5 larvae per dip) at Ghibe. A total of 3485 late instar Anopheles mosquito larvae were morphologically identified. Anopheles gambiae sensu lato was the primary Anopheles mosquito found in all larval habitats except in swamps. Temperature at the time of sampling and emergent vegetation, were the most important variables for Anopheles mosquito larval density. Anopheles gambiae density was significantly associated with habitats that had smaller perimeters, were sunlit, had low vegetation cover, and a lack of emergent plants. Generally, Anopheles mosquito larval density was not significantly associated with water pH, water temperature, water turbidity, algal content, and larval habitat depth. CONCLUSION Different species of Anopheles larvae were identified including An. gambiae s.l., the main malaria vector in Ethiopia. Anopheles gambiae s.l. is the most abundant species that bred in most of the larval habitat types identified in the study area. The density of this species was high in sunlit habitat, absence of emergent plants, lack of vegetation near habitat and habitats closer to human habitation. Rainfall plays a great role in determining the availability of breeding habitats. The presence of rain enable to create some of the habitat types, but alter the habitats formed at the edge of the rivers due to over flooding. Controlling the occurrence of mosquito larvae through larval source management during the dry season, targeting the pools in drying river bed and pools formed at the edge of the rivers as the water receded can be very crucial to interrupt the re-emergence of malaria vectors on the onset of rainy season.
Collapse
|
17
|
Sareein N, Phalaraksh C, Rahong P, Techakijvej C, Seok S, Bae YJ. Relationships between predatory aquatic insects and mosquito larvae in residential areas in northern Thailand. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2019; 44:223-232. [PMID: 31729801 DOI: 10.1111/jvec.12353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/16/2019] [Indexed: 06/10/2023]
Abstract
In order to elucidate the poorly understood relationships between mosquito larvae and their predatory aquatic insects in urban and suburban areas of tropical Southeast Asia, where vector-borne diseases are prevalent, aquatic insects were sampled from 14 aquatic habitats in residential areas of Chiang Mai, northern Thailand, during the rainy season (July to November) in 2016. Correlations among biological variables, densities of major predatory aquatic insect groups (i.e., Odonata, Coleoptera, and Hemiptera: OCH group) in wetlands and artificial lentic habitats, and the density of mosquito larvae were analyzed. Among the sampled mosquito larvae, Culex spp. were the most abundant, and both OCH density and water quality were major determinants of Culex spp. density (rs = -0.302 and -0.396, respectively). Logistic regression analyses indicated that the probability of Culex spp. occurrence was significantly and negatively correlated with OCH density. Furthermore, high macrophyte abundance was associated with higher predator density, potentially reducing mosquito density. Hemipteran predators were most negatively correlated with Culex spp. density, regardless of whether macrophyte abundance was high or low (rs = -0.547 and -0.533, respectively). Therefore, hemipteran predators were the most important aquatic insect predators in the urban and suburban residential areas of Chiang Mai, Thailand, and OCH species, such as the hemipteran Micronecta scutellaris, could be used as biological control agents against mosquitoes in the region.
Collapse
Affiliation(s)
- Nattawut Sareein
- Department of Environmental Science and Ecological Engineering, Graduate School, Korea University, Seoul, South Korea
| | - Chitchol Phalaraksh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Panida Rahong
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chotiwut Techakijvej
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sangwoo Seok
- Department of Environmental Science and Ecological Engineering, Graduate School, Korea University, Seoul, South Korea
| | - Yeon Jae Bae
- Department of Environmental Science and Ecological Engineering, Graduate School, Korea University, Seoul, South Korea
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
18
|
Krol L, Gorsich EE, Hunting ER, Govender D, van Bodegom PM, Schrama M. Eutrophication governs predator-prey interactions and temperature effects in Aedes aegypti populations. Parasit Vectors 2019; 12:179. [PMID: 31014388 PMCID: PMC6480876 DOI: 10.1186/s13071-019-3431-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/04/2019] [Indexed: 12/04/2022] Open
Abstract
Background Mosquito population dynamics are driven by large-scale (e.g. climatological) and small-scale (e.g. ecological) factors. While these factors are known to independently influence mosquito populations, it remains uncertain how drivers that simultaneously operate under natural conditions interact to influence mosquito populations. We, therefore, developed a well-controlled outdoor experiment to assess the interactive effects of two ecological drivers, predation and nutrient availability, on mosquito life history traits under multiple temperature regimes. Methods We conducted a temperature-controlled mesocosm experiment in Kruger National Park, South Africa, with the yellow fever mosquito, Aedes aegypti. We investigated how larval survival, emergence and development rates were impacted by the presence of a locally-common invertebrate predator (backswimmers Anisops varia Fieber (Notonectidae: Hemiptera), nutrient availability (oligotrophic vs eutrophic, reflecting field conditions), water temperature, and interactions between each driver. Results We observed that the effects of predation and temperature both depended on eutrophication. Predation caused lower adult emergence in oligotrophic conditions but higher emergence under eutrophic conditions. Higher temperatures caused faster larval development rates in eutrophic but not oligotrophic conditions. Conclusions Our study shows that ecological bottom-up and top-down drivers strongly and interactively govern mosquito life history traits for Ae. aegypti populations. Specifically, we show that eutrophication can inversely affect predator–prey interactions and mediate the effect of temperature on mosquito survival and development rates. Hence, our results suggest that nutrient pollution can overrule biological constraints on natural mosquito populations and highlights the importance of studying multiple factors. Electronic supplementary material The online version of this article (10.1186/s13071-019-3431-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louie Krol
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands.,Naturalis Biodiversity Centre, Leiden, The Netherlands
| | - Erin E Gorsich
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, UK.,School of Life Sciences, University of Warwick, Coventry, UK
| | - Ellard R Hunting
- School of Biological Sciences, University of Bristol, Bristol, UK.,Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Danny Govender
- Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa.,Scientific Services Kruger National Park, Skukuza, South Africa
| | - Peter M van Bodegom
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Maarten Schrama
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands. .,Naturalis Biodiversity Centre, Leiden, The Netherlands.
| |
Collapse
|
19
|
Breeding Site Characteristics and Associated Factors of Culex pipiens Complex in Lhasa, Tibet, P. R. China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16081407. [PMID: 31003560 PMCID: PMC6517927 DOI: 10.3390/ijerph16081407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 11/16/2022]
Abstract
Characterizing the breeding sites of Culex pipiens complex is of major importance for the control of West Nile disease and other related diseases. However, little information is available about the characteristics and associated factors of the breeding sites of the Cx. pipiens complex in Lhasa, a representative high-altitude region in Southwestern China. In this study, a cross-sectional study concerning the breeding site characteristics and associated factors of the Cx. pipiens complex was carried out in Lhasa, Tibet from 2013–2016. Chi-square analysis and binary logistic regression analysis were applied to identify the key factors associated with the presence of Cx. pipiens complex larvae. Using a standard dipping method, 184 water bodies were examined and Cx. pipiens complex larvae were observed in 36 (19.57%) of them. There were significant differences in the composition of Cx. pipiens complex larvae among the breeding site stability (χ2 = 19.08, p = 0.00) and presence or absence of predators (χ2 = 6.986, p = 0.008). Binary logistic regression analysis indicated that breeding site stability and presence or absence of predators were significantly associated with the presence of Cx. pipiens complex larvae in Chengguan District, Lhasa. Relatively permanent water bodies such as water bodies along river fringes, ponds and puddles, and water bodies with no predators should be paid more attention for future Cx. pipiens complex larvae abatement campaigns in Lhasa, China.
Collapse
|
20
|
Collins CM, Bonds JAS, Quinlan MM, Mumford JD. Effects of the removal or reduction in density of the malaria mosquito, Anopheles gambiae s.l., on interacting predators and competitors in local ecosystems. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:1-15. [PMID: 30044507 PMCID: PMC6378608 DOI: 10.1111/mve.12327] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/23/2018] [Accepted: 06/15/2018] [Indexed: 05/23/2023]
Abstract
New genetic control methods for mosquitoes may reduce vector species without direct effects on other species or the physical environment common with insecticides or drainage. Effects on predators and competitors could, however, be a concern as Anopheles gambiae s.l. is preyed upon in all life stages. We overview the literature and assess the strength of the ecological interactions identified. Most predators identified consume many other insect species and there is no evidence that any species preys exclusively on any anopheline mosquito. There is one predatory species with a specialisation on blood-fed mosquitoes including An. gambiae s.l.. Evarcha culicivora is a jumping spider, known as the vampire spider, found around Lake Victoria. There is no evidence that these salticids require Anopheles mosquitoes and will readily consume blood-fed Culex. Interspecific competition studies focus on other mosquitoes of larval habitats. Many of these take place in artificial cosms and give contrasting results to semi-field studies. This may limit their extrapolation regarding the potential impact of reduced An. gambiae numbers. Previous mosquito control interventions are informative and identify competitive release and niche opportunism; so while the identity and relative abundance of the species present may change, the biomass available to predators may not.
Collapse
Affiliation(s)
- C. M. Collins
- Centre for Environmental PolicyImperial College LondonLondonU.K.
| | - J. A. S. Bonds
- Bonds Consulting Group LLCPanama City Beach, FloridaU.S.A.
| | - M. M. Quinlan
- Centre for Environmental PolicyImperial College LondonLondonU.K.
| | - J. D. Mumford
- Centre for Environmental PolicyImperial College LondonLondonU.K.
| |
Collapse
|
21
|
Eneh LK, Fillinger U, Borg Karlson AK, Kuttuva Rajarao G, Lindh J. Anopheles arabiensis oviposition site selection in response to habitat persistence and associated physicochemical parameters, bacteria and volatile profiles. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:56-67. [PMID: 30168151 PMCID: PMC6359949 DOI: 10.1111/mve.12336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/11/2018] [Accepted: 07/24/2018] [Indexed: 05/16/2023]
Abstract
A better understanding of the oviposition behaviour of malaria vectors might facilitate the development of new vector control tools. However, the factors that guide the aquatic habitat selection of gravid females are poorly understood. The present study explored the relative attractiveness of similar artificial ponds (0.8 m2 ) aged at varying lengths prior to opening in such a way that wild Anopheles arabiensis could choose between ponds that were freshly set up, or were aged 4 or 17 days old, to lay eggs. Physicochemical parameters, bacterial profile and volatile organic compounds emitted from ponds were investigated over three experimental rounds. Fresh ponds contained on average twice as many An. arabiensis instar larvae (mean 50, 95% confidence interval (CI) = 29-85) as the ponds that had aged 4 days (mean = 24, 95% CI = 14-42) and 17 days (mean = 20, 95% CI: 12-34). Fresh ponds were associated with a significantly higher turbidity combined with higher water temperature, higher nitrite levels and a lower pH and chlorophyll level than the older ponds. Round by round analyses suggested that bacteria communities differed between age groups and also that 4-heptanone, 2-ethylhexanal and an isomer of octenal were exclusively detected from the fresh ponds. These characteristics may be useful with respect to developing attract and kill strategies for malaria vector control.
Collapse
Affiliation(s)
- L K Eneh
- Chemical Ecology, Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - U Fillinger
- International Centre of Insect Physiology and Ecology, Human Health Theme, Thomas Odhiambo Campus, Mbita, Kenya
| | - A K Borg Karlson
- Chemical Ecology, Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - G Kuttuva Rajarao
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, Stockholm, Sweden
| | - J Lindh
- Chemical Ecology, Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
22
|
Spatial distribution and habitat characterization of mosquito species during the dry season along the Mara River and its tributaries, in Kenya and Tanzania. Infect Dis Poverty 2018; 7:2. [PMID: 29343279 PMCID: PMC5772712 DOI: 10.1186/s40249-017-0385-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/27/2017] [Indexed: 01/25/2023] Open
Abstract
Background Vector-borne diseases are increasingly becoming a major health problem among communities living along the major rivers of Africa. Although larger water bodies such as lakes and dams have been extensively researched, rivers and their tributaries have largely been ignored. This study sought to establish the spatial distribution of mosquito species during the dry season and further characterize their habitats along the Mara River and its tributaries. Methods In this cross-sectional survey, mosquito larvae were sampled along the Mara River, its two perennial tributaries (Amala and Nyangores), drying streams, and adjacent aquatic habitats (e.g. swamps, puddles that receive direct sunlight [open sunlit puddles], rock pools, hippo and livestock hoof prints, and vegetated pools). Each habitat was dipped 20 times using a standard dipper. Distance between breeding sites and human habitation was determined using global positioning system coordinates. The collected mosquito larvae were identified using standard taxonomic keys. Water physico-chemical parameters were measured in situ using a multiparameter meter. Mean mosquito larvae per habitat type were compared using analysis of variance and chi-square tests, while the relationship between mosquito larvae and physico-chemical parameters was evaluated using a generalized linear mixed model. The Cox-Stuart test was used to detect trends of mosquito larvae distribution. The test allowed for verification of monotonic tendency (rejection of null hypothesis of trend absence) and its variability. Results A total of 4001 mosquito larvae were collected, of which 2712 (67.8%) were collected from river/stream edge habitats and 1289 (32.2%) were sampled from aquatic habitats located in the terrestrial ecosystem about 50 m away from the main river/streams. Anopheles gambiae s.s, An. arabiensis, and An. funestus group, the three most potent vectors of malaria in Sub-Saharan Africa, together with other anopheline mosquitoes, were the most dominant mosquito species (70.3%), followed by Culex quinquefasciatus and Cx. pipiens complex combined (29.5%). Drying streams accounted for the highest number of larvae captured compared to the other habitat types. A stronger relationship between mosquito larvae abundance and dissolved oxygen (Z = 7.37, P ≤ 0.001), temperature (Z = 7.65, P ≤ 0.001), turbidity (Z = −5.25, P ≤ 0.001), and distance to the nearest human habitation (Z = 4.57, P ≤ 0.001), was observed. Conclusions Presence of malaria and non-malaria mosquito larvae within the Mara River basin calls for immediate action to curtail the insurgence of vector-borne diseases within the basin. A vector control program should be conducted during the dry period, targeting drying streams shown to produce the highest number of larval mosquitoes. Electronic supplementary material The online version of this article (10.1186/s40249-017-0385-0) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Castro MC. Malaria Transmission and Prospects for Malaria Eradication: The Role of the Environment. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025601. [PMID: 28490534 DOI: 10.1101/cshperspect.a025601] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Environmental factors affect the transmission intensity, seasonality, and geographical distribution of malaria, and together with the vector, the human, and the parasite compose the malaria system. Strategies that alter the environment are among the oldest interventions for malaria control, but currently are not the most prominent despite historical evidence of their effectiveness. The importance of environmental factors, the role they play considering the current goals of malaria eradication, the different strategies that can be adopted, and the current challenges for their implementation are discussed. As malaria elimination/eradication takes a prominent place in the health agenda, an integrated action, addressing all elements of the malaria system, which contributes to improved knowledge and to building local capacity and that brings about positive effects to the health of the local population has the greatest chance to produce fast, effective, and sustainable results.
Collapse
Affiliation(s)
- Marcia C Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| |
Collapse
|
24
|
Ajuang CO, Abuom PO, Bosire EK, Dida GO, Anyona DN. Determinants of climate change awareness level in upper Nyakach Division, Kisumu County, Kenya. SPRINGERPLUS 2016; 5:1015. [PMID: 27441134 PMCID: PMC4938833 DOI: 10.1186/s40064-016-2699-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 06/28/2016] [Indexed: 12/04/2022]
Abstract
Improving the understanding of climate change awareness is one of the top priorities in climate change research. While the African continent is among the regions with the highest vulnerability to climate change, research on climate knowledge and awareness is lacking. Kenya is already grappling with the impacts of climate change, which are projected to increase in a non-linear and non-predictable manner. This study sought to determine climate change awareness levels among households residing in Upper Nyakach Division, Kisumu County, Kenya using common climate change markers viz heavy rainfall, floods, droughts and temperature. A cross-sectional survey design was adopted in which 384 household heads were selected as respondents from 11 sub-locations; all located within Upper Nyakach Division. A questionnaire was used to collect data. Most (90.9 %) respondents had observed changes in the overall climate. Awareness level of climate change varied significantly across the 11 sub-locations. To further gain insight unto which variables were the most significant determinant of climate change awareness in upper Nyakach division, Kisumu county, a Generalized Linear Model (GLM) with Poisson error distribution was built. The model indicated that sex of the household head, education level and age significantly influenced respondents’ awareness to climate change markers. Most (87 %) households reported rising temperatures over the past 20 years. Over half (55.2 %) the respondents had observed declining rains, with significant differences being observed across age groups. Up to 75 % of the respondents reported increased droughts frequency over the last 20 years, with significant differences observed across gender. Most (86.7 %) respondents reported having observed changes in water sources with significant differences reported across age groups. The respondents reported an increased prevalence of malaria with significant differences being observed among the education levels and households’ main livelihoods. The general population of the Upper Nyakach Divison is aware of changing global climate. However, more effort is required in mitigating climate change as per the local settings. Awareness campaign aimed at increasing knowledge of climate change markers among community members is recommended.
Collapse
Affiliation(s)
- Chadwick O Ajuang
- School of Environment and Earth Science, Maseno University, P. O. Box 333, 40105 Maseno, Kenya
| | - Paul O Abuom
- School of Environment and Earth Science, Maseno University, P. O. Box 333, 40105 Maseno, Kenya
| | - Esna K Bosire
- School of Environment and Earth Science, Maseno University, P. O. Box 333, 40105 Maseno, Kenya
| | - Gabriel O Dida
- School of Public Health and Community Development, Maseno University, P. O. Box 333, 40105 Maseno, Kenya
| | - Douglas N Anyona
- School of Environment and Earth Science, Maseno University, P. O. Box 333, 40105 Maseno, Kenya
| |
Collapse
|