1
|
Ríos-Valencia DG, Ambrosio J, Tirado-Mendoza R, Carrero JC, Laclette JP. What about the Cytoskeletal and Related Proteins of Tapeworms in the Host's Immune Response? An Integrative Overview. Pathogens 2023; 12:840. [PMID: 37375530 DOI: 10.3390/pathogens12060840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Recent advances have increased our understanding of the molecular machinery in the cytoskeleton of mammalian cells, in contrast to the case of tapeworm parasites, where cytoskeleton remains poorly characterized. The pertinence of a better knowledge of the tapeworm cytoskeleton is linked to the medical importance of these parasitic diseases in humans and animal stock. Moreover, its study could offer new possibilities for the development of more effective anti-parasitic drugs, as well as better strategies for their surveillance, prevention, and control. In the present review, we compile the results of recent experiments on the cytoskeleton of these parasites and analyze how these novel findings might trigger the development of new drugs or the redesign of those currently used in addition to supporting their use as biomarkers in cutting-edge diagnostic tests.
Collapse
Affiliation(s)
- Diana G Ríos-Valencia
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Javier Ambrosio
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Rocío Tirado-Mendoza
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Julio César Carrero
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Juan Pedro Laclette
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
2
|
Steyn TJS, Awala AN, de Lange A, Raimondo JV. What Causes Seizures in Neurocysticercosis? Epilepsy Curr 2022; 23:105-112. [PMID: 37122403 PMCID: PMC10131564 DOI: 10.1177/15357597221137418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neurocysticercosis (NCC) is the most prevalent parasitic infection of the central nervous system. It is caused by the presence of larvae of the cestode Taenia solium in the brain. The most common symptom of NCC is seizures, and it is widely considered the world’s leading cause of preventable epilepsy. Despite the prevalence and impact of NCC, a thorough, mechanistic understanding of seizure generation is still lacking. In this review, we address the question “What causes seizures in NCC?” by summarizing and discussing the major theories that seek to explain the seizurogenic and epileptogenic processes in this disorder. In addition, we highlight the potential for recent advances in disease modeling to help accelerate progress in this area.
Collapse
Affiliation(s)
- Teresa Julieta Simões Steyn
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Western Cape, South Africa
| | - Amalia Naita Awala
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Western Cape, South Africa
| | - Anja de Lange
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Western Cape, South Africa
| | - Joseph Valentino Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Western Cape, South Africa
| |
Collapse
|
3
|
Bobes RJ, Estrada K, Rios-Valencia DG, Calderón-Gallegos A, de la Torre P, Carrero JC, Sanchez-Flores A, Laclette JP. The Genomes of Two Strains of Taenia crassiceps the Animal Model for the Study of Human Cysticercosis. Front Cell Infect Microbiol 2022; 12:876839. [PMID: 35619649 PMCID: PMC9128525 DOI: 10.3389/fcimb.2022.876839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Human cysticercosis by Taenia solium is the major cause of neurological illness in countries of Africa, Southeast Asia, and the Americas. Publication of four cestode genomes (T. solium, Echinococcus multilocularis, E. granulosus and Hymenolepis microstoma) in the last decade, marked the advent of novel approaches on the study of the host-parasite molecular crosstalk for cestode parasites of importance for human and animal health. Taenia crassiceps is another cestode parasite, closely related to T. solium, which has been used in numerous studies as an animal model for human cysticercosis. Therefore, characterization of the T. crassiceps genome will also contribute to the understanding of the human infection. Here, we report the genome of T. crassiceps WFU strain, reconstructed to a noncontiguous finished resolution and performed a genomic and differential expression comparison analysis against ORF strain. Both strain genomes were sequenced using Oxford Nanopore (MinION) and Illumina technologies, achieving high quality assemblies of about 107 Mb for both strains. Dotplot comparison between WFU and ORF demonstrated that both genomes were extremely similar. Additionally, karyotyping results for both strains failed to demonstrate a difference in chromosome composition. Therefore, our results strongly support the concept that the absence of scolex in the ORF strain of T. crassiceps was not the result of a chromosomal loss as proposed elsewhere. Instead, it appears to be the result of subtle and extensive differences in the regulation of gene expression. Analysis of variants between the two strains identified 2,487 sites with changes distributed in 31 of 65 scaffolds. The differential expression analysis revealed that genes related to development and morphogenesis in the ORF strain might be involved in the lack of scolex formation.
Collapse
Affiliation(s)
- Raúl J. Bobes
- Biomedical Research Institute, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Karel Estrada
- Biotechnology Institute, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | | | - Patricia de la Torre
- Biomedical Research Institute, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Julio C. Carrero
- Biomedical Research Institute, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Alejandro Sanchez-Flores
- Biotechnology Institute, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- *Correspondence: Juan P. Laclette, ; Alejandro Sanchez-Flores,
| | - Juan P. Laclette
- Biomedical Research Institute, Universidad Nacional Autónoma de México, CDMX, Mexico
- *Correspondence: Juan P. Laclette, ; Alejandro Sanchez-Flores,
| |
Collapse
|
4
|
Quinzo MJ, Perteguer MJ, Brindley PJ, Loukas A, Sotillo J. Transgenesis in parasitic helminths: a brief history and prospects for the future. Parasit Vectors 2022; 15:110. [PMID: 35346328 PMCID: PMC8962113 DOI: 10.1186/s13071-022-05211-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Helminth infections impact the health of hundreds of millions of persons globally and also cause important economic losses in livestock farming. Methodological limitations as well as the low attention given to the study of helminths have impacted biological research and, thus, the procurement of accurate diagnosis and effective treatments. Understanding the biology of helminths using genomic and proteomic approaches could contribute to advances in understanding host-helminth interactions and lead to new vaccines, drugs and diagnostics. Despite the significant advances in genomics in the last decade, the lack of methodological adaptation of current transgenesis techniques has hampered the progression of post-genomic research in helminthology. However, the application of new techniques, such as CRISPR, to the study of trematodes and nematodes has opened new avenues for genome editing-powered functional genomics for these pathogens. This review summarises the historical advances in functional genomics in parasitic helminths and highlights pending limitations that will need to be overcome to deploy transgenesis tools.
Collapse
Affiliation(s)
- M J Quinzo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Escuela Internacional de Doctorado, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - M J Perteguer
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - P J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA
| | - A Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - J Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
5
|
Guerrero-Hernández J, Bobes RJ, García-Varela M, Castellanos-Gonzalez A, Laclette JP. Identification and functional characterization of the siRNA pathway in Taenia crassiceps by silencing Enolase A. Acta Trop 2022; 225:106197. [PMID: 34688628 DOI: 10.1016/j.actatropica.2021.106197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/01/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022]
Abstract
A gene silencing procedure on cysticerci of the taeniid cestode Taenia crassiceps is described. This is the first time this technique is reported in this species that is widely used as an animal model for human cysticercosis. Genome database searches were performed in order to find out if relevant genes involved in gene silencing and non-coding RNA processing, Argonaute and Dicer (AGO and Dcr) are present in T. crassiceps. We found three AGO and two Dcr orthologues that were designed TcAGO1, Tc2 and Tc3, as well as TcDcr1 and TcDcr2. In order to elucidate the evolutionary relationships of T. crassiceps TcAGO and TcDcr genes, separate phylogenetic analyses were carried out for each, including AGO and Dcr orthologues of other 20 platyhelminthes. Our findings showed a close phylogenetic relationship of TcAGO and TcDcr with those previously described for Echinococcus spp. Our RT-PCR studies demonstrated expression of all TcAGO and TcDcr orthologues. Our results show that the gene silencing machinery in T. crassiceps is functionally active by inducing silencing of TcEnoA (∼90%). These results clearly show that gene silencing using siRNAs can be used as a molecular methodology to study gene function in taeniid cestodes.
Collapse
Affiliation(s)
- Julio Guerrero-Hernández
- Biomedical Research Institute. Universidad Nacional Autónoma de México, México, 04510, Coyoacán, Cd. de México, México
| | - Raúl J Bobes
- Biomedical Research Institute. Universidad Nacional Autónoma de México, México, 04510, Coyoacán, Cd. de México, México
| | - Martín García-Varela
- Biology Institute. Universidad Nacional Autónoma de México, 04510, Coyoacán, Cd. de México, México
| | - Alejandro Castellanos-Gonzalez
- Division of Infectious Diseases, University of Texas Medical Branch, United States; Center for Tropical Diseases, University of Texas Medical Branch, United States..
| | - Juan P Laclette
- Biomedical Research Institute. Universidad Nacional Autónoma de México, México, 04510, Coyoacán, Cd. de México, México.
| |
Collapse
|
6
|
Ustyantsev KV, Vavilova VY, Blinov AG, Berezikov EV. Macrostomum lignano as a model to study the genetics and genomics of parasitic flatworms. Vavilovskii Zhurnal Genet Selektsii 2021; 25:108-116. [PMID: 34901708 PMCID: PMC8629357 DOI: 10.18699/vj21.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
Hundreds of millions of people worldwide are infected by various species of parasitic flatworms. Without
treatment, acute and chronical infections frequently lead to the development of severe pathologies and even death.
Emerging data on a decreasing efficiency of some important anthelmintic compounds and the emergence of resistance to them force the search for alternative drugs. Parasitic flatworms have complex life cycles, are laborious and
expensive in culturing, and have a range of anatomic and physiological adaptations that complicate the application
of standard molecular-biological methods. On the other hand, free-living flatworm species, evolutionarily close to
parasitic flatworms, do not have the abovementioned difficulties, which makes them potential alternative models
to search for and study homologous genes. In this review, we describe the use of the basal free-living flatworm
Macrostomum lignano as such a model. M. lignano has a number of convenient biological and experimental properties, such as fast reproduction, easy and non-expensive laboratory culturing, optical body transparency, obligatory
sexual reproduction, annotated genome and transcriptome assemblies, and the availability of modern molecular
methods, including transgenesis, gene knockdown by RNA interference, and in situ hybridization. All this makes
M. lignano amenable to the most modern approaches of forward and reverse genetics, such as transposon insertional mutagenesis and methods of targeted genome editing by the CRISPR/Cas9 system. Due to the availability of
an increasing number of genome and transcriptome assemblies of different parasitic flatworm species, new knowledge generated by studying M. lignano can be easily translated to parasitic flatworms with the help of modern
bioinformatic methods of comparative genomics and transcriptomics. In support of this, we provide the results of
our bioinformatics search and analysis of genes homologous between M. lignano and parasitic flatworms, which
predicts a list of promising gene targets for subsequent research.
Collapse
Affiliation(s)
- K V Ustyantsev
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V Yu Vavilova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A G Blinov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E V Berezikov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
7
|
Abstract
Neurocysticercosis (NCC) occurs following brain infection by larvae of the cestode Taenia solium. It is the leading cause of preventable epilepsy worldwide and therefore constitutes a critical health challenge with significant global relevance. Despite this, much is still unknown about many key pathogenic aspects of the disease, including how cerebral infection with T. solium results in the development of seizures. Over the past century, valuable mechanistic insights have been generated using both clinical studies and animal models. In this review, we critically assess model systems for investigating disease processes in NCC. We explore the respective strengths and weaknesses of each model and summarize how they have contributed to current knowledge of the disease. We call for the continued development of animal models of NCC, with a focus on novel strategies for understanding this debilitating but often neglected disorder.
Collapse
|
8
|
Fontenla S, Rinaldi G, Smircich P, Tort JF. Conservation and diversification of small RNA pathways within flatworms. BMC Evol Biol 2017; 17:215. [PMID: 28893179 PMCID: PMC5594548 DOI: 10.1186/s12862-017-1061-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/05/2017] [Indexed: 02/04/2023] Open
Abstract
Background Small non-coding RNAs, including miRNAs, and gene silencing mediated by RNA interference have been described in free-living and parasitic lineages of flatworms, but only few key factors of the small RNA pathways have been exhaustively investigated in a limited number of species. The availability of flatworm draft genomes and predicted proteomes allowed us to perform an extended survey of the genes involved in small non-coding RNA pathways in this phylum. Results Overall, findings show that the small non-coding RNA pathways are conserved in all the analyzed flatworm linages; however notable peculiarities were identified. While Piwi genes are amplified in free-living worms they are completely absent in all parasitic species. Remarkably all flatworms share a specific Argonaute family (FL-Ago) that has been independently amplified in different lineages. Other key factors such as Dicer are also duplicated, with Dicer-2 showing structural differences between trematodes, cestodes and free-living flatworms. Similarly, a very divergent GW182 Argonaute interacting protein was identified in all flatworm linages. Contrasting to this, genes involved in the amplification of the RNAi interfering signal were detected only in the ancestral free living species Macrostomum lignano. We here described all the putative small RNA pathways present in both free living and parasitic flatworm lineages. Conclusion These findings highlight innovations specifically evolved in platyhelminths presumably associated with novel mechanisms of gene expression regulation mediated by small RNA pathways that differ to what has been classically described in model organisms. Understanding these phylum-specific innovations and the differences between free living and parasitic species might provide clues to adaptations to parasitism, and would be relevant for gene-silencing technology development for parasitic flatworms that infect hundreds of million people worldwide. Electronic supplementary material The online version of this article (10.1186/s12862-017-1061-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP11800, Montevideo, MVD, Uruguay
| | - Gabriel Rinaldi
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Pablo Smircich
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP11800, Montevideo, MVD, Uruguay.,Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Jose F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP11800, Montevideo, MVD, Uruguay.
| |
Collapse
|