2
|
Tanabe MB, Caravedo MA, Clinton White A, Cabada MM. An Update on the Pathogenesis of Fascioliasis: What Do We Know? Res Rep Trop Med 2024; 15:13-24. [PMID: 38371362 PMCID: PMC10874186 DOI: 10.2147/rrtm.s397138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/27/2024] [Indexed: 02/20/2024] Open
Abstract
Fasciola hepatica is a trematode parasite distributed worldwide. It is known to cause disease in mammals, producing significant economic loses to livestock industry and burden to human health. After ingestion, the parasites migrate through the liver and mature in the bile ducts. A better understanding of the parasite's immunopathogenesis would help to develop efficacious therapeutics and vaccines. Currently, much of our knowledge comes from in vitro and in vivo studies in animal models. Relatively little is known about the host-parasite interactions in humans. Here, we provide a narrative review of what is currently know about the pathogenesis and host immune responses to F. hepatica summarizing the evidence available from the multiple hosts that this parasite infects.
Collapse
Affiliation(s)
- Melinda B Tanabe
- Division of Infectious Disease, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Maria A Caravedo
- Division of Infectious Disease, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - A Clinton White
- Division of Infectious Disease, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
- Cusco Branch – Alexander von Humboldt Tropical Medicine Institute, Universidad Peruana Cayetano Heredia, Cusco, Peru
| | - Miguel M Cabada
- Division of Infectious Disease, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
- Cusco Branch – Alexander von Humboldt Tropical Medicine Institute, Universidad Peruana Cayetano Heredia, Cusco, Peru
| |
Collapse
|
4
|
Wang P, Chitramuthu B, Bateman A, Bennett HPJ, Xu P, Ni F. Structure dissection of zebrafish progranulins identifies a well-folded granulin/epithelin module protein with pro-cell survival activities. Protein Sci 2018; 27:1476-1490. [PMID: 29732682 DOI: 10.1002/pro.3441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/07/2023]
Abstract
The ancient and pluripotent progranulins contain multiple repeats of a cysteine-rich sequence motif of ∼60 amino acids, called the granulin/epithelin module (GEM) with a prototypic structure of four β-hairpins zipped together by six inter-hairpin disulfide bonds. Prevalence of this disulfide-enforced structure is assessed here by an expression screening of 19 unique GEM sequences of the four progranulins in the zebrafish genome, progranulins 1, 2, A and B. While a majority of the expressed GEM peptides did not exhibit uniquely folded conformations, module AaE from progranulin A and AbB from progranulin B were found to fold into the protopypic 4-hairpin structure along with disulfide formation. Module AaE has the most-rigid three-dimensional structure with all four β-hairpins defined using high-resolution (H-15 N) NMR spectroscopy, including 492 inter-proton nuclear Overhauser effects, 23 3 J(HN,Hα ) coupling constants, 22 hydrogen bonds as well as 45 residual dipolar coupling constants. Three-dimensional structure of AaE and the partially folded AbB re-iterate the conformational stability of the N-terminal stack of two beta-hairpins and varying degrees of structural flexibility for the C-terminal half of the 4-hairpin global fold of the GEM repeat. A cell-based assay demonstrated a functional activity for the zebrafish granulin AaE in promoting the survival of neuronal cells, similarly to what has been found for the corresponding granulin E module in human progranulin. Finally, this work highlights the remaining challenges in structure-activity studies of proteins containing the GEM repeats, due to the apparent prevalence of structural disorder in GEM motifs despite potentially a high density of intramolecular disulfide bonds.
Collapse
Affiliation(s)
- Ping Wang
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada.,Protein NMR Laboratory, Advanced Analytics Section, Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada
| | - Babykumari Chitramuthu
- Division of Experimental Medicine, Research Institute of the McGill University Health Center, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.,Center for Translational Biology, The Research Institute of McGill University Health Center, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Andrew Bateman
- Division of Experimental Medicine, Research Institute of the McGill University Health Center, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.,Center for Translational Biology, The Research Institute of McGill University Health Center, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Hugh P J Bennett
- Division of Experimental Medicine, Research Institute of the McGill University Health Center, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.,Center for Translational Biology, The Research Institute of McGill University Health Center, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Ping Xu
- Protein NMR Laboratory, Advanced Analytics Section, Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada
| | - Feng Ni
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada.,Protein NMR Laboratory, Advanced Analytics Section, Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada.,Division of Experimental Medicine, Research Institute of the McGill University Health Center, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| |
Collapse
|
5
|
Wang C, Lei H, Tian Y, Shang M, Wu Y, Li Y, Zhao L, Shi M, Tang X, Chen T, Lv Z, Huang Y, Tang X, Yu X, Li X. Clonorchis sinensis granulin: identification, immunolocalization, and function in promoting the metastasis of cholangiocarcinoma and hepatocellular carcinoma. Parasit Vectors 2017; 10:262. [PMID: 28545547 PMCID: PMC5445496 DOI: 10.1186/s13071-017-2179-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 05/08/2017] [Indexed: 12/14/2022] Open
Abstract
Background Long-term infections by Clonorchis sinensis are associated with cholangitis, cholecystitis, liver fibrosis, cirrhosis, and even liver cancer. Molecules from the worm play vital roles in disease progress. In the present study, we identified and explored molecular characterization of C. sinensis granulin (CsGRN), a growth factor-like protein from C. sinensis excretory/secretory products (CsESPs). Methods The encoding sequence and conserved domains of CsGRN were identified and analysed by bioinformatics tools. Recombinant CsGRN (rCsGRN) protein was expressed in Escherichia coli BL21 (DE3). The localisation of CsGRN in adult worms and Balb/c mice infected with C. sinensis was investigated by immunofluorescence and immunohistochemistry, respectively. Stable CsGRN-overexpressed cell lines of hepatoma cells (PLC-GRN cells) and cholangiocarcinoma cells (RBE-GRN cells) were constructed by transfection of eukaryotic expression plasmid of pEGFP-C1-CsGRN. The effects on cell migration and invasion of CsGRN were assessed through the wound-healing assay and transwell assay. The levels of matrix metalloproteinase 2 and 9 (MMP2 and MMP9) in PLC-GRN or RBE-GRN cells were detected by real-time PCR (qRT-PCR). The levels of E-cadherin, vimentin, N-cadherin, zona occludens proteins (ZO-1), β-catenin, phosphorylated ERK (p-ERK) and phosphorylated AKT (p-AKT) were analysed by Western blotting. Results CsGRN, including the conserved GRN domains, was confirmed to be a member of the granulin family. CsGRN was identified as an ingredient of CsESPs. CsGRN was localised in the tegument and testes of the adult worm. Furthermore, it appeared in the cytoplasm of hepatocytes and biliary epithelium cells from infected Balb/c mouse. The enhancement of cell migration and invasion of PLC-GRN and RBE-GRN cells were observed. In addition, CsGRN upregulated the levels of vimentin, N-cadherin, β-catenin, MMP2 and MMP9, while it downregulated the level of ZO-1 in PLC-GRN/RBE-GRN cells. In total proteins of liver tissue from rCsGRN immunised Balb/c mice, vimentin level decreased, while E-cadherin level increased when compared with the control groups. Meanwhile, the levels of p-ERK reached a peak at 4 weeks post immunisation and the level of p-AKT did at 2 weeks after immunisation. Conclusions The encoding sequence and molecular characteristics of CsGRN were identified. As a member of granulin superfamily, CsGRN induced mesenchymal characteristics of PLC and RBE cells and was found to regulate the activities of the downstream molecules of the ERK and PI3K/AKT signalling pathways, which could contribute to the enhancement of cell migration and invasion. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2179-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caiqin Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Huali Lei
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China.,Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, People's Republic of China
| | - Yanli Tian
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Mei Shang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Yinjuan Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Ye Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Lu Zhao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Mengchen Shi
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Xin Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Tingjin Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Zhiyue Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Xiaoping Tang
- Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, People's Republic of China
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China.
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|