1
|
Wu W, Mis Solval K, Chen J. Ellagitannin content and anti-enterohemorrhagic Escherichia coli activity of aqueous extracts derived from commercial pomegranate products. Heliyon 2024; 10:e29700. [PMID: 38660237 PMCID: PMC11040112 DOI: 10.1016/j.heliyon.2024.e29700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024] Open
Abstract
This study compared the efficacy of aqueous extracts of commercially available pomegranate peel products and a juice powder in inhibiting the growth of two enterohemorrhagic Escherichia coli strains. Cell suspension of each E. coli strain (5 Log CFU/ml) was added into tryptic soy broth amended with 9 or 23% of each extract prepared with two different methods. After treatment for 5, 10, and 24 h at 25 °C, surviving E. coli cells were enumerated on tryptic soy agar to determine cell population reduction compared to the controls. The concentrations of six different ellagitannins and titratable activity in each treatment system were determined and correlated to E. coli cell population reduction. The extracts from three powdered pomegranate peels caused a significantly greater (p ≤ 0.05) reduction in E. coli population than the extract from the whole peel and juice powder. The higher dose of extracts resulted in a greater cell population reduction than the lower dose. The level of E. coli population reduction correlated positively with the total ellagitannins content (R2 0.67-0.98) and the titratable acidity (R2 0.69-0.98) in the treatment systems. The study suggests that pomegranate peels are promising natural additives or preservatives to control pathogens like EHEC.
Collapse
Affiliation(s)
- Weifan Wu
- Department of Food Science and Technology, The University of Georgia, Griffin, GA, 30223-1797, USA
| | - Kevin Mis Solval
- Department of Food Science and Technology, The University of Georgia, Griffin, GA, 30223-1797, USA
| | - Jinru Chen
- Department of Food Science and Technology, The University of Georgia, Griffin, GA, 30223-1797, USA
| |
Collapse
|
2
|
Matías-Reyes AE, Alvarado-Noguez ML, Pérez-González M, Carbajal-Tinoco MD, Estrada-Muñiz E, Fuentes-García JA, Vega-Loyo L, Tomás SA, Goya GF, Santoyo-Salazar J. Direct Polyphenol Attachment on the Surfaces of Magnetite Nanoparticles, Using Vitis vinifera, Vaccinium corymbosum, or Punica granatum. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2450. [PMID: 37686958 PMCID: PMC10490419 DOI: 10.3390/nano13172450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
This study presents an alternative approach to directly synthesizing magnetite nanoparticles (MNPs) in the presence of Vitis vinifera, Vaccinium corymbosum, and Punica granatum derived from natural sources (grapes, blueberries, and pomegranates, respectively). A modified co-precipitation method that combines phytochemical techniques was developed to produce semispherical MNPs that range in size from 7.7 to 8.8 nm and are coated with a ~1.5 nm thick layer of polyphenols. The observed structure, composition, and surface properties of the MNPs@polyphenols demonstrated the dual functionality of the phenolic groups as both reducing agents and capping molecules that are bonding with Fe ions on the surfaces of the MNPs via -OH groups. Magnetic force microscopy images revealed the uniaxial orientation of single magnetic domains (SMDs) associated with the inverse spinel structure of the magnetite (Fe3O4). The samples' inductive heating (H0 = 28.9 kA/m, f = 764 kHz), measured via the specific loss power (SLP) of the samples, yielded values of up to 187.2 W/g and showed the influence of the average particle size. A cell viability assessment was conducted via the MTT and NRu tests to estimate the metabolic and lysosomal activities of the MNPs@polyphenols in K562 (chronic myelogenous leukemia, ATCC) cells.
Collapse
Affiliation(s)
- Ana E. Matías-Reyes
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| | - Margarita L. Alvarado-Noguez
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| | - Mario Pérez-González
- Área Académica de Matemáticas y Física, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, UAEH, Mineral de la Reforma 42184, Mexico;
| | - Mauricio D. Carbajal-Tinoco
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| | - Elizabeth Estrada-Muñiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico (L.V.-L.)
| | - Jesús A. Fuentes-García
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Libia Vega-Loyo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico (L.V.-L.)
| | - Sergio A. Tomás
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| | - Gerardo F. Goya
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jaime Santoyo-Salazar
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| |
Collapse
|
3
|
Mehdi A, Lamiae B, Samira B, Ramchoun M, Abdelouahed K, Tamas F, Hicham B. Pomegranate ( Punica granatum L.) Attenuates Neuroinflammation Involved in Neurodegenerative Diseases. Foods 2022; 11:2570. [PMID: 36076756 PMCID: PMC9455244 DOI: 10.3390/foods11172570] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Food scientists have studied the many health benefits of polyphenols against pernicious human diseases. Evidence from scientific studies has shown that earlier healthy lifestyle changes, particularly in nutrition patterns, can reduce the burden of age-related diseases. In this context, a large number of plant-derived components belonging to the class of polyphenols have been reported to possess neuroprotective benefits. In this review, we examined studies on the effect of dietary polyphenols, notably from Punica granatum L., on neurodegenerative disease, including Alzheimer's disease, which is symptomatically characterized by impairment of cognitive functions. Clinical trials are in favor of the role of some polyphenols in maintaining neuronal homeostasis and attenuating clinical presentations of the disease. However, discrepancies in study design often bring inconsistent findings on the same component and display differences in their effectiveness due to interindividual variability, bioavailability in the body after administration, molecular structures, cross-blood-brain barrier, and signaling pathways such as nuclear factor kappa B (NF-κB). Based on preclinical and clinical trials, it appears that pomegranate may prove valuable in treating neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD). Therefore, due to the lack of information on human clinical trials, future in-depth studies, focusing on human beings, of several bioactive components of pomegranate's polyphenols and their synergic effects should be carried out to evaluate their curative treatment.
Collapse
Affiliation(s)
- Alami Mehdi
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Benchagra Lamiae
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Boulbaroud Samira
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Mhamed Ramchoun
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Khalil Abdelouahed
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Fulop Tamas
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Berrougui Hicham
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| |
Collapse
|
4
|
Magangana TP, Makunga NP, Fawole OA, Stander MA, Opara UL. Antioxidant, Antimicrobial, and Metabolomic Characterization of Blanched Pomegranate Peel Extracts: Effect of Cultivar. Molecules 2022; 27:2979. [PMID: 35566329 PMCID: PMC9101763 DOI: 10.3390/molecules27092979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022] Open
Abstract
Hot water blanching at 80 °C for 3 min can be used as a novel pre-treatment step in pomegranate peel to preserve the integrity of the phytochemical content within the peel extracts by lowering or inactivating enzymes such as polyphenol (PPO) oxidase and peroxidase (POD) that are responsible for the break-down of phytochemicals within the peel. The aim of this study was to investigate the effect of hot water blanching pre-treatment on yield, bioactive compounds, antioxidants, enzyme inactivation, and antibacterial activity of ‘Wonderful’, ‘Acco’, and ‘Herskawitz’ pomegranate peel extracts. We used a variety of spectrophotometric-based assays and liquid chromatography mass spectrometry (LC-MS)-based approach to characterize and quantify metabolites within the peel extracts. Blanching significantly (p < 0.05) reduced PPO activity in all peel extracts, with the highest PPO reduction in ‘Herskawitz’ peel extracts at 0.25 U/mL. Furthermore, higher antioxidant activity in ‘Herskawitz’ blanched peel extracts using 2,2-diphenyl-1-picryl hydrazyl (DPPH) antioxidant activity, ferric ion reducing antioxidant power (FRAP), and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical scavenging activity at 567.78 ± 9.47 µmol Trolox/g DM, 800.05 ± 1.60 µmol Trolox/g DM, and 915.27 ± 0.61 µmol Trolox/g DM, respectively, was noted. ‘Herskawitz’ blanched peel extracts were recorded with the lowest minimum inhibitory concentration (MIC) value of 80 µg/mL for Gram-positive Bacillus subtilis and Gram-negative Klebsiella pneumoniae bacteria strains. A total of 30 metabolites were present in ‘Acco’ and ‘Herskawitz’ peel extracts and were tentatively identified after LC-MS profiling. This study demonstrates that blanched peel extracts from ‘Herskawitz’ cultivar have great potential for commercial use in value-added products in the nutraceutical, cosmeceutical, and pharmacological industries.
Collapse
Affiliation(s)
- Tandokazi Pamela Magangana
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa;
- SARChI Postharvest Technology Research Laboratory, Faculty of AgriSciences, Africa Institute for Postharvest Technology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Nokwanda P. Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa;
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Maria A. Stander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa;
| | - Umezuruike Linus Opara
- SARChI Postharvest Technology Research Laboratory, Faculty of AgriSciences, Africa Institute for Postharvest Technology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
- UNESCO International Centre for Biotechnology, Nsukka 410001, Nigeria
| |
Collapse
|
5
|
Eggers M, Jungke P, Wolkinger V, Bauer R, Kessler U, Frank B. Antiviral activity of plant juices and green tea against SARS-CoV-2 and influenza virus. Phytother Res 2022; 36:2109-2115. [PMID: 35229364 PMCID: PMC9111003 DOI: 10.1002/ptr.7431] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 01/19/2023]
Abstract
Respiratory viruses pose a significant threat to global health. They initially infect the naso- and oropharyngeal regions, where they amplify, cause symptoms, and may also be transmitted to new hosts. Preventing initial infection or reducing viral loads upon infection might soothe symptoms, prevent dissemination into the lower airways, or transmission to the next individual. Several natural products have well-described direct antiviral activity or may ameliorate symptoms of respiratory infections. We thus analyzed the potential of plant-derived products to inactivate respiratory viral pathogens and determined the antiviral activity of black chokeberry (Aronia melanocarpae [Michx.] Elliott), elderberry (Sambucus nigra L.), and pomegranate (Punica granatum L.) juice, as well as green tea (Camellia sinensis [L.] Kuntze) on the infectivity of the surrogate-modified vaccinia virus Ankara, and the respiratory viruses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), and adenovirus Type 5. Black chokeberry and pomegranate juice, and green tea reduced SARS-CoV-2 and IAV titers by ≥80% or ≥99%. This suggests that oral rinsing with these products may reduce viral loads in the oral cavity which might prevent viral transmission.
Collapse
Affiliation(s)
- Maren Eggers
- VirologieLabor Prof. Dr. G. Enders MVZ GbRStuttgartGermany
| | - Peggy Jungke
- Technische Universität DresdenMedical Faculty Carl Gustav CarusDresdenGermany
| | - Volker Wolkinger
- Institute of Pharmaceutical SciencesUniversity of GrazGrazAustria
| | - Rudolf Bauer
- Institute of Pharmaceutical SciencesUniversity of GrazGrazAustria
| | - Uwe Kessler
- General management / R&DCogniVerde GmbHIm Oberen Rech 10Groß‐UmstadtGermany
| | - Bruno Frank
- General management / R&DCogniVerde GmbHIm Oberen Rech 10Groß‐UmstadtGermany
| |
Collapse
|
6
|
Tátraaljai D, Tang Y, Pregi E, Vági E, Horváth V, Pukánszky B. Stabilization of PE with Pomegranate Extract: Contradictions and Possible Mechanisms. Antioxidants (Basel) 2022; 11:antiox11020418. [PMID: 35204300 PMCID: PMC8869723 DOI: 10.3390/antiox11020418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
Dry pomegranate peel was extracted with acetone and the extract was added to a Phillips type polyethylene. The concentration of the extract was changed from 0 to 1000 ppm in six steps and stabilization efficiency was checked by the multiple extrusion of the polymer followed by the characterization of chemical structure, processing, and residual stability. The results confirmed the excellent processing stabilization efficiency of the extract, but also the poor long-term stability of PE containing it in accordance with previously published results. The extract is amorphous and its solubility is relatively large in the polymer; thus, these factors cannot be the reason for the poor stabilization efficiency in an oxygen-rich environment. Chemical factors like the self-interaction of the polyphenol molecules, the stability of the radicals forming after hydrogen abstraction, and the lack of hydrogens with the necessary reactivity must be considered during the evaluation of the efficiency of the extract. These factors as well as the insufficient number of active hydrogens hinder the reaction of the additive molecules with oxygen-centered radicals, thus leading to inferior long-term stability. The extract can be used for the processing stabilization of polymers, but for applications requiring long-term stability, it must be combined with other natural antioxidants like flavonoids or Vitamin E.
Collapse
Affiliation(s)
- Dóra Tátraaljai
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, ELKH Eötvös Lóránd Research Network, P.O. Box 286, H-1519 Budapest, Hungary; (E.P.); (B.P.)
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-382-6569
| | - Yun Tang
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary; (Y.T.); (E.V.)
| | - Emese Pregi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, ELKH Eötvös Lóránd Research Network, P.O. Box 286, H-1519 Budapest, Hungary; (E.P.); (B.P.)
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Erika Vági
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary; (Y.T.); (E.V.)
| | - Viola Horváth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary;
- MTA-BME Computation Driven Chemistry Research Group, P.O. Box 91, H-1521 Budapest, Hungary
| | - Béla Pukánszky
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, ELKH Eötvös Lóránd Research Network, P.O. Box 286, H-1519 Budapest, Hungary; (E.P.); (B.P.)
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| |
Collapse
|
7
|
Man G, Xu L, Wang Y, Liao X, Xu Z. Profiling Phenolic Composition in Pomegranate Peel From Nine Selected Cultivars Using UHPLC-QTOF-MS and UPLC-QQQ-MS. Front Nutr 2022; 8:807447. [PMID: 35141267 PMCID: PMC8819070 DOI: 10.3389/fnut.2021.807447] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Pomegranate is widely cultivated across China, and the phenolics in its peel are principal components associated with health benefits. Ultra-high performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer (UHPLC-QTOF-MS) and ultra-performance liquid chromatography coupled to a triple quadrupole mass spectrometer (UPLC-QQQ-MS) were used in this study, aiming at profiling the total phenolic composition in pomegranate peel from nine selected cultivars in 7 production areas. Sixty-four phenolic compounds were identified or annotated, and 23 of them were firstly reported in pomegranate peel. Principal component analysis (PCA) plots show differences and similarities of phenolics among nine cultivars. Furthermore, 15 phenolic compounds were quantified with the standards, and punicalagin, ellagic acid, gallocatechin, punicalin, catechin, and corilagin were found to be dominant. Punicalagin weighed the highest content (28.03–104.14 mg/g). This study can provide a deeper and more detailed insight into the phenolic composition in pomegranate peel and facilitate the health-promoting utilization of phenolics.
Collapse
Affiliation(s)
- Guowei Man
- College of Food Science and Nutritional Engineering, China Agricultural University; Beijing Key Laboratory for Food Non-thermal Processing; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lei Xu
- College of Food Science and Nutritional Engineering, China Agricultural University; Beijing Key Laboratory for Food Non-thermal Processing; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University; Beijing Key Laboratory for Food Non-thermal Processing; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University; Beijing Key Laboratory for Food Non-thermal Processing; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- *Correspondence: Xiaojun Liao
| | - Zhenzhen Xu
- Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, China
- Zhenzhen Xu
| |
Collapse
|
8
|
Montefusco A, Durante M, Migoni D, De Caroli M, Ilahy R, Pék Z, Helyes L, Fanizzi FP, Mita G, Piro G, Lenucci MS. Analysis of the Phytochemical Composition of Pomegranate Fruit Juices, Peels and Kernels: A Comparative Study on Four Cultivars Grown in Southern Italy. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112521. [PMID: 34834884 PMCID: PMC8621565 DOI: 10.3390/plants10112521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 06/12/2023]
Abstract
The increasing popularity of pomegranate (Punica granatum L.), driven by the awareness of its nutraceutical properties and excellent environmental adaptability, is promoting a global expansion of its production area. This investigation reports the variability in the weight, moisture, pH, total soluble solids, carbohydrates, organic acids, phenolic compounds, fatty acids, antioxidant activities, and element composition of different fruit parts (juices, peels, and kernels) from four (Ako, Emek, Kamel, and Wonderful One) of the most widely cultivated Israeli pomegranate varieties in Salento (South Italy). To the best of our knowledge, this is the first systematic characterization of different fruit parts from pomegranate cultivars grown simultaneously in the same orchard and subjected to identical agronomic and environmental conditions. Significant genotype-dependent variability was observed for many of the investigated parameters, though without any correlation among fruit parts. The levels of phenols, flavonoids, anthocyanins, and ascorbic and dehydroascorbic acids of all samples were higher than the literature-reported data, as was the antioxidant activity. This is likely due to positive interactions among genotypes, the environment, and good agricultural practices. This study also confirms that pomegranate kernels and peels are, respectively, rich sources of punicic acid and phenols together, with several other bioactive molecules. However, the variability in their levels emphasizes the need for further research to better exploit their agro-industrial potential and thereby increase juice-production chain sustainability. This study will help to assist breeders and growers to respond to consumer and industrial preferences and encourage the development of biorefinery strategies for the utilization of pomegranate by-products as nutraceuticals or value-added ingredients for custom-tailored supplemented foods.
Collapse
Affiliation(s)
- Anna Montefusco
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (Di.S.Te.B.A.), Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (A.M.); (D.M.); (M.D.C.); (F.P.F.); (G.P.)
| | - Miriana Durante
- Istituto di Scienze delle Produzioni Alimentari (ISPA)-CNR, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (M.D.); (G.M.)
| | - Danilo Migoni
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (Di.S.Te.B.A.), Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (A.M.); (D.M.); (M.D.C.); (F.P.F.); (G.P.)
| | - Monica De Caroli
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (Di.S.Te.B.A.), Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (A.M.); (D.M.); (M.D.C.); (F.P.F.); (G.P.)
| | - Riadh Ilahy
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Ariana 1040, Tunisia;
| | - Zoltán Pék
- Horticultural Institute, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.P.); (L.H.)
| | - Lajos Helyes
- Horticultural Institute, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.P.); (L.H.)
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (Di.S.Te.B.A.), Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (A.M.); (D.M.); (M.D.C.); (F.P.F.); (G.P.)
| | - Giovanni Mita
- Istituto di Scienze delle Produzioni Alimentari (ISPA)-CNR, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (M.D.); (G.M.)
| | - Gabriella Piro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (Di.S.Te.B.A.), Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (A.M.); (D.M.); (M.D.C.); (F.P.F.); (G.P.)
| | - Marcello Salvatore Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (Di.S.Te.B.A.), Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (A.M.); (D.M.); (M.D.C.); (F.P.F.); (G.P.)
| |
Collapse
|
9
|
Kalinowska M, Gołębiewska E, Świderski G, Męczyńska-Wielgosz S, Lewandowska H, Pietryczuk A, Cudowski A, Astel A, Świsłocka R, Samsonowicz M, Złowodzka AB, Priebe W, Lewandowski W. Plant-Derived and Dietary Hydroxybenzoic Acids-A Comprehensive Study of Structural, Anti-/Pro-Oxidant, Lipophilic, Antimicrobial, and Cytotoxic Activity in MDA-MB-231 and MCF-7 Cell Lines. Nutrients 2021; 13:nu13093107. [PMID: 34578985 PMCID: PMC8466373 DOI: 10.3390/nu13093107] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022] Open
Abstract
Seven derivatives of plant-derived hydroxybenzoic acid (HBA)—including 2,3-dihydroxybenzoic (2,3-DHB, pyrocatechuic), 2,4-dihydroxybenzoic (2,4-DHB, β-resorcylic), 2,5-dihydroxybenzoic (2,5-DHB, gentisic), 2,6-dihydroxybenzoic (2,6-DHB, γ-resorcylic acid), 3,4-dihydroxybenzoic (3,4-DHB, protocatechuic), 3,5-dihydroxybenzoic (3,5-DHB, α-resorcylic), and 3,4,5-trihydroxybenzoic (3,4,5-THB, gallic) acids—were studied for their structural and biological properties. Anti-/pro-oxidant properties were evaluated by using DPPH• (2,2-diphenyl-1-picrylhydrazyl), ABTS•+ (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), FRAP (ferric-reducing antioxidant power), CUPRAC (cupric-reducing antioxidant power), and Trolox oxidation assays. Lipophilicity was estimated by means of experimental (HPLC) and theoretical methods. The antimicrobial activity against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), Bacillus subtilis (B. subtilis), Salmonella enteritidis (S. enteritidis), and Candida albicans (C. albicans) was studied. The cytotoxicity of HBAs in MCF-7 and MDA-MB-231 cell lines was estimated. Moreover, the structure of HBAs was studied by means of experimental (FTIR, 1H, and 13C NMR) and quantum chemical DFT methods (the NBO and CHelpG charges, electrostatic potential maps, and electronic parameters based on the energy of HOMO and LUMO orbitals). The aromaticity of HBA was studied based on the calculated geometric and magnetic aromaticity indices (HOMA, Aj, BAC, I6, NICS). The biological activity of hydroxybenzoic acids was discussed in relation to their geometry, the electronic charge distribution in their molecules, their lipophilicity, and their acidity. Principal component analysis (PCA) was used in the statistical analysis of the obtained data and the discussion of the dependency between the structure and activity (SAR: structure–activity relationship) of HBAs. This work provides valuable information on the potential application of hydroxybenzoic acids as bioactive components in dietary supplements, functional foods, or even drugs.
Collapse
Affiliation(s)
- Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
- Correspondence:
| | - Ewelina Gołębiewska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
| | - Grzegorz Świderski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
| | - Sylwia Męczyńska-Wielgosz
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland; (S.M.-W.); (H.L.)
| | - Hanna Lewandowska
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland; (S.M.-W.); (H.L.)
| | - Anna Pietryczuk
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245 Bialystok, Poland; (A.P.); (A.C.)
| | - Adam Cudowski
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245 Bialystok, Poland; (A.P.); (A.C.)
| | - Aleksander Astel
- Environmental Chemistry Research Unit, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22a Street, 76-200 Słupsk, Poland;
| | - Renata Świsłocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
| | - Mariola Samsonowicz
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
| | - Anna Barbara Złowodzka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warszawa, Poland;
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA;
| | - Włodzimierz Lewandowski
- Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| |
Collapse
|
10
|
Wong TL, Strandberg KR, Croley CR, Fraser SE, Nagulapalli Venkata KC, Fimognari C, Sethi G, Bishayee A. Pomegranate bioactive constituents target multiple oncogenic and oncosuppressive signaling for cancer prevention and intervention. Semin Cancer Biol 2021; 73:265-293. [DOI: 10.1016/j.semcancer.2021.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/01/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
|
11
|
Magangana TP, Makunga NP, la Grange C, Stander MA, Fawole OA, Opara UL. Blanching Pre-Treatment Promotes High Yields, Bioactive Compounds, Antioxidants, Enzyme Inactivation and Antibacterial Activity of 'Wonderful' Pomegranate Peel Extracts at Three Different Harvest Maturities. Antioxidants (Basel) 2021; 10:1119. [PMID: 34356352 PMCID: PMC8301009 DOI: 10.3390/antiox10071119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
'Wonderful' pomegranate (Punica granatum L.) peel contains a wide range of phytochemicals including vitamins, dietary fibre, phenolic compounds, and antioxidant properties. Yet, it is often used as animal feed or discarded in landfills, which is not the best eco-friendly way to utilize this phenolic-rich bioresource. Finding novel ways of utilizing pomegranate peel waste could prove a more profitable and eco-friendlier alternative that is far more beneficial to the economy. Adding a blanching pre-treatment step at optimal conditions prior to processing of pomegranate peel aids in the inactivation of quality changing enzymes such as polyphenol oxidase (PPO) and peroxidase (POD), which are accountable for the degradation reactions that cause breakdown of nutrients and phytochemicals. This study aimed to determine the effect of blanching at 80 °C for 3 min on the yield, polyphenol content, antioxidant properties, enzyme inactivation, and antibacterial activity of 'Wonderful' pomegranate peel ethanolic extracts from three different harvest maturities (unripe, ripe, and over ripe), including a comprehensive characterization and quantification using liquid chromatography-mass spectrometry (LC-MS). The blanched unripe peel extracts exhibited the highest total phenolic content, total tannin content, 2,2-diphenyl-1-picryl hydrazyl (DPPH) antioxidant activity, 2,2-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical scavenging activity and ferric ion reducing antioxidant power (FRAP) at 14.0 mg gallic acid equivalent (GAE)/g dry mass (DM), 1.0 mg GAE/g DM, 359.1 µmol Trolox/g DM, 912.2 µmol Trolox/g DM and 802.5 µmol Trolox/g DM, respectively. There was significant (p < 0.05) decrease in PPO and POD activity of all blanched pomegranate peel extracts. The blanched unripe peel extracts had the lowest PPO activity at 0.2 U/g fresh weight (FW), with a 70% PPO inactivation compared to ripe and over ripe harvest, whereas the highest POD inactivation was recorded at 67% in over ripe peel extracts. All blanched peel extracts, irrespective of harvest maturity, had minimum inhibitory concentration (MIC) values at 160 µg/mL against all four bacteria strains tested, which included two Gram-positive bacterial strains (Bacillus subtilis ATCC 6051 and Staphylococcus aureus ATCC 12600) and two Gram-negative bacteria (Escherichia coli 11775 and Klebsiella pneumonia ATCC 13883). A total of 25 metabolites including phenolic acids (4), organic acids (1), flavonoids (4), ellagitannins (13), and other polyphenols (3) in all three pomegranate peel samples were tentatively identified after LC-MS profiling. The blanched unripe peel extracts showed significantly higher punicalin α and β, β punicalagin, catechin, epicatechin content at 414 mg/g, and 678 mg/g, 151 mg/g, 229 mg/g, respectively, compared to peel extracts from other harvest maturities. This study provides supportive information for the commercial utilization of pomegranate fruit peel as source of value-added ingredients for the development of novel food, cosmetics, and pharmacological products.
Collapse
Affiliation(s)
- Tandokazi Pamela Magangana
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; (T.P.M.); (N.P.M.); (C.l.G.)
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Nokwanda P. Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; (T.P.M.); (N.P.M.); (C.l.G.)
| | - Chris la Grange
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; (T.P.M.); (N.P.M.); (C.l.G.)
| | - Maria A. Stander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa;
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Umezuruike Linus Opara
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
- UNESCO International Centre for Biotechnology, Nsukka 410001, Enugu State, Nigeria
| |
Collapse
|
12
|
Seo Y, Mun CH, Park SH, Jeon D, Kim SJ, Yoon T, Ko E, Jo S, Park YB, Namkung W, Lee SW. Punicalagin Ameliorates Lupus Nephritis via Inhibition of PAR2. Int J Mol Sci 2020; 21:ijms21144975. [PMID: 32674502 PMCID: PMC7404282 DOI: 10.3390/ijms21144975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/26/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022] Open
Abstract
Lupus nephritis (LN) is the most frequent phenotype in patients with systemic lupus erythematosus (SLE) and has a high rate of progression to end-stage renal disease, in spite of intensive treatment and maintenance therapies. Recent evidence suggests that protease-activated receptor-2 (PAR2) is a therapeutic target for glomerulonephritis. In this study, we performed a cell-based high-throughput screening and identified a novel potent PAR2 antagonist, punicalagin (PCG, a major polyphenol enriched in pomegranate), and evaluated the effects of PCG on LN. The effect of PCG on PAR2 inhibition was observed in the human podocyte cell line and its effect on LN was evaluated in NZB/W F1 mice. In the human podocyte cell line, PCG potently inhibited PAR2 (IC50 = 1.5 ± 0.03 µM) and significantly reduced the PAR2-mediated activation of ERK1/2 and NF-κB signaling pathway. In addition, PCG significantly decreased PAR2-induced increases in ICAM-1 and VCAM-1 as well as in IL-8, IFN-γ, and TNF-α expression. Notably, the intraperitoneal administration of PCG significantly alleviated kidney injury and splenomegaly and reduced proteinuria and renal ICAM-1 and VCAM-1 expression in NZB/W F1 mice. Our results suggest that PCG has beneficial effects on LN via inhibition of PAR2, and PCG is a potential therapeutic agent for LN.
Collapse
Affiliation(s)
- Yohan Seo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.S.); (D.J.); (S.J.)
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Chin Hee Mun
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.M.); (S.J.K.); (T.Y.); (E.K.); (Y.-B.P.)
| | - So-Hyeon Park
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon 21983, Korea;
| | - Dongkyu Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.S.); (D.J.); (S.J.)
| | - Su Jeong Kim
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.M.); (S.J.K.); (T.Y.); (E.K.); (Y.-B.P.)
- BK21 Plus Project, Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Taejun Yoon
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.M.); (S.J.K.); (T.Y.); (E.K.); (Y.-B.P.)
- BK21 Plus Project, Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Eunhee Ko
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.M.); (S.J.K.); (T.Y.); (E.K.); (Y.-B.P.)
- BK21 Plus Project, Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sungwoo Jo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.S.); (D.J.); (S.J.)
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.M.); (S.J.K.); (T.Y.); (E.K.); (Y.-B.P.)
- BK21 Plus Project, Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03772, Korea
| | - Wan Namkung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.S.); (D.J.); (S.J.)
- Interdisciplinary Program of Integrated OMICS for Biomedical Science Graduate School, Yonsei University, Seoul 03772, Korea
- Correspondence: (W.N.); (S.-W.L.); Tel.: +82-32-749-4519 (W.N.); +82-2-2228-1987 (S.-W.L.)
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.M.); (S.J.K.); (T.Y.); (E.K.); (Y.-B.P.)
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03772, Korea
- Correspondence: (W.N.); (S.-W.L.); Tel.: +82-32-749-4519 (W.N.); +82-2-2228-1987 (S.-W.L.)
| |
Collapse
|
13
|
Diken ME, Kizilduman BK, Yilmaz Kardaş B, Doğan EE, Doğan M, Turhan Y, Doğan S. Synthesis, characterization, and their some chemical and biological properties of PVA/PAA/nPS hydrogel nanocomposites: Hydrogel and wound dressing. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520921474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The nanocomposite hydrogels were prepared by dispersing of the nanopomegranate seed particles into poly(vinyl alcohol)/poly(acrylic acid) blend matrix in an aqueous medium by the solvent casting method. These hydrogels were characterized using scanning electron microscopy, Fourier transform infrared spectra, differential scanning calorimetry, and optical contact angle instruments. The nanopomegranate seed, blend, and hydrogel nanocomposites were tested for microbial activity. In addition, cytocompatibilities of these blend and hydrogel nanocomposites/composites were tested on human lymphocyte with in vitro MTS cell viability assays. Fourier transform infrared spectra revealed that esterification reaction took place among functional groups in the structure of poly(vinyl alcohol) and poly(acrylic acid). The hydrophilic properties of all hydrogels decreased with increasing nanopomegranate seed content. The mean diameters of the nanopomegranate seed particles were about 88 nm. Nanopomegranate seed particles demonstrated antibacterial properties against gram-positive bacteria, Staphylococcus aureus, and gram-negative bacteria, Escherichia coli. The lymphocyte viabilities increased after addition of nanopomegranate seeds into the polymer blend. The swelling behavior of blend and hydrogels was dependent on the cross-linking density created by the reaction between poly(vinyl alcohol)/poly(acrylic acid) blend and nanopomegranate seed. Scanning electron microscopy images were highly consistent with Fourier transform infrared spectra, differential scanning calorimetry, and antibacterial activity results.
Collapse
Affiliation(s)
- Mehmet Emin Diken
- Science and Technology Application and Research Center, Balikesir University, Balikesir, Turkey
| | - Berna Koçer Kizilduman
- Science and Technology Application and Research Center, Balikesir University, Balikesir, Turkey
| | - Begümhan Yilmaz Kardaş
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Balikesir University, Balikesir, Turkey
| | - Enes Emre Doğan
- Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Mehmet Doğan
- Department of Chemistry, Faculty of Science and Literature, Balikesir University, Balikesir, Turkey
| | - Yasemin Turhan
- Department of Chemistry, Faculty of Science and Literature, Balikesir University, Balikesir, Turkey
| | - Serap Doğan
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Balikesir University, Balikesir, Turkey
| |
Collapse
|
14
|
Bar-Ya'akov I, Tian L, Amir R, Holland D. Primary Metabolites, Anthocyanins, and Hydrolyzable Tannins in the Pomegranate Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:620. [PMID: 31164897 PMCID: PMC6534183 DOI: 10.3389/fpls.2019.00620] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/25/2019] [Indexed: 05/09/2023]
Abstract
Pomegranate (Punica granatum L.) is an important and interesting fruit tree that is cultivated in many parts of the world. In recent years, along with the increase in its cultivation and consumption there has been a dramatic increase in the scientific interest in its biology, methods of cultivation, adaptation to environmental cues and its health-promoting properties. Quite a large proportion of the various metabolites produced in the pomegranate were determined and their content in the bark, roots, leaves, and fruit was reported. Many reviews on polyphenolic compound content, antioxidant activity and health-promoting compounds were published recently. However, only very few recent reports were dedicated to primary metabolites, despite the fact that much work was done on organic acids, sugars, proteins, lipids, and amino acids of the pomegranate fruit. In this review, a special effort was made to present these recent studies and the review is devoted to primary metabolites. The reported data show high variation in the content of primary metabolites within the pomegranate fruit; therefore the data is presented (whenever possible) according to fruit tissues (peel, arils, and seeds), developmental stages of the fruit, environmental and climatic conditions, and genetic background. Most of the data on pomegranate is based on metabolic content and contains no genetic or molecular analysis except for work done on anthocyanins and hydrolyzable tannins. In those cases, gene assignment and genetic control studies were pointed out in the review. The recent publication of the genome sequences from several pomegranate varieties and transcriptomic data from fruits, flowers, and leaves is expected to facilitate the understanding of genetic control of metabolites in pomegranate.
Collapse
Affiliation(s)
- Irit Bar-Ya'akov
- Unit of Deciduous Fruit Tree Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Li Tian
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Rachel Amir
- Laboratory of Plant Metabolism, Department of Plant Science, Migal, Tel Hai College, Qiryat Shmona, Israel
| | - Doron Holland
- Unit of Deciduous Fruit Tree Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
15
|
Gramza-Michałowska A, Bueschke M, Kulczyński B, Gliszczyńska-Świgło A, Kmiecik D, Bilska A, Purłan M, Wałęsa L, Ostrowski M, Filipczuk M, Jędrusek-Golińska A. Phenolic compounds and multivariate analysis of antiradical properties of red fruits. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00091-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
John KM, Bhagwat AA, Luthria DL. Swarm motility inhibitory and antioxidant activities of pomegranate peel processed under three drying conditions. Food Chem 2017; 235:145-153. [DOI: 10.1016/j.foodchem.2017.04.143] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/22/2017] [Accepted: 04/24/2017] [Indexed: 11/17/2022]
|