1
|
Cui Y, Shi Q, Song P, Tong J, Cheng Z, Zhang H, Wang X, Zheng Y, Wu Y, Wan M, Li S, Zhao X, Tong Z, Yu Z, Gao S, Chen YG, Gao GF. Coxsackievirus A10 impairs nail regeneration and induces onychomadesis by mimicking DKK1 to attenuate Wnt signaling. J Exp Med 2024; 221:e20231512. [PMID: 38836810 PMCID: PMC11153773 DOI: 10.1084/jem.20231512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/28/2023] [Accepted: 05/08/2024] [Indexed: 06/06/2024] Open
Abstract
Coxsackievirus A10 (CV-A10) infection, a prominent cause of childhood hand-foot-and-mouth disease (HFMD), frequently manifests with the intriguing phenomenon of onychomadesis, characterized by nail shedding. However, the underlying mechanism is elusive. Here, we found that CV-A10 infection in mice could suppress Wnt/β-catenin signaling by restraining LDL receptor-related protein 6 (LRP6) phosphorylation and β-catenin accumulation and lead to onychomadesis. Mechanistically, CV-A10 mimics Dickkopf-related protein 1 (DKK1) to interact with Kringle-containing transmembrane protein 1 (KRM1), the CV-A10 cellular receptor. We further found that Wnt agonist (GSK3β inhibitor) CHIR99021 can restore nail stem cell differentiation and protect against nail shedding. These findings provide novel insights into the pathogenesis of CV-A10 and related viruses in onychomadesis and guide prognosis assessment and clinical treatment of the disease.
Collapse
Affiliation(s)
- Yingzi Cui
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiaoni Shi
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Pu Song
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianyu Tong
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Zhimin Cheng
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Hangchuan Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaodan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuxuan Zheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yao Wu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Meng Wan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shihua Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhou Tong
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhengquan Yu
- Department of Nutrition and Health, State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shan Gao
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| |
Collapse
|
2
|
Wang SH, Du J, Yu J, Zhao Y, Wang Y, Hua S, Zhao K. Coxsackievirus A6 2C protein antagonizes IFN-β production through MDA5 and RIG-I depletion. J Virol 2023; 97:e0107523. [PMID: 37847581 PMCID: PMC10688345 DOI: 10.1128/jvi.01075-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/09/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Coxsackievirus A6 (CV-A6) is a major emerging pathogen associated with atypical hand, foot, and mouth disease and can cause serious complications such as encephalitis, acute flaccid paralysis, and neurorespiratory syndrome. Therefore, revealing the associated pathogenic mechanisms could benefit the control of CV-A6 infections. In this study, we demonstrate that the nonstructural 2CCV-A6 suppresses IFN-β production, which supports CV-A6 infection. This is achieved by depleting RNA sensors such as melanoma differentiation-associated gene 5 and retinoic acid-inducible gene I (RIG-I) through the lysosomal pathway. Such a function is shared by 2CEV-A71 and 2CCV-B3 but not 2CCV-A16, suggesting the latter might have an alternative way to promote viral replication. This study broadens our understanding of enterovirus 2C protein regulation of the RIG-I-like receptor signaling pathway and reveals a novel mechanism by which CV-A6 and other enteroviruses evade the host innate immune response. These findings on 2C may provide new therapeutic targets for the development of effective inhibitors against CV-A6 and other enterovirus infections.
Collapse
Affiliation(s)
- Shao-Hua Wang
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Jinghua Yu
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Yifei Zhao
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Yu Wang
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Shucheng Hua
- Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, China
| | - Ke Zhao
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Wang J, Zhang S. Epidemiological characteristics and trends of hand-foot-mouth disease in Shanghai, China from 2011 to 2021. Front Public Health 2023; 11:1162209. [PMID: 37325298 PMCID: PMC10267978 DOI: 10.3389/fpubh.2023.1162209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) is a kind of infectious disease caused by enterovirus infection. In this study we analysed the epidemiological characteristics and time trends of HFMD, vaccination status and vaccine protection effect assessment of EV71 vaccine from 2011 to 2021 in Huangpu District, Shanghai, China. HFMD cases showed a decreasing trend year by year from 2011 to 2021, from 122 cases reported in 2012 to 7 cases in 2020, and 12 cases in 2021. Etiological diagnosis was CV-A6 in 185 cases (29.8%), CV-A16 in 209 cases (33.7%), EV-A71 in 118 cases (19.0%) and other enteroviruses in 109 cases (17.6%). After the launch of EV71 vaccine, a total of 32,221 doses of EV71 vaccine were administered between 2016 and 2021. The case-control results showed that there was no evidence to support the effectiveness of EV71 vaccine, OR (95% CI) =0.52 (0.12 ~ 2.3), p = 0.37. The epidemic strains have changed. Surveillance and management of HFMD remain very important in the future and EV71 vaccine is considered to be included in National Immunization Program.
Collapse
|
4
|
Zhang S, Yu X, Meng X, Huo W, Su Y, Liu J, Liu Y, Zhang J, Wang S, Yu J. Coxsackievirus A6 Induces Necroptosis for Viral Production. Front Microbiol 2020; 11:42. [PMID: 32117097 PMCID: PMC7011610 DOI: 10.3389/fmicb.2020.00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a febrile exanthematous disease with typical or atypical symptoms. Typical HFMD is usually caused by enterovirus 71 (EV71) or coxsackievirus A16, while atypical HFMD is usually caused by coxsackievirus A6 (CA6). In recent years, worldwide outbreaks of CA6-associated HFMD have dramatically increased, although the pathogenic mechanism of CA6 is still unclear. EV71 has been established to induce caspase-dependent apoptosis, but in this study, we demonstrate that CA6 infection promotes a distinct pathway of cell death that involves loss of cell membrane integrity. Necrostatin-1, an inhibitor of necroptosis, blocks the cell death induced by CA6 infection, but Z-DEVD-FMK, an inhibitor of caspase-3, has no effect on CA6-induced cell death. Furthermore, CA6 infection up-regulates the expression of the necroptosis signaling molecule RIPK3. Importantly, necrostatin-1 inhibits CA6 viral production, as assessed by its ability to inhibit levels of VP1 protein and genomic RNA and infectious particles. CA6-induced necroptosis is not dependent on the generation of reactive oxygen species; however, viral 3D protein can directly bind RIPK3, which is suggestive of a direct mechanism of necroptosis induction. Therefore, these results indicate that CA6 induces a mechanism of RIPK3-dependent necroptosis for viral production that is distinct from the mechanism of apoptosis induced by typical HFMD viruses.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Xiaoyan Yu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Xiangling Meng
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Wenbo Huo
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Ying Su
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Jinming Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Yumeng Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Jun Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shaohua Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jinghua Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
5
|
Xia F, Deng F, Tian H, He W, Xiao Y, Sun X. Estimation of the reproduction number and identification of periodicity for HFMD infections in northwest China. J Theor Biol 2019; 484:110027. [PMID: 31568791 DOI: 10.1016/j.jtbi.2019.110027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/14/2019] [Accepted: 09/26/2019] [Indexed: 02/08/2023]
Abstract
Repeated outbreaks of Hand, foot and mouth disease (HFMD) infections have been observed in recent decades and dominated by various enteroviral serotypes. In particular, enterovirus 71 (EV-A71), coxsackievirus A16 (CV-A16) and coxsackievirus A6 (CV-A6) dominated the prevalence of HFMD infections alternatively in recent years with various outbreak sizes in Baoji, a city of Shaanxi Province in Northwest China. Estimating the reproduction number for various enteroviruses serotypes in northwest China (north temperate zone) and identification of cyclicity of HFMD infections are therefore an issue of great importance for future epidemics prediction and control. The basic/effective reproduction numbers for EV-A71, CV-A16 and CV-A6 were estimated based on daily new cases in 2010, 2011 and 2018, respectively, in which the corresponding pathogen dominated the epidemic. Two different methods based on serial interval were adopted and the basic reproduction number were estimated to be in the range of (1.33, 1.46) for CV-A16, (1.20, 1.29) for EV-A71, and (1.38, 1.59) for CV-A6, respectively. The estimated daily effective reproduction numbers significantly fluctuated before June or after July but varied mildly in (0.5,2) in around June to July for three serotypes. The weekly effective reproduction number for HFMD was estimated based on weekly new cases from year 2010 to 2018, and in most years it peaked in the range of (1.6,2.0) in February to March as well as in the range of (1.0,1.2) in September to October. The wavelet analysis based on the time series of HFMD cases from 2008 to 2018 showed obvious annual and semi-annual cyclicity, while the inter-annual cycles are infeasible. In this study we found that CV-A6 shows the greatest transmission ability among these three pathogens while EV-A71 exhibits the weakest ability of transmission, and moreover, the estimated values of basic reproduction number in northwest China are lower than those in Singapore, Hongkong and Guangdong, which may be due to different climatic circumstances.
Collapse
Affiliation(s)
- Fan Xia
- Department of Applied Mathematics, Xi'an Jiaotong University, Xi'an Shaanxi, 710049, PR China
| | - Feng Deng
- Baoji Center for Disease Control and Prevention, Baoji 721006, Shaanxi, PR China
| | - Hui Tian
- Baoji Center for Disease Control and Prevention, Baoji 721006, Shaanxi, PR China
| | - Wei He
- Baoji Center for Disease Control and Prevention, Baoji 721006, Shaanxi, PR China
| | - Yanni Xiao
- Department of Applied Mathematics, Xi'an Jiaotong University, Xi'an Shaanxi, 710049, PR China
| | - Xiaodan Sun
- Department of Applied Mathematics, Xi'an Jiaotong University, Xi'an Shaanxi, 710049, PR China.
| |
Collapse
|
6
|
Li Y, Chang Z, Wu P, Liao Q, Liu F, Zheng Y, Luo L, Zhou Y, Chen Q, Yu S, Guo C, Chen Z, Long L, Zhao S, Yang B, Yu H, Cowling BJ. Emerging Enteroviruses Causing Hand, Foot and Mouth Disease, China, 2010-2016. Emerg Infect Dis 2019; 24:1902-1906. [PMID: 30226172 PMCID: PMC6154135 DOI: 10.3201/eid2410.171953] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Coxsackievirus A6 emerged as one of the predominant causative agents of hand, foot and mouth disease epidemics in many provinces of China in 2013 and 2015. This virus strain accounted for 25.9% of mild and 15.2% of severe cases in 2013 and 25.8% of mild and 16.9% of severe cases in 2015.
Collapse
MESH Headings
- China/epidemiology
- Communicable Diseases, Emerging/epidemiology
- Communicable Diseases, Emerging/history
- Communicable Diseases, Emerging/virology
- Enterovirus/classification
- Enterovirus/genetics
- Enterovirus A, Human/classification
- Enterovirus A, Human/genetics
- Genotype
- Geography, Medical
- Hand, Foot and Mouth Disease/epidemiology
- Hand, Foot and Mouth Disease/history
- Hand, Foot and Mouth Disease/virology
- History, 21st Century
- Humans
- Population Surveillance
- Prevalence
- Serogroup
Collapse
|
7
|
Lerdsamran H, Prasertsopon J, Mungaomklang A, Klinmalai C, Noisumdaeng P, Sangsiriwut K, Tassaneetrithep B, Guntapong R, Iamsirithaworn S, Puthavathana P. Seroprevalence of antibodies to enterovirus 71 and coxsackievirus A16 among people of various age groups in a northeast province of Thailand. Virol J 2018; 15:158. [PMID: 30326914 PMCID: PMC6192276 DOI: 10.1186/s12985-018-1074-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/02/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Hand, foot and mouth disease (HFMD) is endemic among population of young children in Thailand. The disease is mostly caused by enterovirus 71 (EV71) and coxsackievirus A16 (CA16). METHODS This study conducted serosurveillance for neutralizing (NT) antibodies to EV71 subgenotypes B5 and C4a, and to CA16 subgenotypes B1a and B1b, in 579 subjects of various ages using a microneutralization assay in human rhabdomyosarcoma (RD) cells. These test viruses were the major circulating subgenotypes associated with HFMD in Thailand during the study period. RESULTS We found that the levels of seropositivity against all 4 study viruses were lowest in the age group of 6-11 months, i.e., 5.5% had antibody to both EV71 subgenotypes, while 14.5% and 16.4% had antibody to CA16 subgenotypes B1a and B1b, respectively. The percentages of subjects with antibodies to these 4 viruses gradually increased with age, but were still less than 50% in children younger than 3 years. These laboratory data were consistent with the epidemiological data collected by the Ministry of Public Health which showed repeatedly that the highest number of HFMD cases was in children aged 1 year. Analyses of amino acid sequences of the test viruses showed 97% identity between the two subgenotypes of EV71, and 99% between the two subgenotypes of CA16. Nevertheless, the levels of seropositivity and antibody titer against the two subgenotypes of EV71 and of CA16 were not significantly different. CONCLUSIONS This study clearly demonstrated NT antibody activity across EV71-B5 and EV71-C4a subgenotypes, and also across CA16-B1a and CA16-B1b subgenotypes. Moreover, there were no significant differences by gender in the seropositive rates and antibody levels to any of the 4 virus subgenotypes.
Collapse
Affiliation(s)
- Hatairat Lerdsamran
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Jarunee Prasertsopon
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Anek Mungaomklang
- Debaratana Nakhon Ratchasima Hospital, Nakhon Ratchasima, 30280, Thailand
| | - Chompunuch Klinmalai
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Pirom Noisumdaeng
- Faculty of Public Health, Thammasat University (Rangsit Center), Khlong Luang, Pathum Thani, 12121, Thailand
| | - Kantima Sangsiriwut
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Boonrat Tassaneetrithep
- Center of Research Excellence in Immunoregulation, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Ratigorn Guntapong
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Sopon Iamsirithaworn
- Bureau of General Communicable Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Pilaipan Puthavathana
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand. .,Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
8
|
Wang Z, Wang Y, Wang S, Meng X, Song F, Huo W, Zhang S, Chang J, Li J, Zheng B, Liu Y, Zhang Y, Zhang W, Yu J. Coxsackievirus A6 Induces Cell Cycle Arrest in G0/G1 Phase for Viral Production. Front Cell Infect Microbiol 2018; 8:279. [PMID: 30159255 PMCID: PMC6104138 DOI: 10.3389/fcimb.2018.00279] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 07/25/2018] [Indexed: 11/13/2022] Open
Abstract
Recent epidemiological data indicate that outbreaks of hand, foot, and mouth disease (HFMD), which can be categorized according to its clinical symptoms as typical or atypical, have markedly increased worldwide. A primary causative agent for typical HFMD outbreaks, enterovirus 71 (EV71), has been shown to manipulate the cell cycle in S phase for own replication; however, it is not clear whether coxsackievirus (CVA6), the main agent for atypical HFMD, also regulates the host cell cycle. In this study, we demonstrate for the first time that CVA6 infection arrests the host cell cycle in G0/G1-phase. Furthermore, synchronization in G0/G1 phase, but not S phase or G2/M phase, promotes viral production. To investigate the mechanism of cell cycle arrest induced by CVA6 infection, we analyzed cell cycle progression after cell cycle synchronization at G0/G1 or G2/M. Our results demonstrate that CVA6 infection promotes G0/G1 phase entry from G2/M phase, and inhibits G0/G1 exit into S phase. In line with its role to arrest cells in G0/G1 phase, the expression of cyclinD1, CDK4, cyclinE1, CDK2, cyclinB1, CDK1, P53, P21, and P16 is regulated by CVA6. Finally, the non-structural proteins of CVA6, RNA-dependent RNA polymerase 3D and protease 3C , are demonstrated to be responsible for the G0/G1-phase arrest. These findings suggest that CVA6 infection arrested cell cycle in G0/G1-phase via non-structural proteins 3D and 3C, which may provide favorable environments for virus production.
Collapse
Affiliation(s)
- Zengyan Wang
- Department of Internal Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yue Wang
- Chemistry of Traditional Chinese Medicine, College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Shaohua Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiangling Meng
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin Univrsity, Changchun, China
| | - Fengmei Song
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin Univrsity, Changchun, China
| | - Wenbo Huo
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin Univrsity, Changchun, China
| | - Shuxia Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin Univrsity, Changchun, China
| | - Junliang Chang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jingliang Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yanqiu Liu
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yahong Zhang
- Key Laboratory of Natural Medicines and Immunotechnology of Henan Province, Henan University, Kaifeng, China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jinghua Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
9
|
Lim H, In HJ, Lee JA, Sik Yoo J, Lee SW, Chung GT, Choi YK, Chung JK, Cho SJ, Lee JW. The immunogenicity and protection effect of an inactivated coxsackievirus A6, A10, and A16 vaccine against hand, foot, and mouth disease. Vaccine 2018; 36:3445-3452. [DOI: 10.1016/j.vaccine.2018.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 01/17/2023]
|
10
|
Kumthip K, Khamrin P, Ushijima H, Maneekarn N. Multiple enterovirus genotypes circulating in children hospitalized with acute gastroenteritis in Thailand. INFECTION GENETICS AND EVOLUTION 2017; 55:324-331. [PMID: 28986202 DOI: 10.1016/j.meegid.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/22/2017] [Accepted: 10/02/2017] [Indexed: 11/30/2022]
Abstract
Enterovirus (EV) infection is widespread and can lead to a broad range of clinical symptoms, from mild to severe forms of disease. EVs are not always classified as pathogen and the epidemiological surveillance of EV infection in acute gastroenteritis cases in Thailand remains unexplored. This study aims to investigate the frequency, seasonality and molecular characteristics of EV circulating in children hospitalized with acute gastroenteritis in Chiang Mai, Thailand from 2010 to 2014. A total of 1266 fecal samples were included in this study. RT-PCR amplification of the 5'UTR was used for EV screening and phylogenetic analysis of the VP1 sequence was performed for EV genotyping. EV was detected in 5.8% of infections (73 out of 1266). Based on VP1 sequence analysis, over half (50.8%) of the identified EV cases were caused by species C, and the next two most frequent were species B and A (35.4% and 13.8%, respectively). This study identified 28 different EV genotypes, EV-C96 and coxsackievirus A24 were the most frequent genotype detected (12.3% each). EV was detected throughout the year with an increase of detection rate in December-January and May-June. In conclusion, this study reported the prevalence of EV infection with a wide variety of EV genotypes in children with acute diarrhea.
Collapse
Affiliation(s)
- Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
11
|
Kanbayashi D, Kaida A, Yamamoto SP, Hirai Y, Kubo H, Fujimori R, Hakui N, Hirokawa H, Iritani N. Impact of Coxsackievirus A6 emergence on hand, foot, and mouth disease epidemic in Osaka City, Japan. J Med Virol 2017; 89:2116-2121. [PMID: 28771766 DOI: 10.1002/jmv.24905] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/27/2017] [Indexed: 11/11/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is an acute febrile illness characterized by fever; sore throat; and vesicular eruptions on the hands, feet, and oral mucosa. Until 2010, HFMD was predominantly associated with enterovirus (EV) A71 and coxsackievirus (CV) A16 in Japan. In 2011, CV-A6 emerged as a primary causative agent, causing the largest HFMD epidemic in Japan since 1981. Since then, CV-A6 has caused large HFMD epidemics every 2 years. The phylogenetic analysis of complete Viral Protein 1 (VP1) sequences revealed that most CV-A6 strains detected from 2011 to 2015 in Osaka City were classified into a different clade compared with CV-A6 strains detected from 1999 until 2009. The majority of CV-A6 strains detected in 2011 and most CV-A6 strains detected from 2013 to 2015 were mainly divided into two distinct genetic groups. Each epidemic strain carried unique amino acid substitutions in the presumed DE, EF, and GH loops of the VP1 protein that is exposed on the surface of the virion. There is a possibility that the appearance of substitutions on the surface of the virion and an accumulation of a susceptible population are significant factors in recent HFMD epidemics.
Collapse
Affiliation(s)
- Daiki Kanbayashi
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Tennoji-ku, Osaka, Japan.,Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan
| | - Atsushi Kaida
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Tennoji-ku, Osaka, Japan
| | - Seiji P Yamamoto
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Tennoji-ku, Osaka, Japan.,Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan
| | - Yuki Hirai
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Tennoji-ku, Osaka, Japan
| | - Hideyuki Kubo
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Tennoji-ku, Osaka, Japan
| | - Ryoko Fujimori
- Osaka City Public Health, Bureau Osaka City Health Center, Abeno-ku, Osaka, Japan
| | - Noritaka Hakui
- Osaka City Public Health, Bureau Osaka City Health Center, Abeno-ku, Osaka, Japan
| | - Hidetetsu Hirokawa
- Osaka City Public Health, Bureau Osaka City Health Center, Abeno-ku, Osaka, Japan
| | - Nobuhiro Iritani
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Tennoji-ku, Osaka, Japan
| |
Collapse
|
12
|
Ogi M, Yano Y, Chikahira M, Takai D, Oshibe T, Arashiro T, Hanaoka N, Fujimoto T, Hayashi Y. Characterization of genome sequences and clinical features of coxsackievirus A6 strains collected in Hyogo, Japan in 1999-2013. J Med Virol 2017; 89:1395-1403. [PMID: 28229467 DOI: 10.1002/jmv.24798] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 01/19/2017] [Indexed: 12/18/2022]
Abstract
Coxsackievirus A6 (CV-A6) is an enterovirus, which is known to cause herpangina. However, since 2009 it has frequently been isolated from children with hand, foot, and mouth disease (HFMD). In Japan, CV-A6 has been linked to HFMD outbreaks in 2011 and 2013. In this study, the full-length genome sequencing of CV-A6 strains were analyzed to identify the association with clinical manifestations. Five thousand six hundred and twelve children with suspected enterovirus infection (0-17 years old) between 1999 and 2013 in Hyogo Prefecture, Japan, were enrolled. Enterovirus infection was confirmed with reverse transcriptase-PCR in 753 children (791 samples), 127 of whom (133 samples) were positive for CV-A6 based on the direct sequencing of the VP4 region. The complete genomes of CV-A6 from 22 positive patients with different clinical manifestations were investigated. A phylogenetic analysis divided these 22 strains into two clusters based on the VP1 region; cluster I contained strains collected in 1999-2009 and mostly related to herpangina, and cluster II contained strains collected in 2011-2013 and related to HFMD outbreak. Based on the full-length polyprotein analysis, the amino acid differences between the strains in cluster I and II were 97.7 ± 0.28%. Amino acid differences were detected in 17 positions within the polyprotein. Strains collected in 1999-2009 and those in 2011-2013 were separately clustered by phylogenetic analysis based on 5'UTR and 3Dpol region, as well as VP1 region. In conclusion, HFMD outbreaks by CV-A6 were recently frequent in Japan and the accumulation of genomic change might be associated with the clinical course.
Collapse
Affiliation(s)
- Miki Ogi
- Hyogo Prefectural Institute of Public Health and Consumer Sciences, Public Health Science Research Center, Hyogo, Japan.,Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Yoshihiko Yano
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Masatsugu Chikahira
- Hyogo Prefectural Institute of Public Health and Consumer Sciences, Public Health Science Research Center, Hyogo, Japan
| | - Denshi Takai
- Hyogo Prefectural Institute of Public Health and Consumer Sciences, Public Health Science Research Center, Hyogo, Japan
| | - Tomohiro Oshibe
- Hyogo Prefectural Institute of Public Health and Consumer Sciences, Public Health Science Research Center, Hyogo, Japan
| | - Takeshi Arashiro
- National Institute of Infectious Diseases, Infectious Disease Surveillance Center, Tokyo, Japan
| | - Nozomu Hanaoka
- National Institute of Infectious Diseases, Infectious Disease Surveillance Center, Tokyo, Japan
| | - Tsuguto Fujimoto
- National Institute of Infectious Diseases, Infectious Disease Surveillance Center, Tokyo, Japan
| | - Yoshitake Hayashi
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| |
Collapse
|