1
|
Abebe BK, Wang J, Guo J, Wang H, Li A, Zan L. A review of emerging technologies, nutritional practices, and management strategies to improve intramuscular fat composition in beef cattle. Anim Biotechnol 2024; 35:2388704. [PMID: 39133095 DOI: 10.1080/10495398.2024.2388704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
The flavour, tenderness and juiciness of the beef are all impacted by the composition of the intramuscular fat (IMF), which is a key determinant of beef quality. Thus, enhancing the IMF composition of beef cattle has become a major area of research. Consequently, the aim of this paper was to provide insight and synthesis into the emerging technologies, nutritional practices and management strategies to improve IMF composition in beef cattle. This review paper examined the current knowledge of management techniques and nutritional approaches relevant to cattle farming in the beef industry. It includes a thorough investigation of animal handling, weaning age, castration, breed selection, sex determination, environmental factors, grazing methods, slaughter weight and age. Additionally, it rigorously explored dietary energy levels and optimization of fatty acid profiles, as well as the use of feed additives and hormone implant techniques with their associated regulations. The paper also delved into emerging technologies that are shaping future beef production, such as genomic selection methods, genome editing techniques, epigenomic analyses, microbiome manipulation strategies, transcriptomic profiling approaches and metabolomics analyses. In conclusion, a holistic approach combining genomic, nutritional and management strategies is imperative for achieving targeted IMF content and ensuring high-quality beef production.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
2
|
Gim GM, Jang G. Outlook on genome editing application to cattle. J Vet Sci 2024; 25:e10. [PMID: 38311323 PMCID: PMC10839183 DOI: 10.4142/jvs.23133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 02/07/2024] Open
Abstract
In livestock industry, there is growing interest in methods to increase the production efficiency of livestock to address food shortages, given the increasing global population. With the advancements in gene engineering technology, it is a valuable tool and has been intensively utilized in research specifically focused on human disease. In historically, this technology has been used with livestock to create human disease models or to produce recombinant proteins from their byproducts. However, in recent years, utilizing gene editing technology, cattle with identified genes related to productivity can be edited, thereby enhancing productivity in response to climate change or specific disease instead of producing recombinant proteins. Furthermore, with the advancement in the efficiency of gene editing, it has become possible to edit multiple genes simultaneously. This cattle breed improvement has been achieved by discovering the genes through the comprehensive analysis of the entire genome of cattle. The cattle industry has been able to address gene bottlenecks that were previously impossible through conventional breeding systems. This review concludes that gene editing is necessary to expand the cattle industry, improving productivity in the future. Additionally, the enhancement of cattle through gene editing is expected to contribute to addressing environmental challenges associated with the cattle industry. Further research and development in gene editing, coupled with genomic analysis technologies, will significantly contribute to solving issues that conventional breeding systems have not been able to address.
Collapse
Affiliation(s)
| | - Goo Jang
- LARTBio Inco, Seoul 06221, Korea
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul 08826, Korea
- Comparative medicine Disease Research Center, Seoul National University, Seoul 08826, Korea
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia.
| |
Collapse
|
3
|
Gim GM, Eom KH, Kwon DH, Jung DJ, Kim DH, Yi JK, Ha JJ, Lee JH, Lee SB, Son WJ, Yum SY, Lee WW, Jang G. Generation of double knockout cattle via CRISPR-Cas9 ribonucleoprotein (RNP) electroporation. J Anim Sci Biotechnol 2023; 14:103. [PMID: 37543609 PMCID: PMC10404370 DOI: 10.1186/s40104-023-00902-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/04/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Genome editing has been considered as powerful tool in agricultural fields. However, genome editing progress in cattle has not been fast as in other mammal species, for some disadvantages including long gestational periods, single pregnancy, and high raising cost. Furthermore, technically demanding methods such as microinjection and somatic cell nuclear transfer (SCNT) are needed for gene editing in cattle. In this point of view, electroporation in embryos has been risen as an alternative. RESULTS First, editing efficiency of our electroporation methods were tested for embryos. Presence of mutation on embryo was confirmed by T7E1 assay. With first combination, mutation rates for MSTN and PRNP were 57.6% ± 13.7% and 54.6% ± 13.5%, respectively. In case of MSTN/BLG, mutation rates were 83.9% ± 23.6% for MSTN, 84.5% ± 18.0% for BLG. Afterwards, the double-KO embryos were transferred to surrogates and mutation rate was identified in resultant calves by targeted deep sequencing. Thirteen recipients were transferred for MSTN/PRNP, 4 calves were delivered, and one calf underwent an induction for double KO. Ten surrogates were given double-KO embryos for MSTN/BLG, and four of the six calves that were born had mutations in both genes. CONCLUSIONS These data demonstrated that production of genome edited cattle via electroporation of RNP could be effectively applied. Finally, MSTN and PRNP from beef cattle and MSTN and BLG from dairy cattle have been born and they will be valuable resources for future precision breeding.
Collapse
Affiliation(s)
- Gyeong-Min Gim
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea
- LARTBio Co., Ltd., Seoul, Republic of Korea
| | - Kyeong-Hyeon Eom
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea
- LARTBio Co., Ltd., Seoul, Republic of Korea
| | - Dong-Hyeok Kwon
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Dae-Jin Jung
- Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea
| | - Dae-Hyun Kim
- Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea
| | - Jun-Koo Yi
- Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea
| | - Jae-Jung Ha
- Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea
| | | | | | | | | | - Won-Wu Lee
- LARTBio Co., Ltd., Seoul, Republic of Korea
| | - Goo Jang
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea.
- LARTBio Co., Ltd., Seoul, Republic of Korea.
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Chapman B, Han JH, Lee HJ, Ruud I, Kim TH. Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit. Genes (Basel) 2023; 14:genes14040906. [PMID: 37107664 PMCID: PMC10137795 DOI: 10.3390/genes14040906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Engineering of clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated protein 9 (Cas9) system has enabled versatile applications of CRISPR beyond targeted DNA cleavage. Combination of nuclease-deactivated Cas9 (dCas9) and transcriptional effector domains allows activation (CRISPRa) or repression (CRISPRi) of target loci. To demonstrate the effectiveness of the CRISPR-mediated transcriptional regulation in chickens, three CRISPRa (VP64, VPR, and p300) and three CRISPRi (dCas9, dCas9-KRAB, and dCas9-KRAB-MeCP2) systems were tested in chicken DF-1 cells. By introducing guide RNAs (gRNAs) targeting near the transcription start site (TSS) of each gene in CRISPRa and CRISPRi effector domain-expressing chicken DF-1 cell lines, significant gene upregulation was induced in dCas9-VPR and dCas9-VP64 cells, while significant downregulation was observed with dCas9 and dCas9-KRAB. We further investigated the effect of gRNA positions across TSS and discovered that the location of gRNA is an important factor for targeted gene regulation. RNA sequencing analysis of IRF7 CRISPRa and CRISPRi- DF-1 cells revealed the specificity of CRISPRa and CRISPRi-based targeted transcriptional regulation with minimal off-target effects. These findings suggest that the CRISPRa and CRISPRi toolkits are an effective and adaptable platform for studying the chicken genome by targeted transcriptional modulation.
Collapse
Affiliation(s)
- Brittany Chapman
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jeong Hoon Han
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hong Jo Lee
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Isabella Ruud
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tae Hyun Kim
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Moreno-Nombela S, Romero-Parra J, Ruiz-Ojeda FJ, Solis-Urra P, Baig AT, Plaza-Diaz J. Genome Editing and Protein Energy Malnutrition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:215-232. [DOI: 10.1007/978-981-19-5642-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Huang L, Luo J, Gao W, Song N, Tian H, Zhu L, Jiang Q, Loor JJ. CRISPR/Cas9-Induced Knockout of miR-24 Reduces Cholesterol and Monounsaturated Fatty Acid Content in Primary Goat Mammary Epithelial Cells. Foods 2022; 11:2012. [PMID: 35885255 PMCID: PMC9316712 DOI: 10.3390/foods11142012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
In nonruminants, microRNA (miRNA)-24 plays an important role in lipid metabolism in adipose tissue and the liver. Although the abundance of miR-24 in ruminant mammary glands is the highest during peak lactation, its potential role in regulating the synthesis and secretion of fat into milk is unclear. This study aimed to identify the function of miR-24 in these processes using CRISPR/Cas9 technology in primary goat mammary epithelial cells (GMEC). A single clone containing a 66-nucleotide deletion between two sgRNAs mediating double-strand break (DSB) sites was obtained. The abundance of miR-24-3p and miR-24-5p encoded by the deleted sequence was decreased, whereas the target genes INSIG1 and FASN increased. In addition, miR-24 knockout reduced the gene abundance of genes associated with fatty acid and TAG synthesis and transcription regulator. Similarly, the content of cholesterol and monounsaturated fatty acid (MUFA) C18:1 decreased, whereas that of polyunsaturated fatty acids (PUFA) C18:2, C20:3, C20:4 and C20:5 increased. Subsequently, knocking down of INSIG1 but not FASN reversed the effect of miR-24 knockout, indicating that miR-24 modulated cholesterol and fatty acid synthesis mainly by targeting INSIG1. Overall, the present in vitro data demonstrated a critical role for miR-24 in regulating lipid and fatty acid synthesis and highlighted the possibility of manipulating milk components in dairy goats.
Collapse
Affiliation(s)
- Lian Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (L.H.); (W.G.); (N.S.); (H.T.); (L.Z.)
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610000, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (L.H.); (W.G.); (N.S.); (H.T.); (L.Z.)
| | - Wenchang Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (L.H.); (W.G.); (N.S.); (H.T.); (L.Z.)
| | - Ning Song
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (L.H.); (W.G.); (N.S.); (H.T.); (L.Z.)
| | - Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (L.H.); (W.G.); (N.S.); (H.T.); (L.Z.)
| | - Lu Zhu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (L.H.); (W.G.); (N.S.); (H.T.); (L.Z.)
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| |
Collapse
|
7
|
Gao M, Zhu X, Yang G, Bao J, Bu H. CRISPR/Cas9-Mediated Gene Editing in Porcine Models for Medical Research. DNA Cell Biol 2021; 40:1462-1475. [PMID: 34847741 DOI: 10.1089/dna.2020.6474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pigs have been extensively used as the research models for human disease pathogenesis and gene therapy. They are also the optimal source of cells, tissues, and organs for xenotransplantation due to anatomical and physiological similarities to humans. Several breakthroughs in gene-editing technologies, including the advent of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9), have greatly improved the efficiency of genetic manipulation and significantly broadened the application of gene-edited large animal models. In this review, we have not only outlined the important applications of the CRISPR/Cas9 system in pigs as a means to study human diseases but also discussed the potential challenges of the use of CRISPR/Cas9 in large animals.
Collapse
Affiliation(s)
- Mengyu Gao
- Department of Pathology, West China Hospital, Sichuan University, Chendu, P.R. China.,Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xinglong Zhu
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Guang Yang
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ji Bao
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chendu, P.R. China.,Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
8
|
Boosting the potential of cattle breeding using molecular biology, genetics, and bioinformatics approaches – a review. ACTA VET BRNO 2021. [DOI: 10.2754/avb202190020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cattle are among the most important farm animals that underwent an intense selection with the aim to increase milk production and to improve growth and meat properties, meanwhile reducing the generation interval allowing for a faster herd turnover. Recently, a shift from traditional breeding methods to breeding based on genetic testing has been observed. In this perspective, we review the techniques of molecular biology, genetics, and bioinformatics that are expected to further boost the agricultural potential of cattle. We discuss embryo selection based on next-generation and Nanopore sequencing and in vitro embryo production, boosting the potential of genetically superior animals. Gene editing of embryos could further speed up the selection process, essentially introducing a change in a single generation. Lastly, we discuss the host-microbiome co-evolution and adaptation. For example, cattle already adapted to low-quality low-cost fodder could be bred to achieve desired properties for the beef and dairy industry. The challenge of breeding and genetic editing is to accompany the selection on desired consumer-oriented traits with the push for sustainability and the adaptation to a changing climate while remaining economically viable. We propose that we are yet to see the limits of what is possible to achieve with modern technology for the cattle of the future; the ultimate goal will be to produce and maintain genetically elite individuals that can sustain the growing demands on the production.
Collapse
|
9
|
Gim GM, Kwon DH, Eom KH, Moon J, Park JH, Lee WW, Jung DJ, Kim DH, Yi JK, Ha JJ, Lim KY, Kim JS, Jang G. Production of MSTN-mutated cattle without exogenous gene integration using CRISPR-Cas9. Biotechnol J 2021; 17:e2100198. [PMID: 34247443 DOI: 10.1002/biot.202100198] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/06/2022]
Abstract
Many genome-edited animals have been produced using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology to edit specific genes. However, there are few guidelines for the application of this technique to cattle. The goal of this study was to produce trait-improved cattle using the genome-editing technology CRISPR-Cas9. Myostatin (MSTN) was selected as a target locus, and synthetic mRNA of sgRNA and Cas9 were microinjected into fertilized bovine embryos in vitro. As a result, 17 healthy calves were born, and three of them showed MSTN mutation rates of 10.5%, 45.4%, and 99.9%, respectively. Importantly, the offspring with the 99.9% MSTN mutation rate had a biallelic mutation (-12 bps) and a double-muscling phenotype. In conclusion, we demonstrate that the genome-editing technology CRISPR-Cas9 can produce genetically modified calves with improved traits.
Collapse
Affiliation(s)
- Gyeong-Min Gim
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea.,BK21 Plus Program, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dong-Hyeok Kwon
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea.,BK21 Plus Program, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyeong-Hyun Eom
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea.,BK21 Plus Program, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | | | | | | | - Dae-Jin Jung
- Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea
| | - Dae-Hyun Kim
- Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea
| | - Jun-Koo Yi
- Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea
| | - Jae-Jung Ha
- Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea
| | - Ka-Yeong Lim
- Center for Genome Engineering, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Goo Jang
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea.,BK21 Plus Program, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Owen JR, Hennig SL, McNabb BR, Lin JC, Young AE, Murray JD, Ross PJ, Van Eenennaam AL. Harnessing endogenous repair mechanisms for targeted gene knock-in of bovine embryos. Sci Rep 2020; 10:16031. [PMID: 32994506 PMCID: PMC7525238 DOI: 10.1038/s41598-020-72902-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/04/2020] [Indexed: 01/06/2023] Open
Abstract
Introducing useful traits into livestock breeding programs through gene knock-ins has proven challenging. Typically, targeted insertions have been performed in cell lines, followed by somatic cell nuclear transfer cloning, which can be inefficient. An alternative is to introduce genome editing reagents and a homologous recombination (HR) donor template into embryos to trigger homology directed repair (HDR). However, the HR pathway is primarily restricted to actively dividing cells (S/G2-phase) and its efficiency for the introduction of large DNA sequences in zygotes is low. The homology-mediated end joining (HMEJ) approach has been shown to improve knock-in efficiency in non-dividing cells and to harness HDR after direct injection of embryos. The knock-in efficiency for a 1.8 kb gene was contrasted when combining microinjection of a gRNA/Cas9 ribonucleoprotein complex with a traditional HR donor template or an HMEJ template in bovine zygotes. The HMEJ template resulted in a significantly higher rate of gene knock-in as compared to the HR template (37.0% and 13.8%; P < 0.05). Additionally, more than a third of the knock-in embryos (36.9%) were non-mosaic. This approach will facilitate the one-step introduction of gene constructs at a specific location of the bovine genome and contribute to the next generation of elite cattle.
Collapse
Affiliation(s)
- Joseph R Owen
- Department of Animal Science, University of CA - Davis, Davis, CA, USA
| | - Sadie L Hennig
- Department of Animal Science, University of CA - Davis, Davis, CA, USA
| | - Bret R McNabb
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of CA - Davis, Davis, CA, USA
| | - Jason C Lin
- Department of Animal Science, University of CA - Davis, Davis, CA, USA
| | - Amy E Young
- Department of Animal Science, University of CA - Davis, Davis, CA, USA
| | - James D Murray
- Department of Animal Science, University of CA - Davis, Davis, CA, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of CA - Davis, Davis, CA, USA
| | - Pablo J Ross
- Department of Animal Science, University of CA - Davis, Davis, CA, USA
| | | |
Collapse
|
11
|
Abstract
Many factors influence the final oocyte maturation, fertilisation, and early embryo development, and there are both similarities and differences between species. When comparing the advancement of assisted reproductive technologies (ARTs), the development in the bovine species is not far behind the medical front, with around one million in vitro-produced bovine embryos each year. This rate of progress is not seen in the other domestic species. This review aims to give an overview of the development and specific difficulties of in vitro embryo production in various domestic animal species, with the main focus on cows, pigs, and cats. In production animals, the aim of ARTs is commonly to increase the genetic progress, not to treat reproductive failure. The ARTs are also used for preservation of genetic diversity for the future. However, specifically for oocyte maturation, fertilisation, and early embryonic development, domestic mammals such as the cow and pig can be used as models for humans. This is particularly attractive from an animal welfare point of view since bovine and porcine oocytes are available in large numbers from discarded slaughterhouse material, thereby decreasing the need for research animals. Both for researchers on the animal and human medical fronts, we aim for the development of in vitro production systems that will produce embryos and offspring that are no different from those conceived and developed in vivo. Species-comparative research and development can provide us with crucial knowledge to achieve this aim and hopefully help us avoid unnecessary problems in the future.
Collapse
Affiliation(s)
- Ylva Sjunnesson
- Department of Clinical Sciences, Reproduction, The Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
- CONTACT Ylva Sjunnesson Department of Clinical Sciences, Reproduction, The Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences (SLU), PO Box 7054, SE-750 07Uppsala, Sweden
| |
Collapse
|
12
|
Lv L, Lu X, Feng T, Rehman SU, Sun J, Wu Z, Shi D, Liu Q, Cui K. Valproic acid enhances in vitro developmental competence of porcine handmade cloned embryos. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.103957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Review: Recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods. Animal 2019; 14:991-1004. [PMID: 31760966 DOI: 10.1017/s1751731119002775] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In vitro production (IVP) of embryos and associated technologies in cattle have shown significant progress in recent years, in part driven by a better understanding of the full potential of these tools by end users. The combination of IVP with sexed semen (SS) and genomic selection (GS) is being successfully and widely used in North America, South America and Europe. The main advantages offered by these technologies include a higher number of embryos and pregnancies per unit of time, and a wider range of potential female donors from which to retrieve oocytes (including open cyclic females and ones up to 3 months pregnant), including high index genomic calves, a reduced number of sperm required to produce embryos and increased chances of obtaining the desired sex of offspring. However, there are still unresolved aspects of IVP of embryos that limit a wider implementation of the technology, including potentially reduced fertility from the use of SS, reduced oocyte quality after in vitro oocyte maturation and lower embryo cryotolerance, resulting in reduced pregnancy rates compared to in vivo-produced embryos. Nevertheless, promising research results have been reported, and work is in progress to address current deficiencies. The combination of GS, IVP and SS has proven successful in the commercial field in several countries assisting practitioners and cattle producers to improve reproductive performance, efficiency and genetic gain.
Collapse
|
14
|
Silveira MM, Vargas LN, Bayão HXS, Schumann NAB, Caetano AR, Rumpf R, Franco MM. DNA methylation of the endogenous retrovirus Fematrin-1 in fetal placenta is associated with survival rate of cloned calves. Placenta 2019; 88:52-60. [PMID: 31671312 DOI: 10.1016/j.placenta.2019.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The expression of retroviral envelope proteins in the placenta facilitates generation of the multinuclear syncytiotrophoblast as an outer cellular layer of the placenta by fusion of the trophoblastic cells. This process is essential for placenta development in eutherians and for successful pregnancy. METHODS We tested the hypothesis that alterations in DNA methylation and gene expression profiles of the endogenous retroviruses (ERVs) and genes related to epigenetic reprogramming in placenta of cloned calves result in abnormal offspring phenotypes. The fetal cotyledons in 13 somatic cell nuclear transfer (SCNT) pregnancies were collected. DNA methylation level of Fematrin-1 was analyzed using bisulfite PCR and mRNA levels of Fematrin-1, Syncytin-Rum1, DNMT1, DNMT3A, DNMT3B, TET1, TET2 and TET3 measured by RT-qPCR. RESULTS Methylation of Fematrin-1 in placenta of control animals produced by artificial insemination (AI) was similar to live SCNT-produced calves, but hypermethylated than dead SCNT-produced calves. The levels of mRNA differed between SCNT-produced calves and AI animals for all genes, except TET3. However, no differences were observed between the live and dead cloned calves for all genes. Moreover, no differences were found between mRNA levels of Fematrin-1 and Syncytin-Rum1. DISCUSSION Our results suggest that this altered DNA methylation, deregulation in the expression of ERVs and in the genes of epigenetic machinery in fetal cotyledons of cloned calves may be associated with abnormal placentogenesis found in SCNT-produced animals. Further studies characterizing other mechanisms involved in the regulation of ERVs are important to support the development of new strategies to improve the efficiency of cloning.
Collapse
Affiliation(s)
- Márcia Marques Silveira
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil; Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | - Luna Nascimento Vargas
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil; Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | | | - Naiara Araújo Borges Schumann
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil; Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | | | - Rodolfo Rumpf
- GENEAL Genetics and Animal Biotechnology, Uberaba, Minas Gerais, Brazil.
| | - Maurício Machaim Franco
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil; Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil; Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil; School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
15
|
Cardoso CV, Barbosa EV, Liberal MHT, Chagas EFD. Transgenic technology: the strategy for the control and prevention of bovine staphylococcal mastitis? ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biori.2019.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Carter SR, Warner CM. Trends in Synthetic Biology Applications, Tools, Industry, and Oversight and Their Security Implications. Health Secur 2018; 16:320-333. [PMID: 30339097 DOI: 10.1089/hs.2018.0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent developments in synthetic biology tools and techniques are driving commercialization of a wide range of products for human health, agriculture, environmental stewardship, and other purposes. This article reviews some of the trends in synthetic biology applications as well as some of the tools enabling these and future advances. These tools and capabilities are being developed in the context of a rapidly changing industry, which may have an impact on the rate and direction of progress. Final products are subject to a regulatory framework that is being challenged by the pace, scale, and novelty of this new era of biotechnology. This article includes discussion of these factors and how they may affect product design and the types of applications that are most likely to be supported and pursued commercially. The final section provides perspective on the security implications of these advances, with a focus on US interests.
Collapse
Affiliation(s)
- Sarah R Carter
- Sarah R. Carter, PhD, is a Principal at Science Policy Consulting, LLC, Arlington, Virginia. Christopher M. Warner, PhD, is a Research Biologist, US Army Corps , Environmental Lab, Vicksburg, Mississippi
| | - Christopher M Warner
- Sarah R. Carter, PhD, is a Principal at Science Policy Consulting, LLC, Arlington, Virginia. Christopher M. Warner, PhD, is a Research Biologist, US Army Corps , Environmental Lab, Vicksburg, Mississippi
| |
Collapse
|
17
|
Su X, Wang S, Su G, Zheng Z, Zhang J, Ma Y, Liu Z, Zhou H, Zhang Y, Zhang L. Production of microhomologous-mediated site-specific integrated LacS gene cow using TALENs. Theriogenology 2018; 119:282-288. [PMID: 30075414 DOI: 10.1016/j.theriogenology.2018.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/31/2022]
Abstract
Gene editing tools (Zinc-Finger Nucleases, ZFN; Transcription Activator-Like Effector Nucleases, TALEN; and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas)9, CRISPR-Cas9) provide us with a powerful means of performing genetic engineering procedures. A combinational approach that utilizes both somatic cell nuclear transfer (SCNT) and somatic cell gene editing facilitates the generation of genetically engineered animals. However, the associated research has utilized markers and/or selected genes, which constitute a potential threat to biosafety. Microhomologous-mediated end-joining (MMEJ) has showed the utilization of micro-homologous arms (5-25 bp) can mediate exogenous gene insertion. Dairy milk is a major source of nutrition worldwide. However, most people are not capable of optimally utilizing the nutrition in milk because of lactose intolerance. Sulfolobus solfataricus β-glycosidase (LacS) is a lactase derived from the extreme thermophilic archaeon Sulfolobus solfataricus. Our finally aim was to site-specific integrated LacS gene into cow's genome through TALEN-mediated MMEJ and produce low-lactose cow. Firstly, we constructed TALENs vectors which target to the cow's β-casein locus and LacS gene expression vector which contain TALEN reorganization sequence and micro-homologous arms. Then we co-transfected these vectors into fetal derived skin fibroblasts and cultured as monoclone. Positive cell clones were screened using 3' junction PCR amplification and sequencing analysis. The positive cells were used as donors for SCNT and embryo transfer (ET). Lastly, we detected the genotype through PCR of blood genomic DNA. This resulted in a LacS knock-in rate of 0.8% in TALEN-treated cattle fetal fibroblasts. The blastocyst rate of SCNT embryo was 27%. The 3 months pregnancy rate was 20%. Finally, we obtained 1 newborn cow (5%) and verified its genotype. We obtained 1 site-specific marker-free LacS transgenic cow. It provides a basis to solve lactose intolerance by gene engineering breeding. This study also provides us with a new strategy to facilitate gene knock-ins in livestock using techniques that exhibit improved biosafety and intuitive methodologies.
Collapse
Affiliation(s)
- Xiaohu Su
- Key Laboratory of Gene Engineering of the Ministry of Education, Guangzhou Key Laboratory of Healthy Aging Research and State Key Laboratory of Biocontrol, SYSU-BCM JointResearch Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shenyuan Wang
- Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, 010018, PR China
| | - Guanghua Su
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010018, PR China
| | - Zhong Zheng
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010018, PR China
| | - Jiaqi Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yunlong Ma
- Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, 010018, PR China
| | - Zongzheng Liu
- Qingdao Animal Husbandry and Veterinary Research Institution, Qingdao, ShanDong, 266100, PR China
| | - Huanmin Zhou
- Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, 010018, PR China
| | - Yanru Zhang
- Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, 010018, PR China.
| | - Li Zhang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010018, PR China.
| |
Collapse
|
18
|
VPA selectively regulates pluripotency gene expression on donor cell and improve SCNT embryo development. In Vitro Cell Dev Biol Anim 2018; 54:496-504. [PMID: 29943354 DOI: 10.1007/s11626-018-0272-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/07/2018] [Indexed: 01/21/2023]
Abstract
SCNT technology has been successfully used to clone a variety of mammals, but the cloning efficiency is very low. This low efficiency is likely due to the incomplete reprogramming of SCNT embryos. Histone modification and DNA methylation may participate in these events. Thus, it would be interesting to attempt to improve the efficiency of SCNT by using a HDACi VPA. In order to guarantee the effect of VPA and reduce its cytotoxicity, a comprehensive analysis of the cell proliferation and histone modification was performed. The results showed that 0.5 and 1 mM VPA treatment for 24 h were the optimal condition. According to the results, H3K4me3 was increased in 0.5 and 1 mM VPA groups, whereas H3K9me2 was significantly decreased. These are the signals of gene-activation. In addition, VPA treatment led to the overexpression of Oct4 and Nanog. These indicated that VPA-treated cells had similar patterns of histone to zygotic embryos, and may be more favorable for reprograming. A total of 833 cloned embryos were produced from the experimental replicates of VPA-treated donor cells. In 1 mM treatment group, the blastocyst rates were significantly increased compared with control. At the same time, our findings demonstrated the interrelation between DNA methylation and histone modifications.
Collapse
|
19
|
Sirard MA. 40 years of bovine IVF in the new genomic selection context. Reproduction 2018; 156:R1-R7. [PMID: 29636405 DOI: 10.1530/rep-18-0008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/10/2018] [Indexed: 01/22/2023]
Abstract
The development of a complex technology such as in vitro fertilization (IVF) requires years of experimentation, sometimes comparing several species to learn how to create the right in vitro environment for oocytes, spermatozoa and early embryos. At the same time, individual species characteristics such as gamete physiology and gamete interaction are recently evolved traits and must be analysed within the context of each species. In the last 40 years since the birth of Louise Brown, IVF techniques progressed and are now used in multiple domestic and non-domestic animal species around the world. This does not mean that the technology is completely matured or satisfactory; a number of problems remain to be solved and several procedures still need to be optimized. The development of IVF in cattle is particularly interesting since agriculture practices permitted the commercial development of the procedure and it is now used at a scale comparable to human IVF (millions of newborns). The genomic selection of young animals or even embryos combined with sexing and freezing technologies is driving a new era of IVF in the dairy sector. The time has come for a retrospective analysis of the success and pitfalls of the last 40 years of bovine IVF and for the description of the challenges to overcome in the years to come.
Collapse
Affiliation(s)
- Marc-André Sirard
- Centre de Recherche en ReproductionDéveloppement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Canada
| |
Collapse
|