1
|
Zhao Z, Zhao Z, Cheng F, Wang Z, Geng Q, Wang Y, Niu Y, Zuo Q, Zhang Y. Analysis of the Molecular Mechanism of Energy Metabolism in the Sex Differentiation of Chickens Based on Transcriptome Sequencing. Genes (Basel) 2024; 15:1035. [PMID: 39202395 PMCID: PMC11353435 DOI: 10.3390/genes15081035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
The determination of sex in mammals is established and controlled by various complex mechanisms. In contrast, sex control in poultry remains an unresolved issue. In this study, RNA-sequencing was conducted for male gonads and ovarian tissues in chicken embryos of up to 18.5 days to identify metabolic factors influencing male and female sex differentiation, as well as gonadal development. Our results reveal that PKM2, a critical glycolysis-related protein, plays a significant role in chicken sex differentiation via PPARG, a crucial hormone gene. We propose that our discoveries bolster the notion that glycolysis and oxidative phosphorylation function as antecedent contributors to sexual phenotypic development and preservation.
Collapse
Affiliation(s)
- Ziduo Zhao
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (Z.Z.); (F.C.); (Z.W.); (Q.G.); (Y.N.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zongyi Zhao
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (Z.Z.); (F.C.); (Z.W.); (Q.G.); (Y.N.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Fufu Cheng
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (Z.Z.); (F.C.); (Z.W.); (Q.G.); (Y.N.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhe Wang
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (Z.Z.); (F.C.); (Z.W.); (Q.G.); (Y.N.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qingqing Geng
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (Z.Z.); (F.C.); (Z.W.); (Q.G.); (Y.N.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China;
| | - Yingjie Niu
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (Z.Z.); (F.C.); (Z.W.); (Q.G.); (Y.N.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (Z.Z.); (F.C.); (Z.W.); (Q.G.); (Y.N.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yani Zhang
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (Z.Z.); (F.C.); (Z.W.); (Q.G.); (Y.N.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Wang Z, Ju X, Li K, Cai D, Zhou Z, Nie Q. MeRIP sequencing reveals the regulation of N6-methyladenosine in muscle development between hypertrophic and leaner broilers. Poult Sci 2024; 103:103708. [PMID: 38631230 PMCID: PMC11040168 DOI: 10.1016/j.psj.2024.103708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Meat production performance is the most important economic trait in broilers, and skeletal muscle, as the largest organ in animals, is directly related to meat production during embryonic and postnatal growth and development. N6-Methyladenosine (m6A) is a chemical modification occurs on RNA adenosine that has been reported to participate in a variety of biological processes in all species. However, there are still few reports on the regulatory role of muscle growth and development in poultry after birth. This study aims to reveal the distribution of m6A modification sites in chicken pectoralis major muscle after birth and find out the regulatory relationship between m6A and muscle development. As representatives of leaner (Xinghua chicken [XH]) and hypertrophic (White Recessive Rock chicken [WRR]) broilers, there are significant differences in body weight, muscle fiber diameter, and muscle fiber cross-sectional area between XH and WRR chickens. RNA sequencing detected a total of 397 differentially expressed genes (DEG) in the pectoralis major muscle of XH and WRR chicken, and these DEGs were mainly enriched in catalytic activity and metabolic pathways. MeRIP sequencing results showed that among all 6,476 differentially modified m6A peaks, about 90% peaks (5,823) were differentially down regulated in XH chickens. The joint analysis of the mRNA and MeRIP sequencing data found 145 DEGs with differential m6A peak, ALKBH5 as a m6A demethylase, was also included. The highly expression of ALKBH5 in the muscle tissue of poultry and differential expression between XH and WRR chickens suggest that ALKBH5 may play a crucial role in regulating muscle development. Our results revealed that there were significant differences in growth rate, body weight, muscle fiber diameter, and fiber cross-section area between WRR and XH chicken, as well as significant differences in m6A methylation level and muscle metabolism level.
Collapse
Affiliation(s)
- Zhijun Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology& College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Xing Ju
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Kan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Danfeng Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Zhen Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| |
Collapse
|
3
|
Wu X, Chen H, Li K, Zhang H, Li K, Tan H. The biological function of the N6-Methyladenosine reader YTHDC2 and its role in diseases. J Transl Med 2024; 22:490. [PMID: 38790013 PMCID: PMC11119022 DOI: 10.1186/s12967-024-05293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
N6-methyladenosine (m6A) stands as the most prevalent modified form of RNA in eukaryotes, pivotal in various biological processes such as regulating RNA stability, translation, and transcription. All members within the YT521-B homology (YTH) gene family are categorized as m6A reading proteins, capable of identifying and binding m6A modifications on RNA, thereby regulating RNA metabolism and functioning across diverse physiological processes. YTH domain-containing 2 (YTHDC2), identified as the latest member of the YTH family, has only recently started to emerge for its biological function. Numerous studies have underscored the significance of YTHDC2 in human physiology, highlighting its involvement in both tumor progression and non-tumor diseases. Consequently, this review aims to further elucidate the pathological mechanisms of YTHDC2 by summarizing its functions and roles in tumors and other diseases, with a particular focus on its downstream molecular targets and signaling pathways.
Collapse
Affiliation(s)
- Xudong Wu
- Department of Thoracic Surgery, The Third Hospital of Changsha, Changsha, 410015, Hunan, People's Republic of China
| | - Hui Chen
- Department of Thoracic Surgery, The Third Hospital of Changsha, Changsha, 410015, Hunan, People's Republic of China
| | - Kai Li
- Department of Thoracic Surgery, The Third Hospital of Changsha, Changsha, 410015, Hunan, People's Republic of China
| | - Hong Zhang
- Department of Thoracic Surgery, The Third Hospital of Changsha, Changsha, 410015, Hunan, People's Republic of China
| | - Kai Li
- Department of Thoracic Surgery, Xiangxi Autonomous Prefecture People's Hospital, Jishou, 410015, Hunan, People's Republic of China
| | - Haoyu Tan
- Department of Cardio-vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
4
|
Li J, Zhang X, Wang X, Wang Z, Li X, Zheng J, Li J, Xu G, Sun C, Yi G, Yang N. Single-nucleus transcriptional and chromatin accessible profiles reveal critical cell types and molecular architecture underlying chicken sex determination. J Adv Res 2024:S2090-1232(24)00185-1. [PMID: 38734369 DOI: 10.1016/j.jare.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/23/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
INTRODUCTION Understanding the sex determination mechanisms in birds has great significance for the biological sciences and production in the poultry industry. Sex determination in chickens is a complex process that involves fate decisions of supporting cells such as granulosa or Sertoli cells. However, a systematic understanding of the genetic regulation and cell commitment process underlying sex determination in chickens is still lacking. OBJECTIVES We aimed to dissect the molecular characteristics associated with sex determination in the gonads of chicken embryos. METHODS Single-nucleus RNA-seq (snRNA-seq) and ATAC-seq (snATAC-seq) analysis were conducted on the gonads of female and male chickens at embryonic day 3.5 (E3.5), E4.5, and E5.5. RESULTS Here, we provided a time-course transcriptional and chromatin accessible profiling of gonads during chicken sex determination at single-cell resolution. We uncovered differences in cell composition and developmental trajectories between female and male gonads and found that the divergence of transcription and accessibility in gonadal cells first emerged at E5.5. Furthermore, we revealed key cell-type-specific transcription factors (TFs) and regulatory networks that drive lineage commitment. Sex determination signaling pathways, dominated by BMP signaling, are preferentially activated in males during gonadal development. Further pseudotime analysis of the supporting cells indicated that granulosa cells were regulated mainly by the TEAD gene family and that Sertoli cells were driven by the DMRT1 regulons. Cross-species analysis suggested high conservation of both cell types and cell-lineage-specific TFs across the six vertebrates. CONCLUSIONS Overall, our study will contribute to accelerating the development of sex manipulation technology in the poultry industry and the application of chickens as a unique model for studying cell fate decisions.
Collapse
Affiliation(s)
- Jianbo Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Xiuan Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Xiqiong Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Zhen Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xingzheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Junying Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Guiyun Xu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China.
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Kong S, Cai B, Li X, Zhou Z, Fang X, Yang X, Cai D, Luo X, Guo S, Nie Q. Assessment of selective breeding effects and selection signatures in Qingyuan partridge chicken and its strains. Poult Sci 2024; 103:103626. [PMID: 38513549 PMCID: PMC10966089 DOI: 10.1016/j.psj.2024.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Qingyuan partridge chicken (QYM) is a highly regarded native breed in China, highly esteemed for its exceptional breeding characteristics. However, the investigation into the selection signatures and its strains remains largely unexplored. In this study, blood sampling, DNA extracting, and high-depth resequencing were performed in 27 QYMs. Integrating the genomic data of 14 chicken (70 individuals) breeds from other researches, to analyze the genetic structure, selection signatures, and effects of selective breeding within QYM and its 3 strains (QYMA, QYMB, and QYMC). Population structure analysis revealed an independent QYM cluster, which exhibited distinct from other breeds, with each of its 3 strains displaying distinct clustering patterns. Linkage disequilibrium analysis highlighted QYMB's notably slower decay rate, potentially influenced by selection pressure from various production indicators. Examination of selection signatures uncovered genes and genetic mechanisms associated with genomic changes resulting from extensive selective breeding within the QYM and its strains. Intriguingly, diacylglycerol kinase beta (DGKB) and catenin alpha 2 (CTNNA2) were identified as commonly selected genes across the 3 QYM strains, linked to energy metabolism, muscle development, and fat metabolism. Our research validates the substantial impact of selective breeding on QYM and its strains, concurrently identifying genomic regions and signaling pathways associated with their distinctive characters. This research also establishes a fundamental framework for advancing yellow-feathered broiler breeding strategies.
Collapse
Affiliation(s)
- Shaofen Kong
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Bolin Cai
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiaojing Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhen Zhou
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiang Fang
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xin Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Danfeng Cai
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xuehui Luo
- Qingyuan Chicken Research Institute, Qingcheng District, Qingyuan City, China
| | - Suyin Guo
- Animal Epidemic Prevention Center, Qingcheng District, Qingyuan City, China
| | - Qinghua Nie
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.
| |
Collapse
|
6
|
Yao Y, Liu P, Li Y, Wang W, Jia H, Bai Y, Yuan Z, Yang Z. Regulatory role of m 6A epitranscriptomic modifications in normal development and congenital malformations during embryogenesis. Biomed Pharmacother 2024; 173:116171. [PMID: 38394844 DOI: 10.1016/j.biopha.2024.116171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
The discovery of N6-methyladenosine (m6A) methylation and its role in translation has led to the emergence of a new field of research. Despite accumulating evidence suggesting that m6A methylation is essential for the pathogenesis of cancers and aging diseases by influencing RNA stability, localization, transformation, and translation efficiency, its role in normal and abnormal embryonic development remains unclear. An increasing number of studies are addressing the development of the nervous and gonadal systems during embryonic development, but only few are assessing that of the immune, hematopoietic, urinary, and respiratory systems. Additionally, these studies are limited by the requirement for reliable embryonic animal models and the difficulty in collecting tissue samples of fetuses during development. Multiple studies on the function of m6A methylation have used suitable cell lines to mimic the complex biological processes of fetal development or the early postnatal phase; hence, the research is still in the primary stage. Herein, we discuss current advances in the extensive biological functions of m6A methylation in the development and maldevelopment of embryos/fetuses and conclude that m6A modification occurs extensively during fetal development. Aberrant expression of m6A regulators is probably correlated with single or multiple defects in organogenesis during the intrauterine life. This comprehensive review will enhance our understanding of the pivotal role of m6A modifications involved in fetal development and examine future research directions in embryogenesis.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peiqi Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huimin Jia
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
7
|
Luo X, Guo J, Zhang J, Ma Z, Li H. Overview of chicken embryo genes related to sex differentiation. PeerJ 2024; 12:e17072. [PMID: 38525278 PMCID: PMC10959104 DOI: 10.7717/peerj.17072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/18/2024] [Indexed: 03/26/2024] Open
Abstract
Sex determination in chickens at an early embryonic stage has been a longstanding challenge in poultry production due to the unique ZZ:ZW sex chromosome system and various influencing factors. This review has summarized the genes related to the sex differentiation of chicken early embryos (mainly Dmrt1, Sox9, Amh, Cyp19a1, Foxl2, Tle4z1, Jun, Hintw, Ube2i, Spin1z, Hmgcs1, Foxd1, Tox3, Ddx4, cHemgn and Serpinb11 in this article), and has found that these contributions enhance our understanding of the genetic basis of sex determination in chickens, while identifying potential gene targets for future research. This knowledge may inform and guide the development of sex screening technologies for hatching eggs and support advancements in gene-editing approaches for chicken embryos. Moreover, these insights offer hope for enhancing animal welfare and promoting conservation efforts in poultry production.
Collapse
Affiliation(s)
- Xiaolu Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jiancheng Guo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jiahang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
8
|
Jia C, Zhang M, Liu X, Xu W, Xiong Y, Huang R, Li M, Li M. Transcriptome-wide m6A methylation profiling of Wuhua yellow-feathered chicken ovary revealed regulatory pathways underlying sexual maturation and low egg-laying performance. Front Genet 2023; 14:1284554. [PMID: 37928247 PMCID: PMC10622773 DOI: 10.3389/fgene.2023.1284554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
RNA N6-melthyladenosine (m6A) can play an important role in regulation of various biological processes. Chicken ovary development is closely related to egg laying performance, which is a process primarily controlled by complex gene regulations. In this study, transcriptome-wide m6A methylation of the Wuhua yellow-feathered chicken ovaries before and after sexual maturation was profiled to identify the potential molecular mechanisms underlying chicken ovary development. The results indicated that m6A levels of mRNAs were altered dramatically during sexual maturity. A total of 1,476 differential m6A peaks were found between these two stages with 662 significantly upregulated methylation peaks and 814 downregulated methylation peaks after sexual maturation. A positive correlation was observed between the m6A peaks and gene expression levels, indicating that m6A may play an important role in regulation of chicken ovary development. Functional enrichment analysis indicated that apoptosis related pathways could be the key molecular regulatory pathway underlying the poor reproductive performance of Wuhua yellow-feathered chicken. Overall, the various pathways and corresponding candidate genes identified here could be useful to facilitate molecular design breeding for improving egg production performance in Chinese local chicken breed, and it might also contribute to the genetic resource protection of valuable avian species.
Collapse
Affiliation(s)
- Congjun Jia
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Mengling Zhang
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Xiaoyan Liu
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Weilin Xu
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Yanqing Xiong
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Rihao Huang
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Meidi Li
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Mingna Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
9
|
Petri BJ, Cave MC, Klinge CM. Changes in m6A in Steatotic Liver Disease. Genes (Basel) 2023; 14:1653. [PMID: 37628704 PMCID: PMC10454815 DOI: 10.3390/genes14081653] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Fatty liver disease is one of the major causes of morbidity and mortality worldwide. Fatty liver includes non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), now replaced by a consensus group as metabolic dysfunction-associated steatotic liver disease (MASLD). While excess nutrition and obesity are major contributors to fatty liver, the underlying mechanisms remain largely unknown and therapeutic interventions are limited. Reversible chemical modifications in RNA are newly recognized critical regulators controlling post-transcriptional gene expression. Among these modifications, N6-methyladenosine (m6A) is the most abundant and regulates transcript abundance in fatty liver disease. Modulation of m6A by readers, writers, and erasers (RWE) impacts mRNA processing, translation, nuclear export, localization, and degradation. While many studies focus on m6A RWE expression in human liver pathologies, limitations of technology and bioinformatic methods to detect m6A present challenges in understanding the epitranscriptomic mechanisms driving fatty liver disease progression. In this review, we summarize the RWE of m6A and current methods of detecting m6A in specific genes associated with fatty liver disease.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292, USA;
| | - Matthew C. Cave
- Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA;
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY 40292, USA
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M. Klinge
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292, USA;
- Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA;
| |
Collapse
|
10
|
Zhang M, Nie J, Chen Y, Li X, Chen H. Connecting the Dots: N6-Methyladenosine (m 6 A) Modification in Spermatogenesis. Adv Biol (Weinh) 2023; 7:e2300068. [PMID: 37353958 DOI: 10.1002/adbi.202300068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/20/2023] [Indexed: 06/25/2023]
Abstract
N6-methyladenosine (m6 A) is the most common RNA modification found in eukaryotes and is involved in multiple biological processes, including neuronal development, tumorigenesis, and gametogenesis. It is well known that methylation-modifying enzymes (classified into writers, erasers, and readers) mediate catalysis, clearance, and recognition of m6 A. Recent studies suggest that these genes may be associated with spermatogenesis. Numerous studies have revealed the m6 A role during spermatogenesis. However, the expression patterns and relationships of these m6 A enzymes during various stages of spermatogenesis remain unknown. In this review, it is aimed to provide an overview of m6 A enzyme functions and elucidate their potential mechanisms and regulatory relationships at a specific phase during spermatogenesis, providing new insights into the m6 A modification underlying the spermatogenesis process.
Collapse
Affiliation(s)
- Mengya Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226000, China
| | - Junyu Nie
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226000, China
| | - Yufei Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226000, China
| | - Xiaofeng Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Lianhua Road No. 1120, Futian District, Shenzhen, Guangdong Province, 518000, P. R. China
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226000, China
| |
Collapse
|
11
|
Zhang X, Li J, Chen S, Yang N, Zheng J. Overview of Avian Sex Reversal. Int J Mol Sci 2023; 24:ijms24098284. [PMID: 37175998 PMCID: PMC10179413 DOI: 10.3390/ijms24098284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Sex determination and differentiation are processes by which a bipotential gonad adopts either a testicular or ovarian cell fate, and secondary sexual characteristics adopt either male or female developmental patterns. In birds, although genetic factors control the sex determination program, sex differentiation is sensitive to hormones, which can induce sex reversal when disturbed. Although these sex-reversed birds can form phenotypes opposite to their genotypes, none can experience complete sex reversal or produce offspring under natural conditions. Promising evidence indicates that the incomplete sex reversal is associated with cell autonomous sex identity (CASI) of avian cells, which is controlled by genetic factors. However, studies cannot clearly describe the regulatory mechanism of avian CASI and sex development at present, and these factors require further exploration. In spite of this, the abundant findings of avian sex research have provided theoretical bases for the progress of gender control technologies, which are being improved through interdisciplinary co-operation and will ultimately be employed in poultry production. In this review, we provide an overview of avian sex determination and differentiation and comprehensively summarize the research progress on sex reversal in birds, especially chickens. Importantly, we describe key issues faced by applying gender control systems in poultry production and chronologically summarize the development of avian sex control methods. In conclusion, this review provides unique perspectives for avian sex studies and helps scientists develop more advanced systems for sex regulation in birds.
Collapse
Affiliation(s)
- Xiuan Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jianbo Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Sirui Chen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Liao L, Yao Z, Kong J, Zhang X, Li H, Chen W, Xie Q. Transcriptomic analysis reveals the dynamic changes of transcription factors during early development of chicken embryo. BMC Genomics 2022; 23:825. [PMID: 36513979 PMCID: PMC9746114 DOI: 10.1186/s12864-022-09054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The transition from fertilized egg to embryo in chicken requires activation of hundreds of genes that were mostly inactivated before fertilization, which is accompanied with various biological processes. Undoubtedly, transcription factors (TFs) play important roles in regulating the changes in gene expression pattern observed at early development. However, the contribution of TFs during early embryo development of chicken still remains largely unknown that need to be investigated. Therefore, an understanding of the development of vertebrates would be greatly facilitated by study of the dynamic changes in transcription factors during early chicken embryo. RESULTS In the current study, we selected five early developmental stages in White Leghorn chicken, gallus gallus, for transcriptome analysis, cover 17,478 genes with about 807 million clean reads of RNA-sequencing. We have compared global gene expression patterns of consecutive stages and noted the differences. Comparative analysis of differentially expressed TFs (FDR < 0.05) profiles between neighboring developmental timepoints revealed significantly enriched biological categories associated with differentiation, development and morphogenesis. We also found that Zf-C2H2, Homeobox and bHLH were three dominant transcription factor families that appeared in early embryogenesis. More importantly, a TFs co-expression network was constructed and 16 critical TFs were identified. CONCLUSION Our findings provide a comprehensive regulatory framework of TFs in chicken early embryo, revealing new insights into alterations of chicken embryonic TF expression and broadening better understanding of TF function in chicken embryogenesis.
Collapse
Affiliation(s)
- Liqin Liao
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China ,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 P. R. China
| | - Ziqi Yao
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China
| | - Jie Kong
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China
| | - Xinheng Zhang
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China
| | - Hongxin Li
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 P. R. China
| | - Weiguo Chen
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China
| | - Qingmei Xie
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China ,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 P. R. China
| |
Collapse
|
13
|
Wang Z, Cai D, Ju X, Li K, Liang S, Fang M, Nie Q. RNA Sequencing Reveals the Regulation of Betaine on Chicken Myogenesis. Animals (Basel) 2022; 12:ani12192508. [PMID: 36230250 PMCID: PMC9558966 DOI: 10.3390/ani12192508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Betaine is trimethylglycine and a universal methyl donor which could provide methyl and glycine for cells and animals. As a new star in epigenetics, N6-Methyladenosine has been reported to regulate multiple biological activities, but the regulatory mechanism of betaine on N6-Methyladenosine as well as myogenesis was little studied. In this study, we treated chicken primary myoblast cells with different concentrations of betaine (0, 10, 25, and 50 mmol/L) and found that myoblast cell proliferation was inhibited, although the cell cycle was promoted in the S phase by betaine, where the myotube area was increased as well as the differentiation marker genes MyoD, MyoG, MyHC, Myomarker, and Ckm. RNA sequencing obtained a total of 61 differentially expressed genes (DEGs); DEGs caused by 50 mmol/L betaine were mainly enriched in the regulation of skeletal muscle tissue regeneration and some amino acid metabolic processes. The gene expression pattern trends of all DEGs were mainly clustered into 2 profiles, with the increase in betaine concentration, the gene expression pattern either increased or decreased continuously. Overall, a low concentration betaine can increase the N6-Methyladenosine modification level and myotube area but depresses myoblast cell proliferation in vitro.
Collapse
Affiliation(s)
- Zhijun Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, National-Local Joint Engineering Research Center for Livestock Breeding, Ministry of Agriculture, Guangzhou 510642, China
| | - Danfeng Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, National-Local Joint Engineering Research Center for Livestock Breeding, Ministry of Agriculture, Guangzhou 510642, China
| | - Xing Ju
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, National-Local Joint Engineering Research Center for Livestock Breeding, Ministry of Agriculture, Guangzhou 510642, China
| | - Kan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, National-Local Joint Engineering Research Center for Livestock Breeding, Ministry of Agriculture, Guangzhou 510642, China
| | - Sisi Liang
- Department of Laboratory Animal Science, Medical College of Jinan University, Guangzhou 510632, China
| | - Meixia Fang
- Department of Laboratory Animal Science, Medical College of Jinan University, Guangzhou 510632, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, National-Local Joint Engineering Research Center for Livestock Breeding, Ministry of Agriculture, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-8528-5759; Fax: +86-20-8528-0740
| |
Collapse
|
14
|
Zhu J, Lei L, Chen C, Wang Y, Liu X, Geng L, Li R, Chen H, Hong X, Yu L, Wei C, Li W, Zhu X. Whole-Transcriptome Analysis Identifies Gender Dimorphic Expressions of Mrnas and Non-Coding Rnas in Chinese Soft-Shell Turtle ( Pelodiscus sinensis). BIOLOGY 2022; 11:biology11060834. [PMID: 35741355 PMCID: PMC9219891 DOI: 10.3390/biology11060834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 04/14/2023]
Abstract
In aquaculture, the Chinese soft-shelled turtle (Pelodiscus sinensis) is an economically important species with remarkable gender dimorphism in its growth patterns. However, the underlying molecular mechanisms of this phenomenon have not been elucidated well. Here, we conducted a whole-transcriptome analysis of the female and male gonads of P. sinensis. Overall, 7833 DE mRNAs, 619 DE lncRNAs, 231 DE circRNAs, and 520 DE miRNAs were identified. Some "star genes" associated with sex differentiation containing dmrt1, sox9, and foxl2 were identified. Additionally, some potential genes linked to sex differentiation, such as bmp2, ran, and sox3, were also isolated in P. sinensis. Functional analysis showed that the DE miRNAs and DE ncRNAs were enriched in the pathways related to sex differentiation, including ovarian steroidogenesis, the hippo signaling pathway, and the calcium signaling pathway. Remarkably, a lncRNA/circRNA-miRNA-mRNA interaction network was constructed, containing the key genes associated with sex differentiation, including fgf9, foxl3, and dmrta2. Collectively, we constructed a gender dimorphism profile of the female and male gonads of P. sinensis, profoundly contributing to the exploration of the major genes and potential ncRNAs involved in the sex differentiation of P. sinensis. More importantly, we highlighted the potential functions of ncRNAs for gene regulation during sex differentiation in P. sinensis as well as in other turtles.
Collapse
Affiliation(s)
- Junxian Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Luo Lei
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Chen Chen
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Yakun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Xiaoli Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Lulu Geng
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Ruiyang Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Haigang Chen
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Xiaoyou Hong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Lingyun Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Chengqing Wei
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
- Correspondence: (W.L.); (X.Z.)
| | - Xinping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Correspondence: (W.L.); (X.Z.)
| |
Collapse
|