1
|
Leitner N, Simsek I, Hlavaty J, Schäfer-Somi S, Walter I. Immunohistochemical assessment of ERM proteins (ezrin, radixin, moesin) in the ovaries of different species. Tissue Cell 2024; 93:102644. [PMID: 39637489 DOI: 10.1016/j.tice.2024.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
The ezrin/radixin/moesin proteins play a central role in cross-linking plasma membrane proteins with the actin cytoskeleton. Despite intensive ERM protein research in many tissues and pathologies, little is known about these proteins in healthy tissues of reproductive organs. Therefore, we examined ezrin, phosphorylated ezrin/radixin/moesin (pan-pERM), radixin, and moesin distribution at the cellular level by means of immunohistochemistry in ovaries of the following animal species: mouse, dog, cat, sheep, pig, horse, and cynomolgus monkey. Ezrin was expressed in oocytes, ovarian surface, granulosa cells and corpus luteum. A characteristic, predominantly membranous pan-pERM staining pattern was observed in ovarian surface epithelium, oocyte, granulosa cells and corpus luteum. Moesin immunoreactivity was present in all ovarian structures with a prominent signal in endothelial cells of blood vessels. Oocytes, granulosa cells and corpus luteum revealed mainly nuclear radixin staining. Staining pattern and subcellular localization (membranous, cytoplasmic, nuclear) varied between different animal species and between particular ERM proteins as well. This data may help gain new insights into the physiological function of ERM proteins in biological events in the female reproductive system.
Collapse
Affiliation(s)
- Natascha Leitner
- Department of Biomedical Sciences and Pathobiology, Center of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| | - Ismi Simsek
- Department of Biomedical Sciences and Pathobiology, Center of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| | - Juraj Hlavaty
- Department of Biomedical Sciences and Pathobiology, Center of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| | - Sabine Schäfer-Somi
- Department of Small Animals and Horses, Clinical Center for Reproduction University of Veterinary Medicine, Vienna, Austria.
| | - Ingrid Walter
- Department of Biomedical Sciences and Pathobiology, Center of Pathobiology, University of Veterinary Medicine, Vienna, Austria; VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
2
|
Liu Q, Liu A, Liu Y, Li J, Bai J, Hai G, Wang J, Liu W, Wan P, Fu X. Hydroxyapatite nanoparticle improves ovine oocyte developmental capacity by alleviating oxidative stress in response to vitrification stimuli. Theriogenology 2024; 229:88-99. [PMID: 39167837 DOI: 10.1016/j.theriogenology.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
The wide application of ovine oocyte vitrification is limited by its relatively low efficiency. Nanoparticle is potentially to be used in cryopreservation technology for its unique characteristics with high biocompatibility, potent antioxidant property as well as superiority in membrane permeation and heat transduction. However, the effect of nanoparticle on ovine oocyte cryopreservation as well as the underlying mechanism has not been systematically evaluated. The objective of this study was to investigate the impact of nanoparticles on ovine oocytes cryopreservation and further identify the underlying mechanism. Firstly, the effects of Hydroxyapatite (HA) and Fe3O4 nanoparticles on the developmental potential of vitrified ovine oocytes were determined, and the results showed that neither HA (VC = 85.95 ± 6.23 % vs. VH = 92.47 ± 8.11 %, P > 0.05) nor Fe3O4 (VC = 85.95 ± 6.23 % vs. VF = 89.39 ± 6.32 %, P > 0.05) had adverse effect on the survival rate of vitrified-thawed oocytes. Notably, both HA (VC = 77.78 ± 0.09 % vs. VH = 44.00 ± 0.09 %, P<0.01) and Fe3O4 (VC = 77.78 ± 0.09 % vs. VF = 51.67 ± 0.15 %, P<0.01) nanoparticles effectively reduced the level of oocyte apoptosis after freezing and thawing. What's more, HA could significantly improve the cleavage rate of frozen oocytes (VC = 33.79 ± 2.83 % vs. VH = 59.54 ± 4.13 %, P<0.05). Moreover, reduced reactive oxygen species (ROS) level (VC = 13.66 ± 0.47 vs. VH = 12.61 ± 0.53, P < 0.05), increased glutathione (GSH) content (VC = 60.69 ± 7.89 vs. VH = 87.92 ± 1.05, P < 0.05) and elevated mitochondrial membrane potential (MMP) level (VC = 1.43 ± 0.04 vs. VH = 1.63 ± 0.01,P<0.01) were observed in oocytes treated with HA nanoparticles when compared with that of the control group. Furthermore, Smart-RNA sequence technology was utilized to identify differentially expressed mRNAs (DEMs) induced by nanoparticles during cryopreservation. When compared with the control counterparts, a total of 721 DEMs (309 up-regulated and 412 down-regulated mRNAs) were identified in oocytes treated with HA, while 702 DEMs (480 up-regulated and 222 down-regulated mRNAs) were identified in oocytes treated with Fe3O4. A comparison of DEMs showed that total 692 mRNAs were expressed in oocytes treated with HA and Fe3O4. Notably, we discovered that 15 mRNAs were specially highly expressed in oocytes treated with HA, and Focal adhesion signaling pathway mainly contributed to the improved ovine oocyte quality after vitrification by alleviating oxidative stress.
Collapse
Affiliation(s)
- Qian Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Aiju Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yucheng Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiachen Bai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guiping Hai
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jingjing Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Weijun Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China.
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China.
| |
Collapse
|
3
|
Huang Y, Cui Y, Huang J, Xinyuan H, Zihang W, Luo T, Li J. Proanthocyanidins protects 3-NPA-induced ovarian function decline by activating SESTRIN2-NRF2-mediated oxidative stress in mice. Sci Rep 2024; 14:25643. [PMID: 39465303 PMCID: PMC11514188 DOI: 10.1038/s41598-024-76743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Abnormal apoptosis of ovarian cells caused by oxidative stress is an important cause of premature ovarian failure (POF). Previous studies revealed that proanthocyanidins (PCs) are powerful natural antioxidants that can safely prevent oxidative damage in humans. However, the protective effect and mechanism of PCs on ovarian function during the course of POF remain unknown. In this study, female mice were injected with 3-nitropropionic acid (3-NPA) to establish an ovarian oxidative stress model; at the same time, the mice were treated with PC via gavage. Thereafter, the expression of various apoptosis genes, hormones, and related molecules was assessed. Compared with those in the control group, the ovarian index, follicle count at all levels, expression of MVH, PCNA and BCL2, and estradiol (E2) and progesterone (P) levels were significantly lower in the POF group, but significant recovery was observed in terms of MVH and PCNA expression and E2 and P levels in the POF + PCs group. The apoptosis marker genes BAX and ROS were significantly increased in the POF group but were notably restored in the POF + PCs group. In addition, the expression of Sestrin2, an antiapoptotic protein, was significantly increased in the PCs treatment group, as were the upstream and downstream regulatory factors NRF2 and SOD2, and the indices of the Sestrin2 overexpression group were similar to those of the PCs treatment group. In summary, these findings suggest that PCs have potential as innovative therapeutic agents for preventing and treating POF by activating the protective SESTRIN2-NRF2 pathway against oxidative stress.
Collapse
Affiliation(s)
- Yupei Huang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Yanfan Cui
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Jian Huang
- Clinical Medicine Center, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Huang Xinyuan
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Wang Zihang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Tao Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
- Institute of Biomedical Innovation, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Jia Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
4
|
Zhu Y, Liu H, Zheng L, Luo Y, Zhou G, Li J, Hou Y, Fu X. Vitrification of Mammalian Oocytes: Recent Studies on Mitochondrial Dysfunction. Biopreserv Biobank 2024; 22:428-440. [PMID: 38227396 DOI: 10.1089/bio.2023.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Vitrification of reproductive cells is definitely essential and integral in animal breeding, as well as in assisted reproduction. However, issues accompanied with this technology such as decreased oocyte competency and relatively low embryo survival rates appear to be a tough conundrum that has long perplexed us. As significant organelles in cell metabolism, mitochondria play pivotal roles in numerous pathways. Nonetheless, extensive evidence has demonstrated that vitrification can seriously impair mitochondrial function in mammalian oocytes. Thus, in this article, we summarize the current progress in oocyte vitrification and particularly outline the common mitochondrial abnormalities alongside subsequent injury cascades seen in mammalian oocytes following vitrification. Based on existing literature, we tentatively come up with the potential mechanisms related to mitochondrial dysfunction and generalize efficacious ways which have been recommended to restore mitochondrial function.
Collapse
Affiliation(s)
- Yixiao Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Hongyu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Lv Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Yuwen Luo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guizhen Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunpeng Hou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
5
|
Zhou G, Liu A, Bai J, Liu H, Zhu Y, Luo Y, Zheng L, Hou Y, Li J, Fu X. Decreased ATF5 level contributes to improved mitochondrial function in oocytes exposed to vitrification stress. Front Cell Dev Biol 2024; 12:1431683. [PMID: 39372953 PMCID: PMC11449845 DOI: 10.3389/fcell.2024.1431683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Background Mitochondrial unfolded protein response (mtUPR) plays an essential role in the response of mitochondria to stress-induced damage. Activating of transcription factor 5 (ATF5) can help to sustain mitochondrial function and regulate organelle recovery under mitochondrial stress. Vitrification is a stressor that disrupts mitochondrial activity and cell homeostasis. However, little is known about the function of ATF5 in response to the extreme biophysical and chemical stresses during oocyte vitrification. Methods The expression of ATF5 and mtUPR biomarkers were measured in fresh and vitrified oocytes. Subsequently, oocytes with ATF5 deficiency were constructed by siRNA microinjection, and the function of ATF5 in mitochondrial function and oocyte development were analyzed in vitrified oocytes. Furthermore, transcriptome analysis was performed to uncover the molecular network regulated by ATF5 in response to oocyte vitrification. Results In the present study, the mitochondrial membrane potential and ATP levels were decreased in ATF5 knockdown oocytes, in line with the phenotypes observed in vitrified oocytes. In addition, ATF5 knockdown resulted in decreased mitochondrial temperature, reduced unfolded protein levels, abnormal mitochondrial dynamics (fusion and fission), and increased autophagy. Subsequent experiments indicated that mtUPR was suppressed in oocytes with ATF5 knockdown. Interestingly, ATF5 was aberrantly upregulated in oocytes exposed to vitrification stress. Reduced ATF5 expression to a homeostatic level in vitrified oocytes led to accumulated unfolded protein levels and increased mitochondrial membrane potential. Moreover, increased mitochondrial dynamics and an increased germinal vesicle breakdown (GVBD) rate were detected after in vitro maturation. Transcriptome analysis revealed that ATF5 is involved in the vitrification stress response, and ATF5 regulated the in vitro maturation potential in vitrified oocytes through the cAMP-PKA and PI3K/AKT pathways. Discussion Our findings indicate that mtUPR was initiated in response to vitrification stimuli, and downregulated ATF5 level to a homeostatic state contributes to improved mitochondrial function in oocytes exposed to vitrification stress. Our results highlight the crucial role of ATF5 in the regulation of mitochondrial function in vitrified oocytes through mediating mtUPR.
Collapse
Affiliation(s)
- Guizhen Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Aiju Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiachen Bai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongyu Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yixiao Zhu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuwen Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lv Zheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Zhou D, Liu H, Zheng L, Liu A, Zhuan Q, Luo Y, Zhou G, Meng L, Hou Y, Wu G, Li J, Fu X. Metformin alleviates cryoinjuries in porcine oocytes by reducing membrane fluidity through the suppression of mitochondrial activity. Commun Biol 2024; 7:925. [PMID: 39090373 PMCID: PMC11294456 DOI: 10.1038/s42003-024-06631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Plasma membrane damage in vitrified oocytes is closely linked to mitochondrial dysfunction. However, the mechanism underlying mitochondria-regulated membrane stability is not elucidated. A growing body of evidence indicates that mitochondrial activity plays a pivotal role in cell adaptation. Since mitochondria work at a higher temperature than the constant external temperature of the cell, we hypothesize that suppressing mitochondrial activity would protect oocytes from extreme stimuli during vitrification. Here we show that metformin suppresses mitochondrial activity by reducing mitochondrial temperature. In addition, metformin affects the developmental potential of oocytes and improves the survival rate after vitrification. Transmission electron microscopy results show that mitochondrial abnormalities are markedly reduced in vitrified oocytes pretreated with metformin. Moreover, we find that metformin transiently inhibits mitochondrial activity. Interestingly, metformin pretreatment decreases cell membrane fluidity after vitrification. Furthermore, transcriptome results demonstrate that metformin pretreatment modulates the expression levels of genes involved in fatty acid elongation process, which is further verified by the increased long-chain saturated fatty acid contents in metformin-pretreated vitrified oocytes by lipidomic profile analysis. In summary, our study indicates that metformin alleviates cryoinjuries by reducing membrane fluidity via mitochondrial activity regulation.
Collapse
Affiliation(s)
- Dan Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongyu Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lv Zheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Aiju Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qingrui Zhuan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuwen Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guizhen Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lin Meng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guoquan Wu
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China.
| |
Collapse
|
7
|
Zhang C, Yang D, Ding D, Fan Y, Yang H, Wang J, Zou H, Rao B, Wang Q, Ye T, Yu M, Zhang Z. Melatonin application during cryopreservation improves the development and clinical outcomes of human vitrified-warmed oocytes. Cryobiology 2024; 115:104902. [PMID: 38734365 DOI: 10.1016/j.cryobiol.2024.104902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
In this clinical study, we investigated the potential of melatonin (MT) supplementation in the freeze-thaw medium used for cryopreserved human oocytes. In total, 152 patients who underwent in vitro fertilization between January 2020 and December 2022 were included and categorized into different groups as follows: the donor group, comprising 108 patients who donated their oocytes, with 34 patients using a vitrification and warming medium supplemented with MT (D-MT subgroup) and 74 patients using conventional medium without MT (D-0 subgroup); and the autologous group, comprising 38 patients who used their own oocytes, with 19 patients using medium supplemented with MT (A-MT subgroup) and 19 patients using medium without MT (A-0 subgroup). After thawing, the surviving oocytes in the D-MT and A-MT subgroups and D-0 and A-0 subgroups were cultured in a fertilization media with and without 10-9 MMT for 2.5 h, respectively, followed by intracytoplasmic sperm injection insemination, embryo culture, and transfer. The survival, cleavage, high-quality embryo, clinical pregnancy, ongoing pregnancy, and implantation rates were significantly higher in the D-MT subgroup than in the D-0 subgroup (all P < 0.05). Similarly, the survival, fertilization, high-quality embryo, and high-quality blastocyst rates were significantly higher in the A-MT subgroup than in the A-0 subgroup (all P < 0.05). These findings indicate that MT addition during cryopreservation can enhance the development of vitrified-warmed human oocytes and improve clinical outcomes.
Collapse
Affiliation(s)
- Chao Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dandan Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ding Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yongqi Fan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Han Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Biomedical Engineering, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jing Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Huijuan Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Bihua Rao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qiushuang Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tingting Ye
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Min Yu
- Department of Obstetrics and Gynecology, The 901, Hospital of Joint Logistics Support Force of PLA, No. 424 Changjiang West Road, Shushan District, Hefei, 230032, Anhui, China.
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Biomedical Engineering, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
8
|
Kobayashi H, Matsubara S, Yoshimoto C, Shigetomi H, Imanaka S. Current understanding of the pathogenesis of placenta accreta spectrum disorder with focus on mitochondrial function. J Obstet Gynaecol Res 2024; 50:929-940. [PMID: 38544343 DOI: 10.1111/jog.15936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 06/04/2024]
Abstract
AIM The refinement of assisted reproductive technology, including the development of cryopreservation techniques (vitrification) and ovarian stimulation protocols, makes frozen embryo transfer (FET) an alternative to fresh ET and has contributed to the success of assisted reproductive technology. Compared with fresh ET cycles, FET cycles were associated with better in vitro fertilization outcomes; however, the occurrence of pregnancy-induced hypertension, preeclampsia, and placenta accreta spectrum (PAS) was higher in FET cycles. PAS has been increasing steadily in incidence as a life-threatening condition along with cesarean rates worldwide. In this review, we summarize the current understanding of the pathogenesis of PAS and discuss future research directions. METHODS A literature search was performed in the PubMed and Google Scholar databases. RESULTS Risk factors associated with PAS incidence include a primary defect of the decidua basalis or scar dehiscence, aberrant vascular remodeling, and abnormally invasive trophoblasts, or a combination thereof. Freezing, thawing, and hormone replacement manipulations have been shown to affect multiple cellular pathways, including cell proliferation, invasion, epithelial-to-mesenchymal transition (EMT), and mitochondrial function. Molecules involved in abnormal migration and EMT of extravillous trophoblast cells are beginning to be identified in PAS placentas. Many of these molecules were also found to be involved in mitochondrial biogenesis and dynamics. CONCLUSION The etiology of PAS may be a multifactorial genesis with intrinsic predisposition (e.g., placental abnormalities) and certain environmental factors (e.g., defective decidua) as triggers for its development. A distinctive feature of this review is its focus on the potential factors linking mitochondrial function to PAS development.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Medicine, Kei Oushin Clinic, Nishinomiya, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, Nara, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, Nara, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
9
|
Zhan X, Zang Y, Ma R, Lin W, Li XL, Pei Y, Shen C, Jiang Y. Mass Spectrometry-Imaging Analysis of Active Ingredients in the Leaves of Taxus cuspidata. ACS OMEGA 2024; 9:18634-18642. [PMID: 38680336 PMCID: PMC11044248 DOI: 10.1021/acsomega.4c01440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Taxus cuspidata is an endangered evergreen conifer mainly found in Northeast Asia. In addition to the well-known taxanes, several active ingredients were detected in the leaves of T. cuspidata. However, the precise spatial distribution of active ingredients in the leaves of T. cuspidata is largely unknown. RESULTS in the present study, timsTOF flex MALDI-2 analysis was used to uncover the accumulation pattern of active ingredients in T. cuspidata leaves. In total, 3084 ion features were obtained, of which 944 were annotated according to the mass spectrometry database. The principal component analysis separated all of the detected metabolites into four typical leaf tissues: mesophyll cells, upper epidermis, lower epidermis, and vascular bundle cells. Imaging analysis identified several leaf tissues that specifically accumulated active ingredients, providing theoretical support for studying the regulation mechanism of compound biosynthesis. Furthermore, the relative accumulation levels of each identified compound were analyzed. Two flavonoid compounds, ligustroflavone and Morin, were identified with high content through quantitative analysis of the ion intensity. CONCLUSIONS our data provides fundamental information for the protective utilization of T. cuspidata.
Collapse
Affiliation(s)
- Xiaori Zhan
- College
of Life and Environmental Sciences, Hangzhou
Normal University, Hangzhou 311121, China
- Zhejiang
Provincial Key Laboratory for Genetic Improvement and Quality Control
of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Yue Zang
- College
of Life and Environmental Sciences, Hangzhou
Normal University, Hangzhou 311121, China
- Zhejiang
Provincial Key Laboratory for Genetic Improvement and Quality Control
of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruoyun Ma
- College
of Life and Environmental Sciences, Hangzhou
Normal University, Hangzhou 311121, China
- Zhejiang
Provincial Key Laboratory for Genetic Improvement and Quality Control
of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Wanting Lin
- College
of Life and Environmental Sciences, Hangzhou
Normal University, Hangzhou 311121, China
- Zhejiang
Provincial Key Laboratory for Genetic Improvement and Quality Control
of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao-lin Li
- State
Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center
for Chinese Materia Medica, China Academy
of Chinese Medical Sciences, Beijing 100700, China
| | - Yanyan Pei
- College
of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenjia Shen
- College
of Life and Environmental Sciences, Hangzhou
Normal University, Hangzhou 311121, China
- Zhejiang
Provincial Key Laboratory for Genetic Improvement and Quality Control
of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Yan Jiang
- College
of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
10
|
Hai G, Bai J, Liu Y, Li J, Liu A, Wang J, Liu Q, Liu W, Wan P, Fu X. Superior performance of biocomposite nanoparticles PLGA-RES in protecting oocytes against vitrification stimuli. Front Bioeng Biotechnol 2024; 12:1376205. [PMID: 38529403 PMCID: PMC10961424 DOI: 10.3389/fbioe.2024.1376205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/21/2024] [Indexed: 03/27/2024] Open
Abstract
Irreversible cryogenic damage caused by oocyte vitrification limits its widespread use in female fertility preservation. In recent years, nanoparticles (NPs) have gained great attention as potential alternatives in protecting oocytes against cryoinjuries. In this paper, a novel composite nanoparticle, poly (lactic-co-glycolic acid)-resveratrol (PLGA-RES) was designed to improve the biocompatibility and sustained release properties by encapsulating natural antioxidant RES into PLGA NPs. Firstly, biotoxicity and oxidation resistance of PLGA-RES were determined, and the results showed that PLGA-RES had nontoxic effect on oocyte survival during in vitro maturation (IVM) (97.08% ± 0.24% vs. 98.89% ± 1.11%, p > 0.05). Notably, PLGA-RES even increased maturation (65.10% ± 4.11% vs. 52.85% ± 2.87%, p < 0.05) and blastocyst rate (56.13% ± 1.36% vs. 40.91% ± 5.85%, p < 0.05). Moreover, the reduced reactive oxygen species (ROS) level (13.49 ± 2.30 vs. 34.07 ± 3.30, p < 0.01), increased glutathione (GSH) (44.13 ± 1.57 vs. 37.62 ± 1.79, p < 0.01) and elevated mitochondrial membrane potential (MMP) levels (43.10 ± 1.81 vs. 28.52 ± 1.25, p < 0.01) were observed in oocytes treated with PLGA-RES when compared with that of the control group. Subsequently, the role of PLGA-RES played in oocytes during vitrification was systematically evaluated. The results showed that the addition of PLGA-RES during vitrification and thawing significantly improved the survival rate (80.42% ± 1.97% vs. 75.37% ± 1.3%, p < 0.05). Meanwhile, increased GSH (15.09 ± 0.86 vs. 14.51 ± 0.78, p < 0.01) and mitochondrial membrane potential (22.56 ± 3.15 vs. 6.79 ± 0.60, p < 0.01), decreased reactive oxygen species levels (52.11 ± 2.95 vs. 75.41 ± 7.23, p < 0.05) and reduced mitochondrial abnormality distribution rate (25.00% ± 0.29% vs. 33.33% ± 1.15%, p < 0.01) were assessed in vitrified MII oocytes treated with PLGA-RES. Furthermore, transcriptomic analyses demonstrated that PLGA-RES participated in endocytosis and PI3K/AKT/mTOR pathway regulation, which was verified by the rescued expression of ARRB2 and ULK3 protein after PLGA-RES treatment. In conclusion, PLGA-RES exhibited potent antioxidant activity, and could be used as an efficacious strategy to improve the quality of vitrified oocytes.
Collapse
Affiliation(s)
- Guiping Hai
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Jiachen Bai
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yucheng Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Aiju Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingjing Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Qian Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Weijun Liu
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Zhao X, Dilixiati A, Zhang L, Aihemaiti A, Song Y, Zhao G, Fu X, Wang X, Wusiman A. Mito-TEMPO Improves the Meiosis Resumption and Mitochondrial Function of Vitrified Sheep Oocytes via the Recovery of Respiratory Chain Activity. Animals (Basel) 2024; 14:152. [PMID: 38200883 PMCID: PMC10778259 DOI: 10.3390/ani14010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Vitrification is a crucial method for preserving animal germ cells. Considering the increased oxidative stress and organelle damage incurred, it is still necessary to make the process more efficient for oocytes. As the energy source of oocytes, mitochondria are the most abundant organelle in oocytes and play a crucial role in their maturation. Here, we found that Mito-TEMPO, a mitochondria-targeted antioxidant, could efficaciously improve the oxidative stress injury of vitrified oocytes by recovering mitochondrial function via the mitochondrial respiratory chain. It was observed that Mito-TEMPO not only improves oocyte viability and meiosis but also maintains spindle structure. A subsequent study indicated that Mito-TEMPO effectively rescued mitochondrial dysfunction and attenuated vitrification-induced oxidative stress. Further investigation revealed that Mito-TEMPO regulates vitrified oocytes' intracellular Ca2+ homeostasis and ATP content and provides strong antioxidant properties. Additionally, an analysis of the transcriptome at the single-cell level revealed that the respiratory chain mediates the beneficial effect of Mito-TEMPO on vitrified oocytes. Overall, our findings indicate that supplementing oocytes with Mito-TEMPO is an effective method to shield them from the damage caused by vitrification. In addition, the beneficial effects of Mito-TEMPO on vitrified sheep oocytes could inspire further investigations of the principles underlying oocyte cryobiology in other animals.
Collapse
Affiliation(s)
- Xi Zhao
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Airixiati Dilixiati
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Luyao Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Aikebaier Aihemaiti
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yukun Song
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Guodong Zhao
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xiangwei Fu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Xuguang Wang
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Abulizi Wusiman
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
12
|
Chen J, Zhong K, Jing Y, Liu S, Qin S, Peng F, Li D, Peng C. Procyanidin B2: A promising multi-functional food-derived pigment for human diseases. Food Chem 2023; 420:136101. [PMID: 37059021 DOI: 10.1016/j.foodchem.2023.136101] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
Natural edible pigments play a paramount part in the food industry. Procyanidin B2 (PB2), one of the most representative naturally occurring edible pigments, is usually isolated from the seeds, fruits, and leaves of lots of common plants, such as grapes, Hawthorn, black soybean, as well as blueberry, and functions as a food additive in daily life. Notably, PB2 has numerous bioactivities and possesses the potential to treat/prevent a wide range of human diseases, such as diabetes mellitus, diabetic complications, atherosclerosis, and non-alcoholic fatty liver disease, and the underlying mechanisms were partially elucidated, including mediating signaling pathways like NF-κB, MAPK, PI3K/Akt, apoptotic axis, and Nrf-2/HO-1. This paper presents a review of the natural sources, bioactivities, and the therapeutic/preventive potential of PB2 and the possible mechanisms, with the aim of promoting the development of PB2 as a functional food and providing references for its clinical application in the treatment of diseases.
Collapse
Affiliation(s)
- Junren Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kexin Zhong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiqi Jing
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengmeng Liu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siqi Qin
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China.
| | - Dan Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
13
|
Bai J, Li J, Wang L, Hao S, Guo Y, Liu Y, Zhang Z, Li H, Sun WQ, Shi G, Wan P, Fu X. Effect of Antioxidant Procyanidin B2 (PCB2) on Ovine Oocyte Developmental Potential in Response to in Vitro Maturation (IVM) and Vitrification Stress. CRYOLETTERS 2023. [DOI: 10.54680/fr23210110412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND: It was demonstrated that external stress, such as in vitro maturation (IVM) and vitrification process can induce significantly reduced development capacity in oocytes. Previous studies indicated that antioxidants play a pivotal part in the acquisition of adaptation
in changed conditions. At present, the role of the natural potent antioxidant PCB2 in response to IVM and vitrification during ovine oocyte manipulation has not been explored. OBJECTIVE: To investigate whether PCB2 treatment could improve the developmental potential of ovine oocytes
under IVM and vitrification stimuli. MATERIALS AND METHODS: The experiment was divided into two parts. Firstly, the effect of PCB2 on the development of oocytes during IVM was evaluated. Unsupplem ented and 5 μg/mL PCB2 -supplemented in the IVM solution were considered as control
and experimental groups (C + 5 μg/mL PCB2). The polar body extrusion (PBE) rate, mitochondrial membrane potential (MMP), ATP, reactive oxygen species (ROS) levels and early apoptosis of oocytes were measured after IVM. Secondly, we further determine whether PCB2 could improve oocyte quality
under vitrification stress. The survival rate, PBE rate and early apoptosis of oocytes were compared between fresh group, vitrified group and 5 μg/mL PCB2 -supplemented in the IVM solution after vitrification (V + 5μg/mL PCB2). RESULTS: Compared to the control group, adding PCB2
significantly increased PBE rate (79.4% vs. 62.8%, P < 0.01) and MMP level (1.9 ± 0.08 vs. 1.3 ± 0.04, P < 0.01), and decreased ROS level (47.1 ± 6.3 vs. 145.3 ± 8.9, P < 0.01). However, there was no significant difference
in ATP content and early apoptosis. Compared to the fresh group, vitrification significantly reduced oocytes viability (43.0% vs. 90.8%, P < 0.01) as well as PBE rate (24.2% vs. 60.6%, P < 0.05). However, 5 μg/mL PCB2-supplemention during maturation had
no effect on survival, PBE or early apoptosis in vitrified oocytes. CONCLUSION: PCB2 could effectively antagonise the oxidative stress during IVM and promote oocyte development.
Collapse
Affiliation(s)
- Jiachen Bai
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang 050031, China
| | - Longfei Wang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shaopeng Hao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Yanhua Guo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Yucheng Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Zhenliang Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Houru Li
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Wendell Q. Sun
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guoqing Shi
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Xu WT, Shi LL, Xu J, Qian H, Zhou H, Wang LH. Ezrin expression in female reproductive tissues: A review of regulation and pathophysiological implications. Front Cell Dev Biol 2023; 11:1125881. [PMID: 36968198 PMCID: PMC10030596 DOI: 10.3389/fcell.2023.1125881] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Ezrin, a plasma membrane-microfilament linker, is a cytoskeletal organizer involved in many cellular activities by binding to the membrane protein-ezrin-cytoskeletal protein complex and regulating downstream signal transduction. Increasing evidence demonstrates that ezrin plays an important role in regulating cell polarity, proliferation and invasion. In this study, we analyzed the effects of ezrin on oocytes, follicle development, embryo development and embryo implantation. We reviewed the recent studies on the modalities of ezrin regulation and its involvement in the biological processes of female reproductive physiology and summarized the current research advances in ezrin inhibitors. These studies will provide new strategies and insights for the treatment of diseases.
Collapse
Affiliation(s)
- Wen-Ting Xu
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu, China
| | - Ling-Li Shi
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu, China
| | - Jie Xu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu, China
| | - Haiqing Qian
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu, China
| | - Huifang Zhou
- Department of Gynaecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Huifang Zhou, ; Li-Hong Wang,
| | - Li-Hong Wang
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu, China
- *Correspondence: Huifang Zhou, ; Li-Hong Wang,
| |
Collapse
|