1
|
Huang X, Geng H, Liang C, Xiong X, Du X, Zhuan Q, Liu Z, Meng L, Zhou D, Zhang L, Fu X, Qi X, Hou Y. Leonurine restrains granulosa cell ferroptosis through SLC7A11/GPX4 axis to promote the treatment of polycystic ovary syndrome. Free Radic Biol Med 2025; 226:330-347. [PMID: 39547522 DOI: 10.1016/j.freeradbiomed.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder marked by ovarian dysfunction and metabolic abnormality. This study explores the therapeutic potential of leonurine (SCM-198) in PCOS. Our results show that SCM-198 treatment significantly improved ovarian function, hormone disorders and insulin resistance while reducing granulosa cell ferroptosis. This study provides the first evidence that SCM-198 modulates the gut microbiota composition, increases the abundance of Christensenella minuta, and boosts butyrate levels. Transcriptomic and metabolomic analyses revealed that PCOS patients exhibit granulosa cell ferroptosis and decreased butyrate levels in follicular fluid. Butyrate was shown to alleviate ferroptosis in granulosa cells via the SLC7A11/TXNRD1/GPX4 pathway, as confirmed in vitro with KGN cells. The therapeutic mechanism of SCM-198 in the management of PCOS via the gut microbiota-ovary axis involves the enhancement of gut microbiota and its metabolites. This intervention improves ovarian function and alleviates PCOS symptoms by targeting ferroptosis in granulosa cells.
Collapse
Affiliation(s)
- Xiaohan Huang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hucheng Geng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chunxiao Liang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xianglei Xiong
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xingzhu Du
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qingrui Zhuan
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiqiang Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lin Meng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dan Zhou
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Luyao Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinyu Qi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| | - Yunpeng Hou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Miura H, Tsukahara T, Inoue R. Whole-Genome Metagenomic Analysis of Functional Profiles in the Fecal Microbiome of Farmed Sows with Different Reproductive Performances. Microorganisms 2024; 12:2180. [PMID: 39597569 PMCID: PMC11596864 DOI: 10.3390/microorganisms12112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Recent studies suggested an association between the reproductive performance of sows and their gut microbiota. To understand how the gut microbiota affect the reproductive performances of sows, we conducted a whole-genome metagenomic analysis on the fecal microbial functional profiles of sows with high and low reproductive performances. We used 60 sows from six farms (10 sows/farm), including 30 sows from three farms with higher reproductive performances (the mean number of weaned piglets/sow/year) (group H) and 30 sows from three farms with lower performances (group L). Fecal microbial DNA was subjected to a whole-genome metagenomic analysis. Biomarker exploration analysis identified "carbohydrate transport and metabolism" as the most discriminative function enriched in group H. Further analysis of carbohydrate-active enzymes revealed that the fecal microbiome of group H had a greater capacity to degrade dietary fiber, specifically cellulose and pectin. Group H also exhibited higher fecal short-chain fatty acid (SCFA) concentrations than group L, with the abundances of cellulose- and pectin-degrading genes showing significant positive correlations with fecal SCFA concentrations. Taxonomic analysis indicated greater contributions of Prevotella, Treponema, Ruminococcus, and Fibrobacter to cellulose and pectin degradation in the fecal microbiome in group H. In conclusion, higher reproductive performances of sows were, at least in part, associated with a greater microbial capacity for degrading cellulose and pectin, resulting in a higher SCFA production in the hindgut.
Collapse
Affiliation(s)
- Hiroto Miura
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata 573-0101, Japan;
| | | | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata 573-0101, Japan;
| |
Collapse
|
3
|
Long J, Liu W, Fan X, Yang Y, Yang X, Tang Z. A comprehensive atlas of pig RNA editome across 23 tissues reveals RNA editing affecting interaction mRNA-miRNAs. G3 (BETHESDA, MD.) 2024; 14:jkae178. [PMID: 39090686 PMCID: PMC11457091 DOI: 10.1093/g3journal/jkae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
RNA editing is a co-transcriptional/post-transcriptional modification that is mediated by the ADAR enzyme family. Profiling of RNA editing is very limited in pigs. In this study, we collated 3813 RNA-seq data from the public repositories across 23 tissues and carried out comprehensive profiling of RNA editing in pigs. In total, 127,927 A-to-I RNA-editing sites were detected. Our analysis showed that 98.2% of RNA-editing sites were located within repeat regions, primarily within the pig-specific SINE retrotransposon PRE-1/Pre0_SS elements. Subsequently, we focused on analyzing specific RNA-editing sites (SESs) in skeletal muscle tissues. Functional enrichment analyses suggested that they were enriched in signaling pathways associated with muscle cell differentiation, including DMD, MYOD1, and CAV1 genes. Furthermore, we discovered that RNA editing event in the 3'UTR of CFLAR mRNA influenced miR-708-5p binding in this region. In this study, the panoramic RNA-editing landscape of different tissues of pigs was systematically mapped, and RNA-editing sites and genes involved in muscle cell differentiation were identified. In summary, we identified modifications to pig RNA-editing sites and provided candidate targets for further validation.
Collapse
Affiliation(s)
- Jiajia Long
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Weiwei Liu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xinhao Fan
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yalan Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xiaogan Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhonglin Tang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Gu LJ, Li L, Li QN, Xu K, Yue W, Qiao JY, Meng TG, Dong MZ, Lei WL, Guo JN, Wang ZB, Sun QY. The transgenerational effects of maternal low-protein diet during lactation on offspring. J Genet Genomics 2024; 51:824-835. [PMID: 38657948 DOI: 10.1016/j.jgg.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Environmental factors such as diet and lifestyle can influence the health of both mothers and offspring. However, its transgenerational transmission and underlying mechanisms remain largely unknown. Here, using a maternal lactation-period low-protein diet (LPD) mouse model, we show that maternal LPD during lactation causes decreased survival and stunted growth, significantly reduces ovulation and litter size, and alters the gut microbiome in the female LPD-F1 offspring. The transcriptome of LPD-F1 metaphase II (MII) oocytes shows that differentially expressed genes are enriched in female pregnancy and multiple metabolic processes. Moreover, maternal LPD causes early stunted growth and impairs metabolic health, which is transmitted over two generations. The methylome alteration of LPD-F1 oocytes can be partly transmitted to the F2 oocytes. Together, our results reveal that LPD during lactation transgenerationally affects offspring health, probably via oocyte epigenetic changes.
Collapse
Affiliation(s)
- Lin-Jian Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Li
- Institute of Laboratory Animal Sciences, CAMS & PUMC, Beijing 100021, China
| | - Qian-Nan Li
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Ke Xu
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing-Yi Qiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tie-Gang Meng
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia-Ni Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China.
| |
Collapse
|
5
|
Lyu W, Li DF, Li SY, Hu H, Zhou JY, Wang L. Gut microbiota modulation: a narrative review on a novel strategy for prevention and alleviation of ovarian aging. Crit Rev Food Sci Nutr 2024:1-13. [PMID: 38835159 DOI: 10.1080/10408398.2024.2361306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The global rise in life expectancy corresponds with a delay in childbearing age among women. Ovaries, seen as the chronometers of female physiological aging, demonstrate features of sped up aging, evidenced by the steady decline in both the quality and quantity of ovarian follicles from birth. The multifaceted pathogenesis of ovarian aging has kindled intensive research interest from the biomedical and pharmaceutical sectors. Novel studies underscore the integral roles of gut microbiota in follicular development, lipid metabolism, and hormonal regulation, forging a nexus with ovarian aging. In this review, we outline the role of gut microbiota in ovarian function (follicular development, oocyte maturation, and ovulation), compile and present gut microbiota alterations associated with age-related ovarian aging. We also discuss potential strategies for alleviating ovarian aging from the perspective of gut microbiota, such as fecal microbiota transplantation and probiotics.
Collapse
Affiliation(s)
- Wei Lyu
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, USA
| | - De-Feng Li
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Shu-Ying Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Hua Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Jian-Yun Zhou
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Ling Wang
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
6
|
Huang F, Cao Y, Liang J, Tang R, Wu S, Zhang P, Chen R. The influence of the gut microbiome on ovarian aging. Gut Microbes 2024; 16:2295394. [PMID: 38170622 PMCID: PMC10766396 DOI: 10.1080/19490976.2023.2295394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Ovarian aging occurs prior to the aging of other organ systems and acts as the pacemaker of the aging process of multiple organs. As life expectancy has increased, preventing ovarian aging has become an essential goal for promoting extended reproductive function and improving bone and genitourinary conditions related to ovarian aging in women. An improved understanding of ovarian aging may ultimately provide tools for the prediction and mitigation of this process. Recent studies have suggested a connection between ovarian aging and the gut microbiota, and alterations in the composition and functional profile of the gut microbiota have profound consequences on ovarian function. The interaction between the gut microbiota and the ovaries is bidirectional. In this review, we examine current knowledge on ovary-gut microbiota crosstalk and further discuss the potential role of gut microbiota in anti-aging interventions. Microbiota-based manipulation is an appealing approach that may offer new therapeutic strategies to delay or reverse ovarian aging.
Collapse
Affiliation(s)
- Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ying Cao
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Jinghui Liang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ruiyi Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Si Wu
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
7
|
Song D, Li A, Chen B, Feng J, Duan T, Cheng J, Chen L, Wang W, Min Y. Multi-omics analysis reveals the molecular regulatory network underlying the prevention of Lactiplantibacillus plantarum against LPS-induced salpingitis in laying hens. J Anim Sci Biotechnol 2023; 14:147. [PMID: 37978561 PMCID: PMC10655300 DOI: 10.1186/s40104-023-00937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/04/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Salpingitis is one of the common diseases in laying hen production, which greatly decreases the economic outcome of laying hen farming. Lactiplantibacillus plantarum was effective in preventing local or systemic inflammation, however rare studies were reported on its prevention against salpingitis. This study aimed to investigate the preventive molecular regulatory network of microencapsulated Lactiplantibacillus plantarum (MLP) against salpingitis through multi-omics analysis, including microbiome, transcriptome and metabolome analyses. RESULTS The results revealed that supplementation of MLP in diet significantly alleviated the inflammation and atrophy of uterus caused by lipopolysaccharide (LPS) in hens (P < 0.05). The concentrations of plasma IL-2 and IL-10 in hens of MLP-LPS group were higher than those in hens of LPS-stimulation group (CN-LPS group) (P < 0.05). The expression levels of TLR2, MYD88, NF-κB, COX2, and TNF-α were significantly decreased in the hens fed diet supplemented with MLP and suffered with LPS stimulation (MLP-LPS group) compared with those in the hens of CN-LPS group (P < 0.05). Differentially expressed genes (DEGs) induced by MLP were involved in inflammation, reproduction, and calcium ion transport. At the genus level, the MLP supplementation significantly increased the abundance of Phascolarctobacterium, whereas decreased the abundance of Candidatus_Saccharimonas in LPS challenged hens (P < 0.05). The metabolites altered by dietary supplementation with MLP were mainly involved in galactose, uronic acid, histidine, pyruvate and primary bile acid metabolism. Dietary supplementation with MLP inversely regulates LPS-induced differential metabolites such as LysoPA (24:0/0:0) (P < 0.05). CONCLUSIONS In summary, dietary supplementation with microencapsulated Lactiplantibacillus plantarum prevented salpingitis by modulating the abundances of Candidatus_Saccharimonas, Phascolarctobacterium, Ruminococcus_torques_group and Eubacterium_hallii_group while downregulating the levels of plasma metabolites, p-tolyl sulfate, o-cresol and N-acetylhistamine and upregulating S-lactoylglutathione, simultaneously increasing the expressions of CPNE4, CNTN3 and ACAN genes in the uterus, and ultimately inhibiting oviducal inflammation.
Collapse
Affiliation(s)
- Dan Song
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Aike Li
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Bingxu Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Jia Feng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
| | - Tao Duan
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Junlin Cheng
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Lixian Chen
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Weiwei Wang
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China.
| | - Yuna Min
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China.
| |
Collapse
|