1
|
Peng H, Guo Y, Zhang J, Hei M, Li Y, Zhang W. In Vitro Screening of Trehalose Synbiotics and Their Effects on Early-Lactating Females and Offspring Mice. Antioxidants (Basel) 2024; 13:1223. [PMID: 39456476 PMCID: PMC11505180 DOI: 10.3390/antiox13101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Activities such as childbirth and breastfeeding can cause severe oxidative stress and inflammatory damage to the mother during early lactation, and can affect animal milk production, and the growth and development of offspring. Trehalose alleviates damage to the body by endowing it with stress resistance. In this study, we used trehalose combined with Lactobacillus plantarum, Bifidobacterium longum, Bacillus subtilis, and Saccharomyces cerevisiae to explore whether dietary intervention can alleviate oxidative stress and inflammatory damage in early lactation and to evaluate the growth ability, acid production ability, antioxidant ability, non-specific adhesion ability, antibacterial ability, and other parameters to determine the optimal combinations and proportions. The results showed that the synbiotics composed of 2.5% trehalose and 1 × 107 cfu/g of Bifidobacterium longum could regulate the gut microbiota, and promote mammary gland development in dams by reducing progesterone (PROG) content in the blood, increasing prolactin (PRL) and insulin-like growth factor-1 (IGF-1) content, enhancing their antioxidant and immune abilities, and effectively increasing the weight and lactation of early lactating dams. In addition, it can also affect the growth of offspring and the development of the intestinal barrier. These results indicate that trehalose synbiotics have great potential in alleviating oxidative stress and inflammatory damage in early lactation.
Collapse
Affiliation(s)
| | | | | | | | - Yuanyuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.P.); (Y.G.); (J.Z.); (M.H.)
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.P.); (Y.G.); (J.Z.); (M.H.)
| |
Collapse
|
2
|
Chen W, Chen X, Zhang Y, Wu H, Zhao D. Variation on gut microbiota diversity of endangered red pandas ( Ailurus fulgens) living in captivity acrosss geographical latitudes. Front Microbiol 2024; 15:1420305. [PMID: 39165571 PMCID: PMC11333448 DOI: 10.3389/fmicb.2024.1420305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024] Open
Abstract
The gut microbiome plays important roles in metabolic and immune system related to the health of host. This study applied non-invasive sampling and 16S rDNA high-throughput sequencing to study the gut microbiota structure of red pandas (Ailurus fulgens) for the first time under different geographical latitudes in captivity. The results showed that the two predominant phyla Firmicutes (59.30%) and Proteobacteria (38.58%) constituted 97.88% of the total microbiota in all the fecal samples from north group (red pandas from Tianjin Zoo and Jinan Zoo) and south group (red pandas from Nanjing Hongshan Forest Zoo). The relative abundance of Cyanobacteria in north group was significantly higher than that in south group. At the genus level, Escherichia-Shigella (24.82%) and Clostridium_sensu_stricto_1 (23.00%) were common dominant genera. The relative abundance of norank_f__norank_o__Chloroplast, Terrisporobacter and Anaeroplasma from south group was significantly higher than that of north group. Alpha and Beta analysis consistently showed significant differences between north group and south group, however, the main functions of intestinal microbiota were basically the same, which play an important role in metabolic pathways, biosynthesis of secondary metabolites, microbial metabolism in different environments, and amino acid biosynthesis. The variations in gut microbiota between the northern and southern populations of the same species, both kept in captivity, which are primarily driven by significant differences in climate and diet. These findings provide a deeper understanding of the gut microbiota in red pandas and have important implications for their conservation, particularly in optimizing diet and environmental conditions in captivity.
Collapse
Affiliation(s)
| | | | | | - Hong Wu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Dapeng Zhao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
3
|
Dai F, Lin T, Jin M, Huang X, Wang L, Ma J, Yu H, Fan X, Nong X, Zuo J. Bamboo fiber improves piglet growth performance by regulating the microbial composition of lactating sows and their offspring piglets. Front Microbiol 2024; 15:1411252. [PMID: 39081892 PMCID: PMC11287131 DOI: 10.3389/fmicb.2024.1411252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/24/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Feeding bamboo powder is a kind of fiber raw material mainly composed of insoluble dietary fiber (IDF). In this study, IDF-based rice husk meal and feeding bamboo powder were used to compare the effects of bamboo fiber on fecal microflora and the performance of lactating sows and their offspring piglets. Methods Thirty healthy crossbred gilts (Yorkshire × Landrace) at day 105 of gestation were randomly allocated into three groups: CON, TRE1 supplemented with 2% BBF1 (feeding bamboo powder), and TRE2 supplemented with 2% BBF2 (99% feeding bamboo powder +1% bamboo fiber polymer material). The reproductive performance, serum indexes, and fecal microbiota of sows and piglets were analyzed. The results showed that, compared with CON, the average feed intake of sows in TRE1 during the second week of lactation was significantly increased by 21.96% (p < 0.05), the average daily gain (ADG) per litter in TRE1 on 11-21 days and 3-21 days of lactation was significantly increased by 50.68 and 31.61%, respectively (p < 0.05), and the serum triglyceride content of sows in TRE1 on the 21st day of lactation was significantly increased (p < 0.05). The 16S rRNA analysis showed that dietary bamboo fiber significantly increased the fecal microbial richness index Ace, Chao, and Sobs of sows (p < 0.05) and tended to increase the Sobs index of suckling piglets on day 21 (p < 0.10). Compared with CON, BBF1 supplementation significantly decreased the abundance of Christensenellaceae_R-7_group in feces of sows on days 7 and 21 after delivery (p < 0.05), while BBF2 decreased the genera Christensenellaceae_R-7_group on days 7 (p < 0.10) and 21 (p < 0.05) after delivery. Spearman correlation analysis showed that the abundance of Phascolarctobacterium in the feces of piglets on the 21st day after delivery was significantly positively correlated with diarrhea rate and significantly negatively correlated with ADG per litter, day 21 litter weight, and 3- to 21-day survival rate. In contrast, Christensenellaceae_R-7_group was significantly negatively correlated with diarrhea rate and positively correlated with ADG per litter. Discussion These results indicated that maternal BBF1 supplementation improved the litter weight gain of suckling piglets, which was associated with the improvement of diversity and structure of the fecal microbiota in the piglets.
Collapse
Affiliation(s)
- Fawen Dai
- Leshan Normal University, Leshan, China
- Sichuan Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan, China
- Key Laboratory of Bamboo Pest Control and Resource Development, Leshan, Sichuan, China
| | - Tao Lin
- Leshan Normal University, Leshan, China
- Sichuan Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan, China
| | - Muqu Jin
- Leshan Normal University, Leshan, China
- Sichuan Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan, China
| | - Xia Huang
- Leshan Normal University, Leshan, China
- Sichuan Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan, China
| | - Lu Wang
- Leshan Normal University, Leshan, China
- Sichuan Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan, China
| | - Jing Ma
- Leshan Normal University, Leshan, China
- Sichuan Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan, China
| | - Hang Yu
- Leshan Normal University, Leshan, China
- Sichuan Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan, China
| | - Xianlin Fan
- Leshan Normal University, Leshan, China
- Sichuan Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan, China
| | - Xiang Nong
- Leshan Normal University, Leshan, China
- Sichuan Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan, China
- Key Laboratory of Bamboo Pest Control and Resource Development, Leshan, Sichuan, China
| | - Jianjun Zuo
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Gao T, Li R, Hu L, Hu Q, Wen H, Zhou R, Yuan P, Zhang X, Huang L, Zhuo Y, Xu S, Lin Y, Feng B, Che L, Wu D, Fang Z. Probiotic Lactobacillus rhamnosus GG improves insulin sensitivity and offspring survival via modulation of gut microbiota and serum metabolite in a sow model. J Anim Sci Biotechnol 2024; 15:89. [PMID: 38951898 PMCID: PMC11218078 DOI: 10.1186/s40104-024-01046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/07/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Sows commonly experience insulin resistance in late gestation and lactation, causing lower feed intake and milk production, which can lead to higher mortality rates in newborn piglets. The probiotic Lactobacillus rhamnosus GG (LGG) is known to improve insulin resistance. However, whether supplementing LGG can improve insulin sensitivity in sows and enhance lactation performance, particularly the early survival of offspring remains unclear. Hence, we explored the effects and mechanisms of supplementing LGG during late gestation and lactation on sow insulin sensitivity, lactation performance, and offspring survival. In total, 20 sows were randomly allocated to an LGG (n = 10) and control group (n = 10). RESULTS In sows, LGG supplementation significantly improved insulin sensitivity during late gestation and lactation, increased feed intake, milk production and colostrum lactose levels in early lactation, and enhanced newborn piglet survival. Moreover, LGG treatment significantly reshaped the gut microbiota in sows, notably increasing microbiota diversity and enriching the relative abundance of insulin sensitivity-associated probiotics such as Lactobacillus, Bifidobacterium, and Bacteroides. Serum metabolite and amino acid profiling in late-gestation sows also revealed decreased branched-chain amino acid and kynurenine serum levels following LGG supplementation. Further analyses highlighted a correlation between mitigated insulin resistance in late pregnancy and lactation by LGG and gut microbiota reshaping and changes in serum amino acid metabolism. Furthermore, maternal LGG enhanced immunity in newborn piglets, reduced inflammation, and facilitated the establishment of a gut microbiota. CONCLUSIONS We provide the first evidence that LGG mitigates insulin resistance in sows and enhances offspring survival by modulating the gut microbiota and amino acid metabolism.
Collapse
Affiliation(s)
- Tianle Gao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Ran Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
- Key Laboratory of Agricultural Product Processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya' an, 625014, China
| | - Liang Hu
- Key Laboratory of Agricultural Product Processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya' an, 625014, China
| | - Quanfang Hu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Hongmei Wen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Rui Zhou
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Peiqiang Yuan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Xiaoling Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Lingjie Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| |
Collapse
|
5
|
Zheng J, Li S, He J, Liu H, Huang Y, Jiang X, Zhao X, Li J, Feng B, Che L, Fang Z, Xu S, Lin Y, Hua L, Zhuo Y, Wu D. A Gestational Pectin Diet Could Improve the Health of Multiparous Sows by Modulating the Gut Microbiota and Cytokine Level during Late Pregnancy. Animals (Basel) 2024; 14:1559. [PMID: 38891606 PMCID: PMC11171106 DOI: 10.3390/ani14111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to investigate the effects of the dietary fiber pectin on the gut microbiota and health of parturient sows. A total of 30 parity 5-7, multiparous gestation sows (Large White × Landrace) were randomly assigned to two treatment groups after mating: Con (control, basic diet) and Pec (pectin, 3%). The sows received the two diets during gestation, and all sows were fed the same standard basic diet during lactation. The results of β-diversity showed that the composition of the gut microbiota was different in the Con and Pec groups. Compared with the sows in the Con group, the Pec sows showed a higher abundance of the gut bacteria Clostridium and Romboutsia and a lower abundance of harmful bacteria (Micrococcaceae, Coriobacteriaceae, Dorea, Actinomyces). On the other hand, the SCFA plasma concentration was increased in the Pec group, while pro-inflammatory cytokine (IL-6, IL-1β, and TNF-α) concentrations were decreased. In conclusion, the soluble dietary fiber pectin could improve the reproductive performance and health of sows by increasing the abundance of some commensal bacteria enhancing the metabolite SCFA levels and reducing the pro-inflammatory cytokine plasma levels.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Shuang Li
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Jiaqi He
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Hao Liu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yingyan Huang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Xilun Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Lun Hua
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| |
Collapse
|
6
|
Liu X, Wei X, Feng Y, Liu H, Tang J, Gao F, Shi B. Supplementation with Complex Dietary Fiber during Late Pregnancy and Lactation Can Improve Progeny Growth Performance by Regulating Maternal Antioxidant Status and Milk Quality. Antioxidants (Basel) 2023; 13:22. [PMID: 38275642 PMCID: PMC10812556 DOI: 10.3390/antiox13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
This study investigated the nutritional benefits of complex dietary fiber (beta-glucan and fructo-oligosaccharides, CDF) supplementation in sows and piglets during late pregnancy and lactation. Twenty-four sows were randomly divided into two groups: the control group was fed a basal diet (n = 12), and the experimental group was fed a CDF diet (0.25% CDF replaced the same proportion of corn in the basal diet, n = 12). Dietary treatment was given from day 107 of pregnancy to day 25 of lactation. The results of this experiment showed that CDF increased the average daily feed intake (ADFI) of sows during lactation and the weaning body weight (BW) and average daily gain of piglets. Dietary CDF supplementation improved the antioxidant capacity and immune level of sows and decreased the serum zonulin level. Dietary supplementation with CDF increased the levels of antioxidant activity, immunoglobulin, and anti-inflammatory factor interleukin-10 (IL-10) in milk. Meanwhile, piglets in the CDF group had increased serum antioxidant activity, immunoglobulin, and growth-related hormone levels; decreased malondialdehyde (MDA), interleukin-6 (IL-6), and D-lactic acid (D-LA) levels; and increased fecal short-chain fatty acid content. In addition, the CDF group increased the diversity of microorganisms in sow feces. In conclusion, the supplementation of a diet with CDF in late pregnancy and lactation can alleviate the oxidative stress of sows, improve milk quality, and have significant positive effects on the antioxidant capacity and growth performance of piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.L.); (X.W.); (Y.F.); (H.L.); (J.T.); (F.G.)
| |
Collapse
|
7
|
Qin F, Wei W, Gao J, Jiang X, Che L, Fang Z, Lin Y, Feng B, Zhuo Y, Hua L, Wang J, Sun M, Wu D, Xu S. Effect of Dietary Fiber on Reproductive Performance, Intestinal Microorganisms and Immunity of the Sow: A Review. Microorganisms 2023; 11:2292. [PMID: 37764136 PMCID: PMC10534349 DOI: 10.3390/microorganisms11092292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Dietary fiber is a substance that cannot be digested by endogenous digestive enzymes but can be digested by the cellulolytic enzymes produced by intestinal microorganisms. In the past, dietary fiber was considered an anti-nutrient component in diets because it could resist digestion by endogenous enzymes secreted by the intestine and has a negative effect on the digestion of energy-producing nutrients. However, due to its functional properties, potential health benefits to animals, and innate fermentability, it has attracted increasing attention in recent years. There are a plethora of studies on dietary fiber. Evidence suggests that dietary fiber can provide energy for pigs through intestinal microbial fermentation and improve sow welfare, reproductive performance, intestinal flora, and immunity. This is a brief overview of the composition and classification of dietary fiber, the mechanism of action and effects of dietary fiber on reproductive performance, intestinal microorganisms, and the immune index of the sow. This review also provides scientific guidance for the application of dietary fiber in sow production.
Collapse
Affiliation(s)
- Feng Qin
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Wenyan Wei
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Junjie Gao
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Xuemei Jiang
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Lianqiang Che
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Zhengfeng Fang
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Yan Lin
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Bin Feng
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Yong Zhuo
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Lun Hua
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Jianping Wang
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Yucheng District, Ya’an 625014, China;
| | - De Wu
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Shengyu Xu
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| |
Collapse
|
8
|
Yao S, Zhao Y, Chen H, Sun R, Chen L, Huang J, Yu Z, Chen S. Exploring the Plasticity of Diet on Gut Microbiota and Its Correlation with Gut Health. Nutrients 2023; 15:3460. [PMID: 37571397 PMCID: PMC10420685 DOI: 10.3390/nu15153460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Dietary habits have been proven to help alter the composition of gut microbiota, and exploring the impact of nutritional patterns on gut microbiota changes can help protect gut health. However, few studies have focused on the dietary impact on the gut microbiota over an experimental timeframe. In this study, 16S rRNA gene sequencing was employed to investigate the gut microbiota of mice under different dietary patterns, including AIN-93G diet (Control), high protein diet (HPD), high fiber diet (HFD), and switch diet (Switch). The alpha diversity of the HPD group significantly decreased, but HFD can restore this decline. During HPD, some genera were significantly upregulated (e.g., Feacalibaculum) and downregulated (e.g., Parabacteroides). However, after receiving HFD, other genera were upregulated (e.g., Akkermansia) and downregulated (e.g., Lactobacillus). In addition, the interaction between pathogenic bacteria was more pronounced during HPD, while the main effect was probiotics during HFD. In conclusion, the plasticity exhibited by the gut microbiota was subject to dietary influences, wherein disparate dietary regimens hold pivotal significance in upholding the well-being of the host. Therefore, our findings provide new ideas and references for the relationship between diets and gut microbiota.
Collapse
Affiliation(s)
- Siqi Yao
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha 410008, China;
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China; (Y.Z.); (R.S.); (L.C.)
| | - Yiming Zhao
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China; (Y.Z.); (R.S.); (L.C.)
| | - Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha 410078, China; (H.C.); (J.H.)
| | - Ruizheng Sun
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China; (Y.Z.); (R.S.); (L.C.)
| | - Liyu Chen
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China; (Y.Z.); (R.S.); (L.C.)
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha 410078, China; (H.C.); (J.H.)
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China; (Y.Z.); (R.S.); (L.C.)
| | - Shuijiao Chen
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha 410008, China
| |
Collapse
|