1
|
Ramakrishnan DK, Jauernegger F, Hoefle D, Berg C, Berg G, Abdelfattah A. Unravelling the microbiome of wild flowering plants: a comparative study of leaves and flowers in alpine ecosystems. BMC Microbiol 2024; 24:417. [PMID: 39425049 PMCID: PMC11490174 DOI: 10.1186/s12866-024-03574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND While substantial research has explored rhizosphere and phyllosphere microbiomes, knowledge on flower microbiome, particularly in wild plants remains limited. This study explores into the diversity, abundance, and composition of bacterial and fungal communities on leaves and flowers of wild flowering plants in their natural alpine habitat, considering the influence of environmental factors. METHODS We investigated 50 wild flowering plants representing 22 families across seven locations in Austria. Sampling sites encompassed varied soil types (carbonate/silicate) and altitudes (450-2760 m). Amplicon sequencing to characterize bacterial and fungal communities and quantitative PCR to assess microbial abundance was applied, and the influence of biotic and abiotic factors assessed. RESULTS Our study revealed distinct bacterial and fungal communities on leaves and flowers, with higher diversity and richness on leaves (228 fungal and 91 bacterial ASVs) than on flowers (163 fungal and 55 bacterial ASVs). In addition, Gammaproteobacteria on flowers and Alphaproteobacteria on leaves suggests niche specialization for plant compartments. Location significantly shaped both community composition and fungal diversity on both plant parts. Notably, soil type influenced community composition but not diversity. Altitude was associated with increased fungal species diversity on leaves and flowers. Furthermore, significant effects of plant family identity emerged within a subset of seven families, impacting bacterial and fungal abundance, fungal Shannon diversity, and bacterial species richness, particularly on flowers. CONCLUSION This study provides novel insights into the specific microbiome of wild flowering plants, highlighting adaptations to local environments and plant-microbe coevolution. The observed specificity indicates a potential role in plant health and resilience, which is crucial for predicting how microbiomes respond to changing environments, ultimately aiding in the conservation of natural ecosystems facing climate change pressures.
Collapse
Affiliation(s)
- Dinesh Kumar Ramakrishnan
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Franziska Jauernegger
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Daniel Hoefle
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Christian Berg
- Institute of Biology, Department of Plant Sciences, NAWI Graz, University of Graz, 8010, Graz, Austria
| | - Gabriele Berg
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany.
| |
Collapse
|
2
|
Shahmohamadloo RS, Gabidulin AR, Andrews ER, Fryxell JM, Rudman SM. A test for microbiome-mediated rescue via host phenotypic plasticity in Daphnia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607994. [PMID: 39185203 PMCID: PMC11343196 DOI: 10.1101/2024.08.14.607994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Phenotypic plasticity is a primary mechanism by which organismal phenotypes shift in response to the environment. Host-associated microbiomes often exhibit considerable shifts in response to environmental variation and these shifts could facilitate host phenotypic plasticity, adaptation, or rescue populations from extinction. However, it is unclear how much shifts in microbiome composition contribute to host phenotypic plasticity, limiting our knowledge of the underlying mechanisms of plasticity and, ultimately, the fate of populations inhabiting changing environments. In this study, we examined phenotypic responses and microbiome composition in 20 genetically distinct Daphnia magna clones exposed to non-toxic and toxic diets containing Microcystis, a cosmopolitan cyanobacteria and common stressor for Daphnia. Daphnia exhibited significant plasticity in survival, reproduction, and population growth rates in response to Microcystis exposure. However, the effects of Microcystis exposure on the Daphnia microbiome were limited, with the primary effect being differences in abundance observed across five bacterial families. Moreover, there was no significant correlation between the magnitude of microbiome shifts and host phenotypic plasticity. Our results suggest that microbiome composition played a negligible role in driving host phenotypic plasticity or microbiome-mediated rescue.
Collapse
Affiliation(s)
- René S. Shahmohamadloo
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| | - Amir R. Gabidulin
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| | - Ellie R. Andrews
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| | - John M. Fryxell
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Seth M. Rudman
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| |
Collapse
|
3
|
Li JD, Gao YY, Stevens EJ, King KC. Dual stressors of infection and warming can destabilize host microbiomes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230069. [PMID: 38497264 PMCID: PMC10945407 DOI: 10.1098/rstb.2023.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/02/2024] [Indexed: 03/19/2024] Open
Abstract
Climate change is causing extreme heating events and intensifying infectious disease outbreaks. Animals harbour microbial communities, which are vital for their survival and fitness under stressful conditions. Understanding how microbiome structures change in response to infection and warming may be important for forecasting host performance under global change. Here, we evaluated alterations in the microbiomes of several wild Caenorhabditis elegans isolates spanning a range of latitudes, upon warming temperatures and infection by the parasite Leucobacter musarum. Using 16S rRNA sequencing, we found that microbiome diversity decreased, and dispersion increased over time, with the former being more prominent in uninfected adults and the latter aggravated by infection. Infection reduced dominance of specific microbial taxa, and increased microbiome dispersion, indicating destabilizing effects on host microbial communities. Exposing infected hosts to warming did not have an additive destabilizing effect on their microbiomes. Moreover, warming during pre-adult development alleviated the destabilizing effects of infection on host microbiomes. These results revealed an opposing interaction between biotic and abiotic factors on microbiome structure. Lastly, we showed that increased microbiome dispersion might be associated with decreased variability in microbial species interaction strength. Overall, these findings improve our understanding of animal microbiome dynamics amidst concurrent climate change and epidemics. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- J. D. Li
- Department of Biology, University of Oxford, Oxford OX1 2JD, UK
| | - Y. Y. Gao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
- School of Ecology and Nature Conservation, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, People's Republic of China
| | - E. J. Stevens
- Department of Biology, University of Oxford, Oxford OX1 2JD, UK
| | - K. C. King
- Department of Biology, University of Oxford, Oxford OX1 2JD, UK
- Department of Zoology, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, V6T 1Z3, Canada
| |
Collapse
|
4
|
Hu R, Yang T, Ai Q, Shi Y, Ji Y, Sun Q, Tong B, Chen J, Wang Z. Autoinducer-2 promotes the colonization of Lactobacillus rhamnosus GG to improve the intestinal barrier function in a neonatal mouse model of antibiotic-induced intestinal dysbiosis. J Transl Med 2024; 22:177. [PMID: 38369503 PMCID: PMC10874557 DOI: 10.1186/s12967-024-04991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Human health is seriously threatened by antibiotic-induced intestinal disorders. Herein, we aimed to determine the effects of Autoinducer-2 (AI-2) combined with Lactobacillus rhamnosus GG (LGG) on the intestinal barrier function of antibiotic-induced intestinal dysbiosis neonatal mice. METHODS An antibiotic-induced intestinal dysbiosis neonatal mouse model was created using antibiotic cocktails, and the model mice were randomized into the control, AI-2, LGG, and LGG + AI-2 groups. Intestinal short-chain fatty acids and AI-2 concentrations were detected by mass spectrometry and chemiluminescence, respectively. The community composition of the gut microbiota was analyzed using 16S rDNA sequencing, and biofilm thickness and bacterial adhesion in the colon were assessed using scanning electron microscopy. Transcriptome RNA sequencing of intestinal tissues was performed, and the mRNA and protein levels of HCAR2 (hydroxycarboxylic acid receptor 2), claudin3, and claudin4 in intestinal tissues were determined using quantitative real-time reverse transcription PCR and western blotting. The levels of inflammatory factors in intestinal tissues were evaluated using enzyme-linked immunosorbent assays (ELISAs). D-ribose, an inhibitor of AI-2, was used to treat Caco-2 cells in vitro. RESULTS Compared with the control, AI-2, and LGG groups, the LGG + AI-2 group showed increased levels of intestinal AI-2 and proportions of Firmicutes and Lacticaseibacillus, but a reduced fraction of Proteobacteria. Specifically, the LGG + AI-2 group had considerably more biofilms and LGG on the colon surface than those of other three groups. Meanwhile, the combination of AI-2 and LGG markedly increased the concentration of butyric acid and promoted Hcar2, claudin3 and claudin4 expression levels compared with supplementation with LGG or AI-2 alone. The ELISAs revealed a significantly higher tumor necrosis factor alpha (TNF-α) level in the control group than in the LGG and LGG + AI-2 groups, whereas the interleukin 10 (IL-10) level was significantly higher in the LGG + AI-2 group than in the other three groups. In vitro, D-ribose treatment dramatically suppressed the increased levels of Hcar2, claudin3, and claudin4 in Caco-2 cells induced by AI-2 + LGG. CONCLUSIONS AI-2 promotes the colonization of LGG and biofilm formation to improve intestinal barrier function in an antibiotic-induced intestinal dysbiosis neonatal mouse model.
Collapse
Affiliation(s)
- Riqiang Hu
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Ting Yang
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Qing Ai
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Shi
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanchun Ji
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Sun
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bei Tong
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Jie Chen
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China.
| | - Zhengli Wang
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China.
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Jiangxi Hospital Affiliated Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Decaestecker E, Van de Moortel B, Mukherjee S, Gurung A, Stoks R, De Meester L. Hierarchical eco-evo dynamics mediated by the gut microbiome. Trends Ecol Evol 2024; 39:165-174. [PMID: 37863775 DOI: 10.1016/j.tree.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023]
Abstract
The concept of eco-evolutionary (eco-evo) dynamics, stating that ecological and evolutionary processes occur at similar time scales and influence each other, has contributed to our understanding of responses of populations, communities, and ecosystems to environmental change. Phenotypes, central to these eco-evo processes, can be strongly impacted by the gut microbiome. The gut microbiome shapes eco-evo dynamics in the host community through its effects on the host phenotype. Complex eco-evo feedback loops between the gut microbiome and the host communities might thus be common. Bottom-up dynamics occur when eco-evo interactions shaping the gut microbiome affect host phenotypes with consequences at population, community, and ecosystem levels. Top-down dynamics occur when eco-evo dynamics shaping the host community structure the gut microbiome.
Collapse
Affiliation(s)
- Ellen Decaestecker
- Laboratory of Aquatic Biology, Interdisciplinary Research Facility Life Sciences, KU Leuven, KULAK, Campus Kortrijk, B-8500 Kortrijk, Belgium.
| | - Broos Van de Moortel
- Laboratory of Aquatic Biology, Interdisciplinary Research Facility Life Sciences, KU Leuven, KULAK, Campus Kortrijk, B-8500 Kortrijk, Belgium
| | - Shinjini Mukherjee
- Laboratory of Aquatic Ecology, Evolution, and Conservation, KU Leuven, B-3000 Leuven, Belgium; Laboratory of Reproductive Genomics, KU Leuven, B-3000 Leuven, Belgium
| | - Aditi Gurung
- Laboratory of Aquatic Ecology, Evolution, and Conservation, KU Leuven, B-3000 Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, B-3000 Leuven, Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution, and Conservation, KU Leuven, B-3000 Leuven, Belgium; Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), D-12587 Berlin, Germany; Institute of Biology, Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
6
|
Houwenhuyse S, Callens M, Bulteel L, Decaestecker E. Comparison between the gut bacterial community of laboratory cultured and wild Daphnia. FEMS Microbiol Ecol 2023; 99:fiad116. [PMID: 37740575 DOI: 10.1093/femsec/fiad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
The fitness of an organism is often impacted by the composition and biological activity of its associated bacterial community. Many factors, including host genetics, diet, and temperature can influence the bacterial community composition. Furthermore, these factors can differ strongly between natural and laboratory environments. Consequently, several studies have highlighted results from laboratory experiments investigating host-associated bacterial communities to be conflicting with those obtained under field conditions. Here, we compared the Daphnia magna gut bacterial communities in natural host populations with those of laboratory cultured hosts. We further analyzed changes in the gut bacterial communities after transferring hosts from natural populations to the laboratory on the short- and long-term. Results show that, in general, the gut bacterial communities from natural populations differ from those of laboratory cultures and that their composition and diversity changed one hour after being transferred to the laboratory. Over the following 14 days, the composition and diversity changed gradually. On the longer term (after two years of rearing hosts in the laboratory) the composition and diversity of the gut bacterial communities was strongly altered compared to the initial state. Our findings indicate that the gut bacterial communities of Daphnia magna in laboratory experiments is not representative for natural field conditions, and that caution should be taken when interpreting results from laboratory experiments for natural settings.
Collapse
Affiliation(s)
- Shira Houwenhuyse
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven- KU Leuven, Campus KULAK, E. Sabbelaan 53, 8500 Kortrijk, Belgium
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Gent University, Karel Lodewijk Ledeganckstraat 35, 9000, Gent, Belgium
| | - Martijn Callens
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven- KU Leuven, Campus KULAK, E. Sabbelaan 53, 8500 Kortrijk, Belgium
- Animal Sciences Unit - Aquatic Environment and Quality, Flanders Research Institute for Agriculture, Fisheries and Food, Oostende 8400, Belgium
| | - Lore Bulteel
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven- KU Leuven, Campus KULAK, E. Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Ellen Decaestecker
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven- KU Leuven, Campus KULAK, E. Sabbelaan 53, 8500 Kortrijk, Belgium
| |
Collapse
|
7
|
Ochoa-Sánchez M, Acuña Gomez EP, Ramírez-Fenández L, Eguiarte LE, Souza V. Current knowledge of the Southern Hemisphere marine microbiome in eukaryotic hosts and the Strait of Magellan surface microbiome project. PeerJ 2023; 11:e15978. [PMID: 37810788 PMCID: PMC10557944 DOI: 10.7717/peerj.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 10/10/2023] Open
Abstract
Host-microbe interactions are ubiquitous and play important roles in host biology, ecology, and evolution. Yet, host-microbe research has focused on inland species, whereas marine hosts and their associated microbes remain largely unexplored, especially in developing countries in the Southern Hemisphere. Here, we review the current knowledge of marine host microbiomes in the Southern Hemisphere. Our results revealed important biases in marine host species sampling for studies conducted in the Southern Hemisphere, where sponges and marine mammals have received the greatest attention. Sponge-associated microbes vary greatly across geographic regions and species. Nevertheless, besides taxonomic heterogeneity, sponge microbiomes have functional consistency, whereas geography and aging are important drivers of marine mammal microbiomes. Seabird and macroalgal microbiomes in the Southern Hemisphere were also common. Most seabird microbiome has focused on feces, whereas macroalgal microbiome has focused on the epibiotic community. Important drivers of seabird fecal microbiome are aging, sex, and species-specific factors. In contrast, host-derived deterministic factors drive the macroalgal epibiotic microbiome, in a process known as "microbial gardening". In turn, marine invertebrates (especially crustaceans) and fish microbiomes have received less attention in the Southern Hemisphere. In general, the predominant approach to study host marine microbiomes has been the sequencing of the 16S rRNA gene. Interestingly, there are some marine holobiont studies (i.e., studies that simultaneously analyze host (e.g., genomics, transcriptomics) and microbiome (e.g., 16S rRNA gene, metagenome) traits), but only in some marine invertebrates and macroalgae from Africa and Australia. Finally, we introduce an ongoing project on the surface microbiome of key species in the Strait of Magellan. This is an international project that will provide novel microbiome information of several species in the Strait of Magellan. In the short-term, the project will improve our knowledge about microbial diversity in the region, while long-term potential benefits include the use of these data to assess host-microbial responses to the Anthropocene derived climate change.
Collapse
Affiliation(s)
- Manuel Ochoa-Sánchez
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Lia Ramírez-Fenández
- Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
- Centro de Desarrollo de Biotecnología Industrial y Bioproductos, Antofagasta, Chile
| | - Luis E. Eguiarte
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Valeria Souza
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
8
|
Carrillo MP, Sevilla M, Casado M, Piña B, Pastor López E, Matamoros V, Vila-Costa M, Barata C. Impact of the antibiotic doxycycline on the D. magna reproduction, associated microbiome and antibiotic resistance genes in treated wastewater conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122188. [PMID: 37442322 DOI: 10.1016/j.envpol.2023.122188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/02/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
Wastewater Treatment Plant (WWTP) effluents are important sources of antibiotics, antibiotic resistance genes (ARGs) and resistant bacteria that threaten aquatic biota and human heath. Antibiotic effects on host-associated microbiomes, spread of ARGs and the consequences for host health are still poorly described. This study investigated changes of the Daphnia magna associated microbiome exposed to the recalcitrant antibiotic doxycycline under artificial reconstituted lab water media (lab water) and treated wastewater media. D. magna individual juveniles were exposed for 10 days to treated wastewater with and without doxycycline, and similarly in lab water. We analysed 16 S rRNA gene sequences to assess changes in community structure, monitored Daphnia offspring production and quantified ARGs abundances by qPCR from both Daphnia and water (before and after the exposure). Results showed that doxycycline and media (lab water or wastewater) had a significant effect modulating Daphnia-associated microbiome composition and one of the most discriminant taxa was Enterococcus spp. Moreover, in lab water, doxycycline reduced the presence of Limnohabitans sp., which are dominant bacteria of the D. magna-associated microbiome and impaired Daphnia reproduction. Contrarily, treated wastewater increased diversity and richness of Daphnia-associated microbiome and promoted fecundity. In addition, the detected ARG genes in both lab water and treated wastewater medium included the qnrS1, sul1, and blaTEM, and the integron-related intI1 gene. The treated wastewater contained about 10 times more ARGs than lab water alone. Furthermore, there was an increase of sul1 in Daphnia cultured in treated wastewater compared to lab water. In addition, there were signs of a higher biodegradation of doxycycline by microbiomes of treated wastewater in comparison to lab water. Thus, results suggest that Daphnia-associated microbiomes are influenced by their environment, and that bacterial communities present in treated wastewater are better suited to cope with the effects of antibiotics.
Collapse
Affiliation(s)
- Maria Paula Carrillo
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Jordi Girona 18, 08034, Catalonia, Spain
| | - Marina Sevilla
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Jordi Girona 18, 08034, Catalonia, Spain
| | - Marta Casado
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Jordi Girona 18, 08034, Catalonia, Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Jordi Girona 18, 08034, Catalonia, Spain
| | - Edward Pastor López
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Jordi Girona 18, 08034, Catalonia, Spain
| | - Victor Matamoros
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Jordi Girona 18, 08034, Catalonia, Spain
| | - Maria Vila-Costa
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Jordi Girona 18, 08034, Catalonia, Spain
| | - Carlos Barata
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Jordi Girona 18, 08034, Catalonia, Spain.
| |
Collapse
|
9
|
Schols R, Vanoverberghe I, Huyse T, Decaestecker E. Host-bacteriome transplants of the schistosome snail host Biomphalaria glabrata reflect species-specific associations. FEMS Microbiol Ecol 2023; 99:fiad101. [PMID: 37632232 PMCID: PMC10481996 DOI: 10.1093/femsec/fiad101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023] Open
Abstract
Microbial symbionts can affect host phenotypes and, thereby, ecosystem functioning. The microbiome is increasingly being recognized as an important player in the tripartite interaction between parasitic flatworms, snail intermediate hosts, and the snail microbiome. In order to better understand these interactions, transplant experiments are needed, which rely on the development of a reliable and reproducible protocol to obtain microbiome-disturbed snails. Here, we report on the first successful snail bacteriome transplants, which indicate that Biomphalaria glabrata can accrue novel bacterial assemblies depending on the available environmental bacteria obtained from donor snails. Moreover, the phylogenetic relatedness of the donor host significantly affected recipients' survival probability, corroborating the phylosymbiosis pattern in freshwater snails. The transplant technique described here, complemented by field-based studies, could facilitate future research endeavors to investigate the role of specific bacteria or bacterial communities in parasitic flatworm resistance of B. glabrata and might ultimately pave the way for microbiome-mediated control of snail-borne diseases.
Collapse
Affiliation(s)
- Ruben Schols
- Department of Biology, Royal Museum for Central Africa, 3080 Tervuren, Belgium
- Laboratory of Aquatic Biology, KU Leuven, Campus Kortrijk, 8500 Kortrijk, Belgium
| | - Isabel Vanoverberghe
- Laboratory of Aquatic Biology, KU Leuven, Campus Kortrijk, 8500 Kortrijk, Belgium
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, 3080 Tervuren, Belgium
| | - Ellen Decaestecker
- Laboratory of Aquatic Biology, KU Leuven, Campus Kortrijk, 8500 Kortrijk, Belgium
| |
Collapse
|
10
|
Rajarajan A, Wolinska J, Walser JC, Dennis SR, Spaak P. Host-Associated Bacterial Communities Vary Between Daphnia galeata Genotypes but Not by Host Genetic Distance. MICROBIAL ECOLOGY 2023; 85:1578-1589. [PMID: 35486140 PMCID: PMC10167167 DOI: 10.1007/s00248-022-02011-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/08/2022] [Indexed: 05/10/2023]
Abstract
Host genotype may shape host-associated bacterial communities (commonly referred to as microbiomes). We sought to determine (a) whether bacterial communities vary among host genotypes in the water flea Daphnia galeata and (b) if this difference is driven by the genetic distance between host genotypes, by using D. galeata genotypes hatched from sediments of different time periods. We used 16S amplicon sequencing to profile the gut and body bacterial communities of eight D. galeata genotypes hatched from resting eggs; these were isolated from two distinct sediment layers (dating to 1989 and 2009) of a single sediment core of the lake Greifensee, and maintained in a common garden in laboratory cultures for 5 years. In general, bacterial community composition varied in both the Daphnia guts and bodies; but not between genotypes from different sediment layers. Specifically, genetic distances between host genotypes did not correlate with beta diversity of bacterial communities in Daphnia guts and bodies. Our results indicate that Daphnia bacterial community structure is to some extent determined by a host genetic component, but that genetic distances between hosts do not correlate with diverging bacterial communities.
Collapse
Affiliation(s)
- Amruta Rajarajan
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland.
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institut Für Biologie, Freie Universität Berlin (FU), Berlin, Germany
| | | | - Stuart R Dennis
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Piet Spaak
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| |
Collapse
|
11
|
Zhang Y, Feng S, Zhu L, Li M, Xiang X. Population dynamics of Brachionus calyciflorus driven by the associated natural bacterioplankton. Front Microbiol 2023; 13:1076620. [PMID: 36726570 PMCID: PMC9884981 DOI: 10.3389/fmicb.2022.1076620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Zooplankton provides bacteria with a complex microhabitat richen in organic and inorganic nutrients, and the bacteria community also changes the physiochemical conditions for zooplankton, where the symbiotic relationship between them plays an important role in the nutrient cycle. However, there are few studies on the effect of associated bacteria on the population dynamics of rotifers. In order to make clear their relationships, we reconstructed the associated bacterial community in Brachionus calyciflorus culture, and examined the life history and population growth parameters, and analyzed the diversity and community composition of the associated bacteria at different growth stages of B. calyciflorus. The results showed that the addition of bacteria from natural water can promote the population growth and asexual reproduction of B. calyciflorus, but has no significant effect on sexual reproduction, exhibited by the improvement of its life expectancy at hatching, net reproduction rates and intrinsic growth rate, no significant effects on the generation time and mixis ratio of offspring. It was found that the B. calyciflorus-associated bacterial community was mainly composed of Proteobacteria, Bacteroidota, Actinobacteriota, Cyanobacteria and Firmicutes. Through correlation network analysis, the members of Burkholderiales, Pseudomonadales, Micrococcales, Caulobacterales and Bifidobacteriales were the keystone taxa of B. calyciflorus-associated bacteria. In addition, the relative abundance of some specific bacteria strains increased as the population density of B. calyciflorus increased, such as Hydrogenophaga, Acidovorax, Flavobacterium, Rheinheimera, Novosphingobium and Limnobacter, and their relative abundance increased obviously during the slow and exponential phases of population growth. Meanwhile, the relative abundance of adverse taxa (such as Elizabethkingia and Rickettsiales) decreased significantly with the increase in rotifer population density. In conclusion, the closely associated bacteria are not sufficient for the best growth of B. calyciflorus, and external bacterioplankton is necessary. Furthermore, the function of keystone and rare taxa is necessary for further exploration. The investigation of the symbiotic relationship between zooplankton-associated bacterial and bacterioplankton communities will contribute to monitoring their roles in freshwater ecosystems, and regulate the population dynamics of the micro-food web.
Collapse
Affiliation(s)
- Yongzhi Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China
| | - Sen Feng
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China
| | - Lingyun Zhu
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China
| | - Meng Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China
| | - Xianling Xiang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China,Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, Anhui, China,*Correspondence: Xianling Xiang, ✉
| |
Collapse
|
12
|
Schmittmann L, Rahn T, Busch K, Fraune S, Pita L, Hentschel U. Stability of a dominant sponge-symbiont in spite of antibiotic-induced microbiome disturbance. Environ Microbiol 2022; 24:6392-6410. [PMID: 36250983 DOI: 10.1111/1462-2920.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/13/2022] [Indexed: 01/12/2023]
Abstract
Marine sponges are known for their complex and stable microbiomes. However, the lack of a gnotobiotic sponge-model and experimental methods to manipulate both the host and the microbial symbionts currently limit our mechanistic understanding of sponge-microbial symbioses. We have used the North Atlantic sponge species Halichondria panicea to evaluate the use of antibiotics to generate gnotobiotic sponges. We further asked whether the microbiome can be reestablished via recolonization with the natural microbiome. Experiments were performed in marine gnotobiotic facilities equipped with a custom-made, sterile, flow-through aquarium system. Bacterial abundance dynamics were monitored qualitatively and quantitatively by 16 S rRNA gene amplicon sequencing and qPCR, respectively. Antibiotics induced dysbiosis by favouring an increase of opportunistic, antibiotic-resistant bacteria, resulting in more complex, but less specific bacteria-bacteria interactions than in untreated sponges. The abundance of the dominant symbiont, Candidatus Halichondribacter symbioticus, remained overall unchanged, reflecting its obligately symbiotic nature. Recolonization with the natural microbiome could not reverse antibiotic-induced dysbiosis. However, single bacterial taxa that were transferred, successfully recolonized the sponge and affected bacteria-bacteria interactions. By experimentally manipulating microbiome composition, we could show the stability of a sponge-symbiont clade despite microbiome dysbiosis. This study contributes to understanding both host-bacteria and bacteria-bacteria interactions in the sponge holobiont.
Collapse
Affiliation(s)
- Lara Schmittmann
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Ecology, RU Marine Symbioses, Kiel, Germany
| | - Tanja Rahn
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Ecology, RU Marine Symbioses, Kiel, Germany
| | - Kathrin Busch
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Ecology, RU Marine Symbioses, Kiel, Germany
| | - Sebastian Fraune
- Heinrich-Heine-University, Zoology and Organismic Interactions, Düsseldorf, Germany
| | - Lucía Pita
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Ecology, RU Marine Symbioses, Kiel, Germany.,Institut de Ciències del Mar - CSIC, Marine Biology and Oceanography, Marine Biogeochemistry, Atmosphere and Climate, Barcelona, Spain
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Ecology, RU Marine Symbioses, Kiel, Germany.,Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
13
|
Zhang Y, Feng S, Gao F, Wen H, Zhu L, Li M, Xi Y, Xiang X. The Relationship between Brachionus calyciflorus-Associated Bacterial and Bacterioplankton Communities in a Subtropical Freshwater Lake. Animals (Basel) 2022; 12:ani12223201. [PMID: 36428428 PMCID: PMC9686566 DOI: 10.3390/ani12223201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Zooplankton bodies are organic-rich micro-environments that support fast bacterial growth. Therefore, the abundance of zooplankton-associated bacteria is much higher than that of free-living bacteria, which has profound effects on the nutrient cycling of freshwater ecosystems. However, a detailed analysis of associated bacteria is still less known, especially the relationship between those bacteria and bacterioplankton. In this study, we analyzed the relationships between Brachionus calyciflorus-associated bacterial and bacterioplankton communities in freshwater using high-throughput sequencing. The results indicated that there were significant differences between the two bacterial communities, with only 29.47% sharing OTUs. The alpha diversity of the bacterioplankton community was significantly higher than that of B. calyciflorus-associated bacteria. PCoA analysis showed that the bacterioplankton community gathered deeply, while the B. calyciflorus-associated bacterial community was far away from the whole bacterioplankton community, and the distribution was relatively discrete. CCA analysis suggested that many environmental factors (T, DO, pH, TP, PO43-, NH4+, and NO3-) regulated the community composition of B. calyciflorus-associated bacteria, but the explanatory degree of variability was only 37.80%. High-throughput sequencing revealed that Raoultella and Delftia in Proteobacteria were the dominant genus in the B. calyciflorus-associated bacterial community, and closely related to the biodegradation function. Moreover, several abundant bacterial members participating in carbon and nitrogen cycles were found in the associated bacterial community by network analysis. Predictive results from FAPROTAX showed that the predominant biogeochemical cycle functions of the B. calyciflorus-associated bacterial community were plastic degradation, chemoheterotrophy, and aerobic chemoheterotrophy. Overall, our study expands the current understanding of zooplankton-bacteria interaction and promotes the combination of two different research fields.
Collapse
Affiliation(s)
- Yongzhi Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Sen Feng
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Fan Gao
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Hao Wen
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Lingyun Zhu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Meng Li
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yilong Xi
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Wuhu 241002, China
| | - Xianling Xiang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Wuhu 241002, China
- Correspondence: author:
| |
Collapse
|
14
|
Akbar S, Li X, Ding Z, Liu Q, Huang J, Zhou Q, Gu L, Yang Z. Disentangling Diet- and Medium-Associated Microbes in Shaping Daphnia Gut Microbiome. MICROBIAL ECOLOGY 2022; 84:911-921. [PMID: 34714368 DOI: 10.1007/s00248-021-01900-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/11/2021] [Indexed: 05/09/2023]
Abstract
Host genotype and environment are considered crucial factors in shaping Daphnia gut microbiome composition. Among the environmental factors, diet is an important factor that regulates Daphnia microbiome. Most of the studies only focused on the use of axenic diet and non-sterile medium to investigate their effects on Daphnia microbiome. However, in natural environment, Daphnia diets such as phytoplankton are associated with microbes and could affect Daphnia microbiome composition and fitness, but remain relatively poorly understood compared to that of axenic diet. To test this, we cultured two Daphnia magna genotypes (genotype-1 and genotype-2) in sterile medium and fed with axenic diet. To check the effects of algal diet-associated microbes versus free water-related microbes, Daphnia were respectively inoculated with three different inoculums: medium microbial inoculum, diet-associated microbial inoculum, and medium and diet-mixed microbial inoculum. Daphnia were cultured for 3 weeks and their gut microbiome and life history traits were recorded. Results showed that Daphnia inoculated with medium microbial inoculum were dominated by Comamonadaceae in both genotypes. In Daphnia inoculated with mixed inoculum, genotype-1 microbiome was highly changed, whereas genotype-2 microbiome was slightly altered. Daphnia inoculated with diet microbial inoculum has almost the same microbiome in both genotypes. The total number of neonates and body size were significantly reduced in Daphnia inoculated with diet microbial inoculum regardless of genotype compared to all other treatments. Overall, this study shows that the microbiome of Daphnia is flexible and varies with genotype and diet- and medium-associated microbes, but not every bacteria is beneficial to Daphnia, and only symbionts can increase Daphnia performance.
Collapse
Affiliation(s)
- Siddiq Akbar
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xianxian Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zihao Ding
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Qi Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jing Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Qiming Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
15
|
Rajarajan A, Wolinska J, Walser JC, Mäder M, Spaak P. Infection by a eukaryotic gut parasite in wild Daphnia sp. associates with a distinct bacterial community. FEMS Microbiol Ecol 2022; 98:6677393. [PMID: 36026529 PMCID: PMC9869925 DOI: 10.1093/femsec/fiac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 01/26/2023] Open
Abstract
Host-associated bacterial communities play an important role in host fitness and resistance to diseases. Yet, few studies have investigated tripartite interaction between a host, parasite and host-associated bacterial communities in natural settings. Here, we use 16S rRNA gene amplicon sequencing to compare gut- and body- bacterial communities of wild water fleas belonging to the Daphnia longispina complex, between uninfected hosts and those infected with the common and virulent eukaryotic gut parasite Caullerya mesnili (Family: Ichthyosporea). We report community-level changes in host-associated bacteria with the presence of the parasite infection; namely decreased alpha diversity and increased beta diversity at the site of infection, i.e. host gut (but not host body). We also report decreased abundance of bacterial taxa proposed elsewhere to be beneficial for the host, and an appearance of taxa specifically associated with infected hosts. Our study highlights the host-microbiota-infection link in a natural system and raises questions about the role of host-associated microbiota in natural disease epidemics as well as the functional roles of bacteria specifically associated with infected hosts.
Collapse
Affiliation(s)
- Amruta Rajarajan
- Corresponding author: Office BU-G09, Überlandstrasse 133, 8600 Dübendorf, Zürich, Switzerland. E-mail: and
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin, Germany,Department of Biology, Chemistry, Pharmacy, Institut für Biologie, Freie Universität Berlin (FU), 14195 Berlin, Germany
| | - Jean-Claude Walser
- Department of Environmental systems science (D-USYS), Genetic Diversity Centre (GDC), Federal Institute of Technology (ETH) Zürich, 8092, Zürich, Switzerland
| | - Minea Mäder
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Zürich, Switzerland
| | - Piet Spaak
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Zürich, Switzerland
| |
Collapse
|
16
|
Janssens L, Van de Maele M, Delnat V, Theys C, Mukherjee S, De Meester L, Stoks R. Evolution of pesticide tolerance and associated changes in the microbiome in the water flea Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113697. [PMID: 35653979 DOI: 10.1016/j.ecoenv.2022.113697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Exposure to pesticides can have detrimental effects on aquatic communities of non-target species. Populations can evolve tolerance to pesticides which may rescue them from extinction. However, the evolution of tolerance does not always occur and insights in the underlying mechanisms are scarce. One understudied mechanism to obtain pesticide tolerance in hosts are shifts toward pesticide-degrading bacteria in their microbiome. We carried out experimental evolution trials where replicated experimental populations of the water flea Daphnia magna were exposed to the pesticide chlorpyrifos or a solvent control, after which we performed acute toxicity assays to evaluate the evolution of chlorpyrifos tolerance. Additionally, we quantified changes in the microbiota community composition of whole body and gut samples to assess which sample type best reflected the pesticide tolerance of the Daphnia host. As expected, chlorpyrifos-selected clones became more tolerant to chlorpyrifos as shown by the higher EC5048 h (36% higher) compared with the control clones. This was associated with shifts in the microbiome composition whereby the abundance of known organophosphate-degrading bacterial genera increased on average ~4 times in the chlorpyrifos-selected clones. Moreover, the abundances of several genera, including the organophosphate-degrading bacteria Pseudomonas, Flavobacterium and Bacillus, were positively correlated with the EC5048 h of the host populations. These shifts in bacterial genera were similar in magnitude in whole body and gut samples, yet the total abundance of organophosphate-degrading bacteria was ~6 times higher in the whole body samples, suggesting that the gut is not the only body part where pesticide degradation by the microbiome occurs. Our results indicate that the microbiome is an important mediator of the development of tolerance to pesticides in Daphnia.
Collapse
Affiliation(s)
- Lizanne Janssens
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| | - Marlies Van de Maele
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| | - Vienna Delnat
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| | - Charlotte Theys
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| | - Shinjini Mukherjee
- Laboratory of Reproductive Genomics, University of Leuven, ON I Herestraat 49, 3000 Leuven, Belgium
| | - Luc De Meester
- Freshwater Ecology, Evolution and Biodiversity Conservation, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium; Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institute of Biology, Freie Universität Berlin, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium.
| |
Collapse
|
17
|
Pérez-Carrascal OM, Choi R, Massot M, Pees B, Narayan V, Shapira M. Host Preference of Beneficial Commensals in a Microbially-Diverse Environment. Front Cell Infect Microbiol 2022; 12:795343. [PMID: 35782135 PMCID: PMC9240469 DOI: 10.3389/fcimb.2022.795343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Gut bacteria are often described by the neutral term commensals. However, the more we learn about their interactions with hosts, the more apparent it becomes that gut commensals often contribute positively to host physiology and fitness. Whether hosts can prefer beneficial bacteria, and how they do so, is not clear. This is of particular interest in the case of the bacterivore C. elegans, which depends on bacteria as food source, but also as gut colonizers that contribute to its physiology, from development to immunity. It is further unclear to what extent worms living in their microbially-diverse habitats can sense and distinguish between beneficial bacteria, food, and pathogens. Focusing on Enterobacteriaceae and members of closely related families, we isolated gut bacteria from worms raised in compost microcosms, as well as bacteria from the respective environments and evaluated their contributions to host development. Most isolates, from worms or from the surrounding environment, promoted faster development compared to the non-colonizing E. coli food strain. Pantoea strains further showed differential contributions of gut isolates versus an environmental isolate. Characterizing bacterial ability to hinder pathogenic colonization with Pseudomonas aeruginosa, supported the trend of Pantoea gut commensals being beneficial, in contrast to the environmental strain. Interestingly, worms were attracted to the beneficial Pantoea strains, preferring them over non-beneficial bacteria, including the environmental Pantoea strain. While our understanding of the mechanisms underlying these host-microbe interactions are still rudimentary, the results suggest that hosts can sense and prefer beneficial commensals.
Collapse
|
18
|
Antibiotics affect migratory restlessness orientation. J ETHOL 2022. [DOI: 10.1007/s10164-022-00747-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Akbar S, Gu L, Sun Y, Zhang L, Lyu K, Huang Y, Yang Z. Understanding host-microbiome-environment interactions: Insights from Daphnia as a model organism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152093. [PMID: 34863741 DOI: 10.1016/j.scitotenv.2021.152093] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/21/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Microbes perform a variety of vital functions that are essential for healthy ecosystems, ranging from nutrient recycling, antibiotic production and waste decomposition. In many animals, microbes become an integral part by establishing diverse communities collectively termed as "microbiome/s". Microbiomes defend their hosts against pathogens and provide essential nutrients necessary for their growth and reproduction. The microbiome is a polygenic trait that is dependent on host genotype and environmental variables. However, the alteration of microbiomes by stressful condition and their recovery is still poorly understood. Despite rapid growth in host-associated microbiome studies, very little is known about how they can shape ecological processes. Here, we review current knowledge on the microbiome of Daphnia, its role in fitness, alteration by different stressors, and the ecological and evolutionary aspects of host microbiome interactions. We further discuss how variation in Daphnia physiology, life history traits, and microbiome interactive responses to biotic and abiotic factors could impact patterns of microbial diversity in the total environment, which drives ecosystem function in many freshwater environments. Our literature review provides evidence that microbiome is essential for Daphnia growth, reproduction and tolerance against stressors. Though the core and flexible microbiome of Daphnia is still debatable, it is clear that the Daphnia microbiome is highly dependent on interactions among host genotype, diet and the environment. Different environmental factors alter the microbiome composition and diversity of Daphnia and reduce their fitness. These interactions could have important implications in shaping microbial patterns and their recycling as Daphnia are keystone species in freshwater ecosystem. This review provides a framework for studying these complex relationships to gain a better understanding of the ecological and evolutionary roles of the microbiome.
Collapse
Affiliation(s)
- Siddiq Akbar
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
20
|
Soler P, Moreno-Mesonero L, Zornoza A, Macián VJ, Moreno Y. Characterization of eukaryotic microbiome and associated bacteria communities in a drinking water treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149070. [PMID: 34303230 DOI: 10.1016/j.scitotenv.2021.149070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The effectiveness of drinking water treatment is critical to achieve an optimal and safe drinking water. Disinfection is one of the most important steps to eliminate the health concern caused by the microbial population in this type of water. However, no study has evaluated the changes in its microbiome, specially the eukaryotic microbiome, and the fates of opportunistic pathogens generated by UV disinfection with medium-pressure mercury lamps in drinking water treatment plants (DWTPs). In this work, the eukaryotic community composition of a DWTP with UV disinfection was evaluated before and after a UV disinfection treatment by means of Illumina 18S rRNA amplicon-based sequencing. Among the physicochemical parameters analysed, flow and nitrate appeared to be related with the changes in the eukaryotic microbiome shape. Public health concern eukaryotic organisms such as Blastocystis, Entamoeba, Acanthamoeba, Hartmannella, Naegleria, Microsporidium or Caenorhabditis were identified. Additionally, the relation between the occurrence of some human bacterial pathogens and the presence of some eukaryotic organisms has been studied. The presence of some human bacterial pathogens such as Arcobacter, Mycobacterium, Pseudomonas and Parachlamydia were statistically correlated with the presence of some eukaryotic carriers showing the public health risk due to the bacterial pathogens they could shelter.
Collapse
Affiliation(s)
- Patricia Soler
- Empresa Mixta Valenciana de Aguas, S.A. (EMIVASA), Av. del Regne de València, 28, 46005, Valencia, Spain.
| | - Laura Moreno-Mesonero
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - Andrés Zornoza
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain; H2OCITIES, SL. Arte Mayor de la Seda, 15, 46950 Xirivella, Valencia, Spain.
| | - V Javier Macián
- Empresa Mixta Valenciana de Aguas, S.A. (EMIVASA), Av. del Regne de València, 28, 46005, Valencia, Spain; Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - Yolanda Moreno
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
21
|
Microbiota-Dependent and -Independent Production of l-Dopa in the Gut of Daphnia magna. mSystems 2021; 6:e0089221. [PMID: 34751589 PMCID: PMC8577283 DOI: 10.1128/msystems.00892-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Host-microbiome interactions are essential for the physiological and ecological performance of the host, yet these interactions are challenging to identify. Neurotransmitters are commonly implicated in these interactions, but we know very little about the mechanisms of their involvement, especially in invertebrates. Here, we report a peripheral catecholamine (CA) pathway involving the gut microbiome of the model species Daphnia magna. We demonstrate the following: (i) tyrosine hydroxylase and Dopa (3,4-dihydroxyphenylalanine) decarboxylase enzymes are present in the gut wall; (ii) Dopa decarboxylase gene is expressed in the gut by the host, and its expression follows the molt cycle peaking after ecdysis; (iii) biologically active l-Dopa, but not dopamine, is present in the gut lumen; (iv) gut bacteria produce l-Dopa in a concentration-dependent manner when provided l-tyrosine as a substrate. Impinging on gut bacteria involvement in host physiology and ecologically relevant traits, we suggest l-Dopa as a communication agent in the host-microbiome interactions in daphnids and, possibly, other crustaceans. IMPORTANCE Neurotransmitters are commonly implicated in host-microbiome communication, yet the molecular mechanisms of this communication remain largely elusive. We present novel evidence linking the gut microbiome to host development and growth via neurotransmitter l-Dopa in Daphnia, the established model species in ecology and evolution. We found that both Daphnia and its gut microbiome contribute to the synthesis of the l-Dopa in the gut. We also identified a peripheral pathway in the gut wall, with a molt stage-dependent dopamine synthesis, linking the gut microbiome to the daphnid development and growth. These findings suggest a central role of l-Dopa in the bidirectional communication between the animal host and its gut bacteria and translating into the ecologically important host traits suitable for subsequent testing of causality by experimental studies.
Collapse
|
22
|
Guilhot R, Rombaut A, Xuéreb A, Howell K, Fellous S. Influence of bacteria on the maintenance of a yeast during Drosophila melanogaster metamorphosis. Anim Microbiome 2021; 3:68. [PMID: 34602098 PMCID: PMC8489055 DOI: 10.1186/s42523-021-00133-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022] Open
Abstract
Interactions between microorganisms associated with metazoan hosts are emerging as key features of symbiotic systems. Little is known about the role of such interactions on the maintenance of host-microorganism association throughout the host’s life cycle. We studied the influence of extracellular bacteria on the maintenance of a wild isolate of the yeast Saccharomyces cerevisiae through metamorphosis of the fly Drosophila melanogaster reared in fruit. Yeasts maintained through metamorphosis only when larvae were associated with extracellular bacteria isolated from D. melanogaster faeces. One of these isolates, an Enterobacteriaceae, favoured yeast maintenance during metamorphosis. Such bacterial influence on host-yeast association may have consequences for the ecology and evolution of insect-yeast-bacteria symbioses in the wild.
Collapse
Affiliation(s)
- Robin Guilhot
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
| | - Antoine Rombaut
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Anne Xuéreb
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Kate Howell
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Simon Fellous
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| |
Collapse
|
23
|
Gorokhova E, Motiei A, El-Shehawy R. Understanding Biofilm Formation in Ecotoxicological Assays With Natural and Anthropogenic Particulates. Front Microbiol 2021; 12:632947. [PMID: 34276580 PMCID: PMC8281255 DOI: 10.3389/fmicb.2021.632947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Fossil-made polymers harbor unique bacterial assemblages, and concerns have been raised that ingested microplastic may affect the consumer gut microbiota and spread pathogens in animal populations. We hypothesized that in an ecotoxicity assay with a mixture of polystyrene (PS) and clay: (1) microbiome of the test animals inoculates the system with bacteria; (2) relative contribution of PS and the total amount of suspended solids (SS) select for specific bacterial communities; and (3) particle aggregation is affected by biofilm community composition, with concomitant effects on the animal survival. Mixtures of PS and clay at different concentrations of SS (10, 100, and 1000 mg/L) with a varying microplastics contribution (%PS; 0-80%) were incubated with Daphnia magna, whose microbiome served as an inoculum for the biofilms during the exposure. After 4-days of exposure, we examined the biofilm communities by 16S rRNA gene sequencing, particle size distribution, and animal survival. The biofilm communities were significantly different from the Daphnia microbiota used to inoculate the system, with an overrepresentation of predatory, rare, and potentially pathogenic taxa in the biofilms. The biofilm diversity was stimulated by %PS and decreased by predatory bacteria. Particle aggregate size and the biofilm composition were the primary drivers of animal survival, with small particles and predatory bacteria associated with a higher death rate. Thus, in effect studies with solid waste materials, ecological interactions in the biofilm can affect particle aggregation and support potentially harmful microorganisms with concomitant effects on the test animals.
Collapse
Affiliation(s)
- Elena Gorokhova
- Department of Environmental Science (ACES), Stockholm University, Stockholm, Sweden
| | - Asa Motiei
- Department of Environmental Science (ACES), Stockholm University, Stockholm, Sweden
| | - Rehab El-Shehawy
- Department of Environmental Science (ACES), Stockholm University, Stockholm, Sweden
| |
Collapse
|
24
|
Martinson VG, Strand MR. Diet-Microbiota Interactions Alter Mosquito Development. Front Microbiol 2021; 12:650743. [PMID: 34168624 PMCID: PMC8217444 DOI: 10.3389/fmicb.2021.650743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/28/2021] [Indexed: 12/27/2022] Open
Abstract
Gut microbes and diet can both strongly affect the biology of multicellular animals, but it is often difficult to disentangle microbiota–diet interactions due to the complex microbial communities many animals harbor and the nutritionally variable diets they consume. While theoretical and empirical studies indicate that greater microbiota diversity is beneficial for many animal hosts, there have been few tests performed in aquatic invertebrates. Most mosquito species are aquatic detritivores during their juvenile stages that harbor variable microbiotas and consume diets that range from nutrient rich to nutrient poor. In this study, we produced a gnotobiotic model that allowed us to examine how interactions between specific gut microbes and diets affect the fitness of Aedes aegypti, the yellow fever mosquito. Using a simplified seven-member community of bacteria (ALL7) and various laboratory and natural mosquito diets, we allowed larval mosquitoes to develop under different microbial and dietary conditions and measured the resulting time to adulthood and adult size. Larvae inoculated with the ALL7 or a more complex community developed similarly when fed nutrient-rich rat chow or fish food laboratory diets, whereas larvae inoculated with individual bacterial members of the ALL7 community exhibited few differences in development when fed a rat chow diet but exhibited large differences in performance when fed a fish food diet. In contrast, the ALL7 community largely failed to support the growth of larvae fed field-collected detritus diets unless supplemented with additional protein or yeast. Collectively, our results indicate that mosquito development and fitness are strongly contingent on both diet and microbial community composition.
Collapse
Affiliation(s)
- Vincent G Martinson
- Department of Entomology, University of Georgia, Athens, GA, United States.,Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA, United States
| |
Collapse
|
25
|
Targeted Manipulation of Abundant and Rare Taxa in the Daphnia magna Microbiota with Antibiotics Impacts Host Fitness Differentially. mSystems 2021; 6:6/2/e00916-20. [PMID: 33824198 PMCID: PMC8546987 DOI: 10.1128/msystems.00916-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Host-associated microbes contribute to host fitness, but it is unclear whether these contributions are from rare keystone taxa, numerically abundant taxa, or interactions among community members. Experimental perturbation of the microbiota can highlight functionally important taxa; however, this approach is primarily applied in systems with complex communities where the perturbation affects hundreds of taxa, making it difficult to pinpoint contributions of key community members. Here, we use the ecological model organism Daphnia magna to examine the importance of rare and abundant taxa by perturbing its relatively simple microbiota with targeted antibiotics. We used sublethal antibiotic doses to target either rare or abundant members across two temperatures and then measured key host life history metrics and shifts in microbial community composition. We find that removal of abundant taxa had greater impacts on host fitness than did removal of rare taxa and that the abundances of nontarget taxa were impacted by antibiotic treatment, suggesting that no rare keystone taxa exist in the Daphnia magna microbiota but that microbe-microbe interactions may play a role in host fitness. We also find that microbial community composition was impacted by antibiotics differently across temperatures, indicating that ecological context shapes within-host microbial responses and effects on host fitness. IMPORTANCE Understanding the contributions of rare and abundant taxa to host fitness is an outstanding question in host microbial ecology. In this study, we use the model zooplankton Daphnia magna and its relatively simple cohort of bacterial taxa to disentangle the roles of distinct taxa in host life history metrics, using a suite of antibiotics to selectively reduce the abundance of functionally important taxa. We also examine how environmental context shapes the importance of these bacterial taxa in host fitness.
Collapse
|
26
|
Ruuskanen MO, Sommeria-Klein G, Havulinna AS, Niiranen TJ, Lahti L. Modelling spatial patterns in host-associated microbial communities. Environ Microbiol 2021; 23:2374-2388. [PMID: 33734553 DOI: 10.1111/1462-2920.15462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Microbial communities exhibit spatial structure at different scales, due to constant interactions with their environment and dispersal limitation. While this spatial structure is often considered in studies focusing on free-living environmental communities, it has received less attention in the context of host-associated microbial communities or microbiota. The wider adoption of methods accounting for spatial variation in these communities will help to address open questions in basic microbial ecology as well as realize the full potential of microbiome-aided medicine. Here, we first overview known factors affecting the composition of microbiota across diverse host types and at different scales, with a focus on the human gut as one of the most actively studied microbiota. We outline a number of topical open questions in the field related to spatial variation and patterns. We then review the existing methodology for the spatial modelling of microbiota. We suggest that methodology from related fields, such as systems biology and macro-organismal ecology, could be adapted to obtain more accurate models of spatial structure. We further posit that methodological developments in the spatial modelling and analysis of microbiota could in turn broadly benefit theoretical and applied ecology and contribute to the development of novel industrial and clinical applications.
Collapse
Affiliation(s)
- Matti O Ruuskanen
- Department of Internal Medicine, University of Turku, Turku, Finland.,Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Aki S Havulinna
- Finnish Institute for Health and Welfare, Helsinki, Finland.,Institute for Molecular Medicine Finland, FIMM-HiLIFE, Helsinki, Finland
| | - Teemu J Niiranen
- Department of Internal Medicine, University of Turku, Turku, Finland.,Finnish Institute for Health and Welfare, Helsinki, Finland.,Division of Medicine, Turku University Hospital, Turku, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| |
Collapse
|
27
|
Sehnal L, Brammer-Robbins E, Wormington AM, Blaha L, Bisesi J, Larkin I, Martyniuk CJ, Simonin M, Adamovsky O. Microbiome Composition and Function in Aquatic Vertebrates: Small Organisms Making Big Impacts on Aquatic Animal Health. Front Microbiol 2021; 12:567408. [PMID: 33776947 PMCID: PMC7995652 DOI: 10.3389/fmicb.2021.567408] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/05/2021] [Indexed: 01/03/2023] Open
Abstract
Aquatic ecosystems are under increasing stress from global anthropogenic and natural changes, including climate change, eutrophication, ocean acidification, and pollution. In this critical review, we synthesize research on the microbiota of aquatic vertebrates and discuss the impact of emerging stressors on aquatic microbial communities using two case studies, that of toxic cyanobacteria and microplastics. Most studies to date are focused on host-associated microbiomes of individual organisms, however, few studies take an integrative approach to examine aquatic vertebrate microbiomes by considering both host-associated and free-living microbiota within an ecosystem. We highlight what is known about microbiota in aquatic ecosystems, with a focus on the interface between water, fish, and marine mammals. Though microbiomes in water vary with geography, temperature, depth, and other factors, core microbial functions such as primary production, nitrogen cycling, and nutrient metabolism are often conserved across aquatic environments. We outline knowledge on the composition and function of tissue-specific microbiomes in fish and marine mammals and discuss the environmental factors influencing their structure. The microbiota of aquatic mammals and fish are highly unique to species and a delicate balance between respiratory, skin, and gastrointestinal microbiota exists within the host. In aquatic vertebrates, water conditions and ecological niche are driving factors behind microbial composition and function. We also generate a comprehensive catalog of marine mammal and fish microbial genera, revealing commonalities in composition and function among aquatic species, and discuss the potential use of microbiomes as indicators of health and ecological status of aquatic ecosystems. We also discuss the importance of a focus on the functional relevance of microbial communities in relation to organism physiology and their ability to overcome stressors related to global change. Understanding the dynamic relationship between aquatic microbiota and the animals they colonize is critical for monitoring water quality and population health.
Collapse
Affiliation(s)
- Ludek Sehnal
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Elizabeth Brammer-Robbins
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, United States
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
| | - Alexis M. Wormington
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Joe Bisesi
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Iske Larkin
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, United States
| | - Christopher J. Martyniuk
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
| | - Marie Simonin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | | |
Collapse
|
28
|
Callens M, De Meester L, Muylaert K, Mukherjee S, Decaestecker E. The bacterioplankton community composition and a host genotype dependent occurrence of taxa shape the Daphnia magna gut bacterial community. FEMS Microbiol Ecol 2021; 96:5861314. [PMID: 32573725 PMCID: PMC7360484 DOI: 10.1093/femsec/fiaa128] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
The assembly of host-associated bacterial communities is influenced by a multitude of biotic and abiotic factors. It is essential to gain insight in the impact and relative strength of these factors if we want to be able to predict the effects of environmental change on the assembly of host-associated bacterial communities, or deliberately modify them. The environmental pool of bacteria, from which the host is colonized, and the genetic background of the host are both considered to be important in determining the composition of host-associated bacterial communities. We experimentally assessed the relative importance of these two factors and their interaction on the composition of Daphnia magna gut bacterial communities. Bacterioplankton originating from natural ponds or a laboratory culture were used to inoculate germ-free Daphnia of different genotypes. We found that the composition of the environmental bacterial community has a major influence on the Daphnia gut bacterial community, both reflected by the presence or absence of specific taxa as well as by a correlation between abundances in the environment and on the host. Our data also indicate a consistent effect of host genotype on the occurrence of specific bacterial taxa in the gut of Daphnia over different environments.
Collapse
Affiliation(s)
- Martijn Callens
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven - Campus KULAK, E. Sabbelaan 53, B-8500 Kortrijk, Belgium.,CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium.,Institute of Biology, Freie Universität Berlin, Köning-Luise-Strasse 1-3, 14195 Berlin, Germany.,Leibniz Institut für Gewasserökologie und Binnenfischerei (IGB), Müggelseedamm 310, 12587 Berlin, Germany
| | - Koenraad Muylaert
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven - Campus KULAK, E. Sabbelaan 53, B-8500 Kortrijk, Belgium
| | - Shinjini Mukherjee
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium
| | - Ellen Decaestecker
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven - Campus KULAK, E. Sabbelaan 53, B-8500 Kortrijk, Belgium
| |
Collapse
|
29
|
Locally adapted gut microbiomes mediate host stress tolerance. ISME JOURNAL 2021; 15:2401-2414. [PMID: 33658622 PMCID: PMC8319338 DOI: 10.1038/s41396-021-00940-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/29/2021] [Accepted: 02/11/2021] [Indexed: 01/04/2023]
Abstract
While evidence for the role of the microbiome in shaping host stress tolerance is becoming well-established, to what extent this depends on the interaction between the host and its local microbiome is less clear. Therefore, we investigated whether locally adapted gut microbiomes affect host stress tolerance. In the water flea Daphnia magna, we studied if the host performs better when receiving a microbiome from their source region than from another region when facing a stressful condition, more in particular exposure to the toxic cyanobacteria Microcystis aeruginosa. Therefore, a reciprocal transplant experiment was performed in which recipient, germ-free D. magna, isolated from different ponds, received a donor microbiome from sympatric or allopatric D. magna that were pre-exposed to toxic cyanobacteria or not. We tested for effects on host life history traits and gut microbiome composition. Our data indicate that Daphnia interact with particular microbial strains mediating local adaptation in host stress tolerance. Most recipient D. magna individuals performed better when inoculated with sympatric than with allopatric microbiomes. This effect was most pronounced when the donors were pre-exposed to the toxic cyanobacteria, but this effect was also pond and genotype dependent. We discuss how this host fitness benefit is associated with microbiome diversity patterns.
Collapse
|
30
|
Eckert EM, Anicic N, Fontaneto D. Freshwater zooplankton microbiome composition is highly flexible and strongly influenced by the environment. Mol Ecol 2021; 30:1545-1558. [PMID: 33484584 DOI: 10.1111/mec.15815] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022]
Abstract
The association with microbes in plants and animals is known to be beneficial for host's survival and fitness, but the generality of the effect of the microbiome is still debated. For some animals, similarities in microbiome composition reflect taxonomic relatedness of the hosts, a pattern termed phylosymbiosis. The mechanisms behind the pattern could be due to co-evolution and/or to correlated ecological constraints. General conclusions are hampered by the fact that available knowledge is highly dominated by microbiomes from model species. Here, we addressed the issue of the generality of phylosymbiosis by analysing the species-specificity of microbiomes across different species of freshwater zooplankton, including rotifers, cladocerans, and copepods, coupling field surveys and experimental manipulations. We found that no signal of phylosymbiosis was present, and that the proportion of "core" microbial taxa, stable and consistent within each species, was very low. Changes in food and temperature under laboratory experimental settings revealed that the microbiome of freshwater zooplankton is highly flexible and can be influenced by the external environment. Thus, the role of co-evolution, strict association, and interaction with microbes within the holobiont concept highlighted for vertebrates, corals, sponges, and other animals does not seem to be supported for all animals, at least not for freshwater zooplankton. Zooplankton floats in the environment where both food and bacteria that can provide help in digesting such food are available. In addition, there is probably redundancy for beneficial bacterial functions in the environment, not allowing a strict host-microbiome association to originate and persist.
Collapse
Affiliation(s)
- Ester M Eckert
- MEG- Molecular Ecology Group, Water Research Institute, National Research Council of Italy (CNR-IRSA), Verbania, Italy
| | - Nikoleta Anicic
- MEG- Molecular Ecology Group, Water Research Institute, National Research Council of Italy (CNR-IRSA), Verbania, Italy.,Laboratory of Applied Microbiology, Department of Environment, Construction and Design, University of Applied Sciences and Arts of Southern Switzerland, Bellinzona, Switzerland
| | - Diego Fontaneto
- MEG- Molecular Ecology Group, Water Research Institute, National Research Council of Italy (CNR-IRSA), Verbania, Italy
| |
Collapse
|
31
|
Akbar S, Huang J, Zhou Q, Gu L, Sun Y, Zhang L, Lyu K, Yang Z. Elevated temperature and toxic Microcystis reduce Daphnia fitness and modulate gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116409. [PMID: 33418289 DOI: 10.1016/j.envpol.2020.116409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 05/24/2023]
Abstract
The gut microbiota has been increasingly recognized to regulate host fitness, which in turn is dependent on stability of community structure and composition. Many biotic and abiotic factors have been demonstrated to shape gut microbiota of cladocerans. However, the interactive effects of these variables on cladocerans fitness due to alteration of gut microbiota and their linkage with life history parameters are poorly understood. Here, we investigated the responses of Daphnia magna gut microbiota to the combined effects of toxic Microcystis aeruginosa and high temperature and its associations with fitness. We found that under good food regime, the temperature has no effect on the composition of the gut microbiota, whereas under high proportion of toxic M. aeruginosa and high temperature conditions, D. magna lost their symbionts. High proportion of toxic M. aeruginosa and high temperature had synergistically negative effects on D. magna performance due to altered gut microbiota. The high abundance of symbiotic Comamonadaceae and good food increased D. magna fitness. The present study illustrates that understanding life history strategies in response to multiple stressors related to changes in the gut microbiota diversity and composition requires integrated approaches that incorporate multiple linked traits and tether them to one another.
Collapse
Affiliation(s)
- Siddiq Akbar
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jing Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Qiming Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
32
|
Li Y, Xu Z, Liu H. Nutrient-imbalanced conditions shift the interplay between zooplankton and gut microbiota. BMC Genomics 2021; 22:37. [PMID: 33413098 PMCID: PMC7791863 DOI: 10.1186/s12864-020-07333-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Nutrient stoichiometry of phytoplankton frequently changes with aquatic ambient nutrient concentrations, which is mainly influenced by anthropogenic water treatment and the ecosystem dynamics. Consequently, the stoichiometry of phytoplankton can markedly alter the metabolism and growth of zooplankton. However, the effects of nutrient-imbalanced prey on the interplay between zooplankton and their gut microbiota remain unknown. Using metatranscriptome, a 16 s rRNA amplicon-based neutral community model (NCM) and experimental validation, we investigated the interactions between Daphnia magna and its gut microbiota in a nutrient-imbalanced algal diet. Results Our results showed that in nutrient-depleted water, the nutrient-enriched zooplankton gut stimulated the accumulation of microbial polyphosphate in fecal pellets under phosphorus limitation and the microbial assimilation of ammonia under nitrogen limitation. Compared with the nutrient replete group, both N and P limitation markedly promoted the gene expression of the gut microbiome for organic matter degradation but repressed that for anaerobic metabolisms. In the nutrient limited diet, the gut microbial community exhibited a higher fit to NCM (R2 = 0.624 and 0.781, for N- and P-limitation, respectively) when compared with the Control group (R2 = 0.542), suggesting increased ambient-gut exchange process favored by compensatory feeding. Further, an additional axenic grazing experiment revealed that the growth of D. magna can still benefit from gut microbiota under a nutrient-imbalanced diet. Conclusions Together, these results demonstrated that under a nutrient-imbalanced diet, the microbes not only benefit themselves by absorbing excess nutrients inside the zooplankton gut but also help zooplankton to survive during nutrient limitation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07333-z.
Collapse
Affiliation(s)
- Yingdong Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| | - Zhimeng Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China.,SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China.,Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China. .,Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
33
|
Bulteel L, Houwenhuyse S, Declerck SAJ, Decaestecker E. The Role of Microbiome and Genotype in Daphnia magna upon Parasite Re-Exposure. Genes (Basel) 2021; 12:70. [PMID: 33430247 PMCID: PMC7825712 DOI: 10.3390/genes12010070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, it has been shown that the community of gut microorganisms plays a crucial role in host performance with respect to parasite tolerance. Knowledge, however, is lacking on the role of the gut microbiome in mediating host tolerance after parasite re-exposure, especially considering multiple parasite infections. We here aimed to fill this knowledge gap by studying the role of the gut microbiome on tolerance in Daphnia magna upon multiple parasite species re-exposure. Additionally, we investigated the role of the host genotype in the interaction between the gut microbiome and the host phenotypic performance. A microbiome transplant experiment was performed in which three germ-free D. magna genotypes were exposed to a gut microbial inoculum and a parasite community treatment. The gut microbiome inocula were pre-exposed to the same parasite communities or a control treatment. Daphnia performance was monitored, and amplicon sequencing was performed to characterize the gut microbial community. Our experimental results showed that the gut microbiome plays no role in Daphnia tolerance upon parasite re-exposure. We did, however, find a main effect of the gut microbiome on Daphnia body size reflecting parasite specific responses. Our results also showed that it is rather the Daphnia genotype, and not the gut microbiome, that affected parasite-induced host mortality. Additionally, we found a role of the genotype in structuring the gut microbial community, both in alpha diversity as in the microbial composition.
Collapse
Affiliation(s)
- Lore Bulteel
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven-Campus Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (S.H.); (E.D.)
| | - Shira Houwenhuyse
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven-Campus Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (S.H.); (E.D.)
| | - Steven A. J. Declerck
- Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6700 AB Wageningen, The Netherlands;
- Laboratory of Aquatic Ecology, Evolution and Conservation, Department of Biology, KULeuven, 3000 Leuven, Belgium
| | - Ellen Decaestecker
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven-Campus Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (S.H.); (E.D.)
| |
Collapse
|
34
|
Peroti L, Huovinen P, Orellana S, Muñoz M, Fuentes R, Gómez I. Uptake of microalgae as sublethal biomarker reveals phototoxicity of oxytetracycline to the crustacean Daphnia magna. WATER RESEARCH 2021; 188:116556. [PMID: 33137521 DOI: 10.1016/j.watres.2020.116556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/19/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Antibiotics are considered emerging pollutants as their presence in the environment is increasingly common. Although their environmental concentrations are generally low, they can pose risk to organisms through bioaccumulation, causing sublethal effects. Furthermore, solar radiation can trigger reactions in certain compounds after their accumulation within organisms or in the environment. Toxicity and photoinduced toxicity of oxytetracycline (OTC, widely used antibiotic in salmon aquaculture) on Daphnia magna (Crustacea, Cladocera) and microalgae Raphidocelis subcapitata (Chlorophyceae) as its food source was assessed via aqueous exposure. Also, the impact via diet (microalga) to the crustacean was examined. In addition to lethal (immobility) effect, in vivo chlorophyll fluorescence techniques were used to determine food ingestion (gut content as a biomarker of physiological health) in D. magna and physiological status of microalgae. OTC (≤10 mg L - 1) was not acutely (24 h) toxic to R. subcapitata when measured as maximum quantum yield (Fv/Fm) in darkness. However, under short (1 h) UV exposure OTC caused irreversible decrease of Fv/Fm (50%) at ≥0.5 mg L - 1. OTC was not acutely lethal to D. magna (≤10 mg L - 1), however, sublethal effects (43% decrease in food ingestion) at 10 mg L - 1 were demonstrated. UV exposure (4.5 h) strongly exacerbated toxicity of OTC, leading to lethal (87% immobility) and sublethal (81% decrease of feeding in survived individuals) effects. Uptake of OTC (aqueous exposure) and its photosensitization in tissues of D. magna under UV exposure was confirmed. On the other hand, rapid bioadsorption of OTC on cell surface was evident in R. subcapitata. Uptake of OTC in D. magna through diet could not be confirmed at short-term. Photomodification of OTC under UV exposure was observed through changes in its absorption spectrum. The results show that short exposure to summer UV levels of southern Chile can rapidly induce phototoxicity of OTC, suggesting a potential risk to aquatic organisms.
Collapse
Affiliation(s)
- Luis Peroti
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Pirjo Huovinen
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile.
| | - Sandra Orellana
- Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia, Chile
| | - Marcelo Muñoz
- Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia, Chile
| | - Romina Fuentes
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| |
Collapse
|
35
|
Zhang X, Ohtsuki H, Makino W, Kato Y, Watanabe H, Urabe J. Variations in effects of ectosymbiotic microbes on the growth rates among different species and genotypes of
Daphnia
fed different algal diets. Ecol Res 2020. [DOI: 10.1111/1440-1703.12194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xuan Zhang
- Aquatic Ecology Lab, Graduate School of Life Sciences Tohoku University Aoba‐ku Sendai Japan
| | - Hajime Ohtsuki
- Aquatic Ecology Lab, Graduate School of Life Sciences Tohoku University Aoba‐ku Sendai Japan
| | - Wataru Makino
- Aquatic Ecology Lab, Graduate School of Life Sciences Tohoku University Aoba‐ku Sendai Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering Osaka University Suita Osaka Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering Osaka University Suita Osaka Japan
| | - Jotaro Urabe
- Aquatic Ecology Lab, Graduate School of Life Sciences Tohoku University Aoba‐ku Sendai Japan
| |
Collapse
|
36
|
Guilhot R, Fellous S, Cohen JE. Yeast facilitates the multiplication of Drosophila bacterial symbionts but has no effect on the form or parameters of Taylor's law. PLoS One 2020; 15:e0242692. [PMID: 33227009 PMCID: PMC7682849 DOI: 10.1371/journal.pone.0242692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/08/2020] [Indexed: 11/19/2022] Open
Abstract
Interactions between microbial symbionts influence their demography and that of their hosts. Taylor’s power law (TL)–a well-established relationship between population size mean and variance across space and time–may help to unveil the factors and processes that determine symbiont multiplications. Recent studies suggest pervasive interactions between symbionts in Drosophila melanogaster. We used this system to investigate theoretical predictions regarding the effects of interspecific interactions on TL parameters. We assayed twenty natural strains of bacteria in the presence and absence of a strain of yeast using an ecologically realistic set-up with D. melanogaster larvae reared in natural fruit. Yeast presence led to a small increase in bacterial cell numbers; bacterial strain identity largely affected yeast multiplication. The spatial version of TL held among bacterial and yeast populations with slopes of 2. However, contrary to theoretical prediction, the facilitation of bacterial symbionts by yeast had no detectable effect on TL’s parameters. These results shed new light on the nature of D. melanogaster’s symbiosis with yeast and bacteria. They further reveal the complexity of investigating TL with microorganisms.
Collapse
Affiliation(s)
- Robin Guilhot
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Simon Fellous
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Joel E Cohen
- Laboratory of Populations, Rockefeller University, New York, New York, United States of America
- Earth Institute and Department of Statistics, Columbia University, New York, New York, United States of America
- Department of Statistics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
37
|
Wang X, Sun S, Yang X, Cheng J, Wei H, Li Z, Michaud JP, Liu X. Variability of Gut Microbiota Across the Life Cycle of Grapholita molesta (Lepidoptera: Tortricidae). Front Microbiol 2020; 11:1366. [PMID: 32714300 PMCID: PMC7340173 DOI: 10.3389/fmicb.2020.01366] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Grapholita molesta, the oriental fruit moth, is a serious global pest of many Rosaceae fruit trees. Gut microorganisms play important roles in host nutrition, digestion, detoxification, and resistance to pathogens. However, there are few studies on the microbiota of G. molesta, particularly during metamorphosis. Here, the diversity of gut microbiota across the holometabolous life cycle of G. molesta was investigated comprehensively by Illumina high-throughput sequencing technology. The results showed that the microbiota associated with eggs had a high number of operational taxonomic units (OTUs). OTU and species richness in early-instar larvae (first and second instars) were significantly higher than those in late-instar larvae (third to fifth instars). Species richness increased again in male pupae and adults, apparently during the process of metamorphosis, compared to late-instar larvae. Proteobacteria and Firmicutes were the dominant phyla in the gut and underwent notable changes during metamorphosis. At the genus level, gut microbial community shifts from Gluconobacter and Pantoea in early-instar larvae to Enterococcus and Enterobacter in late-instar larvae and to Serratia in pupae were apparent, in concert with host developmental changes. Principal coordinate analysis (PCoA) and linear discriminant analysis effect size (LEfSe) analyses confirmed the differences in the structure of gut microbiota across different developmental stages. In addition, sex-dependent bacterial community differences were observed. Microbial interaction network analysis showed different correlations among intestinal microbes at each developmental stage of G. molesta, which may result from the different abundance and diversity of gut microbiota at different life stages. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that most functional prediction categories of gut microbiota were related to membrane transport, carbohydrate and amino acid metabolism, and DNA replication and repair. Bacteria isolated by conventional culture-dependent methods belonged to Proteobacteria, Firmicutes, and Actinobacteria, which was consistent with high-throughput sequencing results. In conclusion, exploration of gut bacterial community composition in the gut of G. molesta should shed light into deeper understanding about the intricate associations between microbiota and host and might provide clues to the development of novel pest management strategies against fruit borers.
Collapse
Affiliation(s)
- Xueli Wang
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shengjie Sun
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xuelin Yang
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Cheng
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hongshuang Wei
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Agricultural Research Center-Hays, Kansas State University, Hays, KS, United States
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
38
|
Frankel-Bricker J, Song MJ, Benner MJ, Schaack S. Variation in the Microbiota Associated with Daphnia magna Across Genotypes, Populations, and Temperature. MICROBIAL ECOLOGY 2020; 79:731-742. [PMID: 31377832 PMCID: PMC7176607 DOI: 10.1007/s00248-019-01412-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/04/2019] [Indexed: 05/09/2023]
Abstract
Studies of how the microbiome varies among individuals, populations, and abiotic conditions are critical for understanding this key component of an organism's biology and ecology. In the case of Daphnia, aquatic microcrustaceans widely used in population/community ecology and environmental science studies, understanding factors that influence microbiome shifts among individuals is useful for both basic and applied research contexts. In this study, we assess differences in the microbiome among genotypes of D. magna collected from three regions along a large latitudinal gradient (Finland, Germany, and Israel). After being reared in the lab for many years, we sought to characterize any differences in genotype- or population-specific microbial communities, and to assess whether the microbiota varied among temperatures. Our study is similar to a recent comparison of the microbial communities among D. magna genotypes raised in different temperatures published by Sullam et al. (Microb Ecol 76(2):506-517, 2017), and as such represents one of the first examples of a reproducible result in microbiome research. Like the previous study, we find evidence for a strong effect of temperature on the microbiome of D. magna, although across a much smaller temperature range representing potential near-future climates. In addition, we find evidence that the microbiomes of D. magna genotypes from different regions are distinct, even years after being brought into the laboratory. Finally, our results highlight a potentially common finding in the expanding area of microbiome research-differences among treatments are not necessarily observed in the most abundant taxonomic groups. This highlights the importance of considering sampling scheme and depth of coverage when characterizing the microbiome, as different experimental designs can significantly impact taxon-specific results, even when large-scale effects are reproduced.
Collapse
Affiliation(s)
- Jonas Frankel-Bricker
- Department of Biology, Reed College, Portland, OR, 97202, USA
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Michael J Song
- University and Jepson Herbaria and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Maia J Benner
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR, 97202, USA.
| |
Collapse
|
39
|
Macke E, Callens M, Massol F, Vanoverberghe I, De Meester L, Decaestecker E. Diet and Genotype of an Aquatic Invertebrate Affect the Composition of Free-Living Microbial Communities. Front Microbiol 2020; 11:380. [PMID: 32256467 PMCID: PMC7090131 DOI: 10.3389/fmicb.2020.00380] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/20/2020] [Indexed: 12/04/2022] Open
Abstract
In spite of the growing interest in the role of the gut microbiome (GM) in host physiology and health, the mechanisms governing its assembly and its effects on the environment are poorly understood. In this article, we show that the host genotype and the GM of Daphnia influence the community structure of the surrounding bacterioplankton (BPK). When Daphnia genotypes were placed in an identical environment, both the GM and BPK showed a genotype and diet-dependent taxonomic composition. Overall, the GM strongly differed from the BPK in taxonomic composition and was characterized by a lower α-diversity, suggesting a selective rejecting of bacteria from the regional species pool. In a microbiome transplant experiment, the assembly of both the GM and BPK was strongly affected by the host genotype and the inoculum to which germ-free Daphnia were exposed. The combination of these results suggests a strong interaction between the host genotype, its GM and free-living microbial communities. Currently, it is generally assumed that an animal’s diet has a strong effect on the animal’s GM, but only a negligible (if any) effect on the surrounding environment. However, our results indicate that the diet/microbiome inocula have a small effect on the gut community and a large effect on the community in the surrounding environment. This structuring genotype × microbiome × environment effect is an essential prerequisite that could indicate that microbiomes play an important role in eco-evolutionary processes.
Collapse
Affiliation(s)
- Emilie Macke
- Aquatic Biology, IRF Life Sciences, KU Leuven, Kortrijk, Belgium
| | - Martijn Callens
- Aquatic Biology, IRF Life Sciences, KU Leuven, Kortrijk, Belgium.,Centre d'Ecologie Fonctionnelle et Evolutive, UMR CNRS 5175, Montpellier, France
| | - Francois Massol
- CNRS, Lille-Sciences et Technologies, UMR 8198 Evo-Eco-Paleo, SPICI Group, Villeneuve-d'Ascq, France.,University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | | | - Luc De Meester
- Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
40
|
Akbar S, Gu L, Sun Y, Zhou Q, Zhang L, Lyu K, Huang Y, Yang Z. Changes in the life history traits of Daphnia magna are associated with the gut microbiota composition shaped by diet and antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135827. [PMID: 31972953 DOI: 10.1016/j.scitotenv.2019.135827] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 05/24/2023]
Abstract
The gut microbiota has a crucial role in host physiology and fitness. Host-microbiota relationships can be disrupted by environmental stressors, which further affect host growth and survival. However, the link between host performance and the gut microbiota composition shaped by increasing antibiotic pollution under different food conditions is not clearly understood. In the present study, we used Daphnia magna as a model organism to investigate the interactive effects of diets (Chlorella with or without Microcystis) and antibiotics on its life history traits, gut microbiota alterations, and their relationship. The results showed that poor diet consumption by D. magna at low and high antibiotic concentrations reduced reproduction and survival. Under good diet conditions, the fitness was reduced only at a high antibiotic concentration. Under good diet conditions, high concentration of antibiotics reduced the abundance of Comamonadaceae and increased the abundance of Pseudomonadaceae, whereas under poor diet conditions, both low and high concentrations of antibiotics increased the abundance of Pseudomonadaceae. Performances of life history traits were positively correlated with an increased abundance of Comamonadaceae but were negatively correlated with increased Pseudomonadaceae abundance. The results of this study revealed the interactive effects of diet and antibiotics on D. magna fitness and correlations between bacterial abundance and life history traits, which has important implications for understanding the effects of pollutants on host-microbiota interactions through changes in phenotypes.
Collapse
Affiliation(s)
- Siddiq Akbar
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qiming Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
41
|
Cooper RO, Cressler CE. Characterization of key bacterial species in the Daphnia magna microbiota using shotgun metagenomics. Sci Rep 2020; 10:652. [PMID: 31959775 PMCID: PMC6971282 DOI: 10.1038/s41598-019-57367-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/24/2019] [Indexed: 12/28/2022] Open
Abstract
The keystone zooplankton Daphnia magna has recently been used as a model system for understanding host-microbiota interactions. However, the bacterial species present and functions associated with their genomes are not well understood. In order to understand potential functions of these species, we combined 16S rRNA sequencing and shotgun metagenomics to characterize the whole-organism microbiota of Daphnia magna. We assembled five potentially novel metagenome-assembled genomes (MAGs) of core bacteria in Daphnia magna. Genes involved in host colonization and immune system evasion were detected across the MAGs. Some metabolic pathways were specific to some MAGs, including sulfur oxidation, nitrate reduction, and flagellar assembly. Amino acid exporters were identified in MAGs identified as important for host fitness, and pathways for key vitamin biosynthesis and export were identified across MAGs. In total, our examination of functions in these MAGs shows a diversity of nutrient acquisition and metabolism pathways present that may benefit the host, as well as genomic signatures of host association and immune system evasion.
Collapse
Affiliation(s)
- Reilly O Cooper
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA.
| | | |
Collapse
|
42
|
Motiei A, Brindefalk B, Ogonowski M, El-Shehawy R, Pastuszek P, Ek K, Liewenborg B, Udekwu K, Gorokhova E. Disparate effects of antibiotic-induced microbiome change and enhanced fitness in Daphnia magna. PLoS One 2020; 15:e0214833. [PMID: 31899775 PMCID: PMC6941804 DOI: 10.1371/journal.pone.0214833] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
It is a common view that an organism’s microbiota has a profound influence on host fitness; however, supporting evidence is lacking in many organisms. We manipulated the gut microbiome of Daphnia magna by chronic exposure to different concentrations of the antibiotic Ciprofloxacin (0.01–1 mg L-1), and evaluated whether this affected the animals fitness and antioxidant capacity. In line with our expectations, antibiotic exposure altered the microbiome in a concentration-dependent manner. However, contrary to these expectations, the reduced diversity of gut bacteria was not associated with any fitness detriment. Moreover, the growth-related parameters correlated negatively with microbial diversity; and, in the daphnids exposed to the lowest Ciprofloxacin concentrations, the antioxidant capacity, growth, and fecundity were even higher than in control animals. These findings suggest that Ciprofloxacin exerts direct stimulatory effects on growth and reproduction in the host, while microbiome- mediated effects are of lesser importance. Thus, although microbiome profiling of Daphnia may be a sensitive tool to identify early effects of antibiotic exposure, disentangling direct and microbiome-mediated effects on the host fitness is not straightforward.
Collapse
Affiliation(s)
- Asa Motiei
- Department of Environmental Science & Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Björn Brindefalk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Martin Ogonowski
- Department of Environmental Science & Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
- Aquabiota Water Research AB, Stockholm, Sweden
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Freshwater Research, Drottningholm, Sweden
| | - Rehab El-Shehawy
- Department of Environmental Science & Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Paulina Pastuszek
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Karin Ek
- Department of Environmental Science & Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Birgitta Liewenborg
- Department of Environmental Science & Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Klas Udekwu
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Elena Gorokhova
- Department of Environmental Science & Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
43
|
Johnke J, Fraune S, Bosch TCG, Hentschel U, Schulenburg H. Bdellovibrio and Like Organisms Are Predictors of Microbiome Diversity in Distinct Host Groups. MICROBIAL ECOLOGY 2020; 79:252-257. [PMID: 31187177 DOI: 10.1007/s00248-019-01395-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Biodiversity is generally believed to be a main determinant of ecosystem functioning. This principle also applies to the microbiome and could consequently contribute to host health. According to ecological theory, communities are shaped by top predators whose direct and indirect interactions with community members cause stability and diversity. Bdellovibrio and like organisms (BALOs) are a neglected group of predatory bacteria that feed on Gram-negative bacteria and can thereby influence microbiome composition. We asked whether BALOs can predict biodiversity levels in microbiomes from distinct host groups and environments. We demonstrate that genetic signatures of BALOs are commonly found within the 16S rRNA reads from diverse host taxa. In many cases, their presence, abundance, and especially richness are positively correlated with overall microbiome diversity. Our findings suggest that BALOs can act as drivers of microbial alpha-diversity and should therefore be considered candidates for the restoration of microbiomes and the prevention of dysbiosis.
Collapse
Affiliation(s)
- Julia Johnke
- Department of Evolutionary Ecology and Genetics, Zoological Institute, CAU Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Sebastian Fraune
- Department of Cell and Developmental Biology, Zoological Institute, CAU Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Thomas C G Bosch
- Department of Cell and Developmental Biology, Zoological Institute, CAU Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Ute Hentschel
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
- Section of Marine Biology, CAU Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Zoological Institute, CAU Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| |
Collapse
|
44
|
Nasser F, Constantinou J, Lynch I. Nanomaterials in the Environment Acquire an "Eco-Corona" Impacting their Toxicity to Daphnia Magna-a Call for Updating Toxicity Testing Policies. Proteomics 2019; 20:e1800412. [PMID: 31750982 DOI: 10.1002/pmic.201800412] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/06/2019] [Indexed: 01/07/2023]
Abstract
Nanomaterials (NMs) are particles with at least one dimension between 1 and 100 nm and a large surface area to volume ratio, providing them with exceptional qualities that are exploited in a variety of industrial fields. Deposition of NMs into environmental waters during or after use leads to the adsorption of an ecological (eco-) corona, whereby a layer of natural biomolecules coats the NM changing its stability, identity and ultimately toxicity. The eco-corona is not currently incorporated into ecotoxicity tests, although it has been shown to alter the interactions of NMs with organisms such as Daphnia magna (D. magna). Here, the literature on environmental biomolecule interactions with NMs is synthesized and a framework for understanding the eco-corona composition and its role in modulating NMs ecotoxicity is presented, utilizing D. magna as a model. The importance of including biomolecules as part of the current international efforts to update the standard testing protocols for NMs, is highlighted. Facilitating the formation of an eco-corona prior to NMs ecotoxicity testing will ensure that signaling pathways perturbed by the NMs are real rather than being associated with the damage arising from reactive NM surfaces "acquiring" a corona by pulling biomolecules from the organism's surface.
Collapse
Affiliation(s)
- Fatima Nasser
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Julia Constantinou
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| |
Collapse
|
45
|
Li Y, Wu X, Wang W, Wang M, Zhao C, Chen T, Liu G, Zhang W, Li S, Zhou H, Wu M, Yang R, Zhang G. Microbial taxonomical composition in spruce phyllosphere, but not community functional structure, varies by geographical location. PeerJ 2019; 7:e7376. [PMID: 31355059 PMCID: PMC6644631 DOI: 10.7717/peerj.7376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/28/2019] [Indexed: 01/06/2023] Open
Abstract
Previous studies indicate that the plant phenotypic traits eventually shape its microbiota due to the community assembly based on the functional types. If so, the distance-related variations of microbial communities are mostly only in taxonomical composition due to the different seeds pool, and there is no difference in microbial community functional structure if the location associated factors would not cause phenotypical variations in plants. We test this hypothesis by investigating the phyllospheric microbial community from five species of spruce (Picea spp.) trees that planted similarly but at three different locations. Results indicated that the geographical location affected microbial taxonomical compositions and had no effect on the community functional structure. In fact, this actually leads to a spurious difference in the microbial community. Our findings suggest that, within similar host plants, the phyllosphere microbial communities with differing taxonomical compositions might be functionally similar.
Collapse
Affiliation(s)
- Yunshi Li
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Xiukun Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Wanfu Wang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Conservation Institute, Dunhuang Academy, Dunhuang, China
| | - Minghao Wang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Changming Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tuo Chen
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Guangxiu Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Shiweng Li
- Lanzhou Jiaotong University, School of Environmental and Municipal Engineering, Lanzhou, China
| | - Huaizhe Zhou
- National University of Defense Technology, College of Computer, Changsha, China
| | - Minghui Wu
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Ruiqi Yang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Gaosen Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| |
Collapse
|
46
|
Wilkes Walburn J, Wemheuer B, Thomas T, Copeland E, O'Connor W, Booth M, Fielder S, Egan S. Diet and diet-associated bacteria shape early microbiome development in Yellowtail Kingfish (Seriola lalandi). Microb Biotechnol 2019; 12:275-288. [PMID: 30506824 PMCID: PMC6389859 DOI: 10.1111/1751-7915.13323] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 11/29/2022] Open
Abstract
The supply of quality juveniles via land-based larviculture represents a major bottleneck to the growing finfish aquaculture industry. As the microbiome plays a key role in animal health, this study aimed to assess the microbial community associated with early larval development of commercially raised Yellowtail Kingfish (Seriola lalandi). We used qPCR and 16S rRNA gene amplicon sequencing to monitor changes in the microbiome associated with the development of S. lalandi from larvae to juveniles. We observed an increase in the bacterial load during larval development, which consisted of a small but abundant core microbiota including taxa belonging to the families Rhodobacteraceae, Lactobacillaceae and Vibrionaceae. The greatest change in the microbiome occurred as larvae moved from a diet of live feeds to formulated pellets, characterized by a transition from Proteobacteria to Firmicutes as the dominant phylum. A prediction of bacterial gene functions found lipid metabolism and secondary metabolite production were abundant in the early larval stages, with carbohydrate and thiamine metabolism functions increasing in abundance as the larvae age and are fed formulated diets. Together, these results suggest that diet is a major contributor to the early microbiome development of commercially raised S. lalandi.
Collapse
Affiliation(s)
- Jackson Wilkes Walburn
- Centre for Marine Bio‐InnovationSchool of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Bernd Wemheuer
- Centre for Marine Bio‐InnovationSchool of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Torsten Thomas
- Centre for Marine Bio‐InnovationSchool of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Elizabeth Copeland
- Centre for Marine Bio‐InnovationSchool of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Wayne O'Connor
- NSW Department of Primary IndustriesPort Stephens Fisheries Institute (PSFI)Taylors BeachNSWAustralia
| | - Mark Booth
- NSW Department of Primary IndustriesPort Stephens Fisheries Institute (PSFI)Taylors BeachNSWAustralia
| | - Stewart Fielder
- NSW Department of Primary IndustriesPort Stephens Fisheries Institute (PSFI)Taylors BeachNSWAustralia
| | - Suhelen Egan
- Centre for Marine Bio‐InnovationSchool of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| |
Collapse
|
47
|
Simon JC, Marchesi JR, Mougel C, Selosse MA. Host-microbiota interactions: from holobiont theory to analysis. MICROBIOME 2019; 7:5. [PMID: 30635058 PMCID: PMC6330386 DOI: 10.1186/s40168-019-0619-4] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 05/13/2023]
Abstract
In the recent years, the holobiont concept has emerged as a theoretical and experimental framework to study the interactions between hosts and their associated microbial communities in all types of ecosystems. The spread of this concept in many branches of biology results from the fairly recent realization of the ubiquitous nature of host-associated microbes and their central role in host biology, ecology, and evolution. Through this special series "Host-microbiota interactions: from holobiont theory to analysis," we wanted to promote this field of research which has considerable implications for human health, food production, and ecosystem protection. In this preface, we highlight a collection of articles selected for this special issue that show, use, or debate the concept of holobiont to approach taxonomically and ecologically diverse organisms, from humans and plants to sponges and insects. We also identify some theoretical and methodological challenges and propose directions for future research on holobionts.
Collapse
Affiliation(s)
- Jean-Christophe Simon
- UMR 1349, IGEPP (Institut de Génétique, Environnement et Protection des Plantes), INRA, Agrocampus Ouest, Université Rennes 1, Domaine de la Motte, 35653, Le Rheu Cedex, France.
| | - Julian R Marchesi
- Centre for Digestive and Gut Health, Imperial College London, London, W2 1NY, UK
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Christophe Mougel
- UMR 1349, IGEPP (Institut de Génétique, Environnement et Protection des Plantes), INRA, Agrocampus Ouest, Université Rennes 1, Domaine de la Motte, 35653, Le Rheu Cedex, France
| | - Marc-André Selosse
- Muséum National d'Histoire Naturelle, Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Sorbonne Universités, 57 Rue Cuvier-CP39, F-75005, Paris, France
- Faculty of Biology, University of Gdansk, Ul. Wita Stwosza 59, 80-308, Gdansk, Poland
| |
Collapse
|