1
|
Araujo G, Montoya JM, Thomas T, Webster NS, Lurgi M. A mechanistic framework for complex microbe-host symbioses. Trends Microbiol 2024:S0966-842X(24)00214-2. [PMID: 39242229 DOI: 10.1016/j.tim.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
Virtually all multicellular organisms on Earth live in symbiotic associations with complex microbial communities: the microbiome. This ancient relationship is of fundamental importance for both the host and the microbiome. Recently, the analyses of numerous microbiomes have revealed an incredible diversity and complexity of symbionts, with different mechanisms identified as potential drivers of this diversity. However, the interplay of ecological and evolutionary forces generating these complex associations is still poorly understood. Here we explore and summarise the suite of ecological and evolutionary mechanisms identified as relevant to different aspects of microbiome complexity and diversity. We argue that microbiome assembly is a dynamic product of ecology and evolution at various spatio-temporal scales. We propose a theoretical framework to classify mechanisms and build mechanistic host-microbiome models to link them to empirical patterns. We develop a cohesive foundation for the theoretical understanding of the combined effects of ecology and evolution on the assembly of complex symbioses.
Collapse
Affiliation(s)
- Gui Araujo
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK
| | - José M Montoya
- Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200 Moulis, France
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Nicole S Webster
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7001, Australia; Australian Centre for Ecogenomics, University of Queensland, Brisbane, 4072, Australia; Australian Institute of Marine Science, Townsville, 4810, Australia
| | - Miguel Lurgi
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
2
|
Wang S, Li X, Yang W, Huang R. Exploring the secrets of marine microorganisms: Unveiling secondary metabolites through metagenomics. Microb Biotechnol 2024; 17:e14533. [PMID: 39075735 PMCID: PMC11286668 DOI: 10.1111/1751-7915.14533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
Marine microorganisms are increasingly recognized as primary producers of marine secondary metabolites, drawing growing research interest. Many of these organisms are unculturable, posing challenges for study. Metagenomic techniques enable research on these unculturable microorganisms, identifying various biosynthetic gene clusters (BGCs) related to marine microbial secondary metabolites, thereby unveiling their secrets. This review comprehensively analyses metagenomic methods used in discovering marine microbial secondary metabolites, highlighting tools commonly employed in BGC identification, and discussing the potential and challenges in this field. It emphasizes the key role of metagenomics in unveiling secondary metabolites, particularly in marine sponges and tunicates. The review also explores current limitations in studying these metabolites through metagenomics, noting how long-read sequencing technologies and the evolution of computational biology tools offer more possibilities for BGC discovery. Furthermore, the development of synthetic biology allows experimental validation of computationally identified BGCs, showcasing the vast potential of metagenomics in mining marine microbial secondary metabolites.
Collapse
Affiliation(s)
- Shaoyu Wang
- Institute of Marine Science and TechnologyShandong UniversityQingdaoShandongChina
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission TechnologyShandong UniversityQingdaoChina
| | - Xinyan Li
- Institute of Marine Science and TechnologyShandong UniversityQingdaoShandongChina
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission TechnologyShandong UniversityQingdaoChina
| | - Weiqin Yang
- School of Computer Science and TechnologyShandong UniversityQingdaoShandongChina
| | - Ranran Huang
- Institute of Marine Science and TechnologyShandong UniversityQingdaoShandongChina
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission TechnologyShandong UniversityQingdaoChina
- Global Ocean Negative Carbon Emissions (ONCE) Program AllianceQingdaoChina
| |
Collapse
|
3
|
Stuij TM, Cleary DFR, Rocha RJM, Polónia ARM, Silva DAM, Louvado A, de Voogd NJ, Gomes NCM. Impacts of humic substances, elevated temperature, and UVB radiation on bacterial communities of the marine sponge Chondrilla sp. FEMS Microbiol Ecol 2024; 100:fiae022. [PMID: 38366951 PMCID: PMC10939426 DOI: 10.1093/femsec/fiae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024] Open
Abstract
Sponges are abundant components of coral reefs known for their filtration capabilities and intricate interactions with microbes. They play a crucial role in maintaining the ecological balance of coral reefs. Humic substances (HS) affect bacterial communities across terrestrial, freshwater, and marine ecosystems. However, the specific effects of HS on sponge-associated microbial symbionts have largely been neglected. Here, we used a randomized-controlled microcosm setup to investigate the independent and interactive effects of HS, elevated temperature, and UVB radiation on bacterial communities associated with the sponge Chondrilla sp. Our results indicated the presence of a core bacterial community consisting of relatively abundant members, apparently resilient to the tested environmental perturbations, alongside a variable bacterial community. Elevated temperature positively affected the relative abundances of ASVs related to Planctomycetales and members of the families Pseudohongiellaceae and Hyphomonadaceae. HS increased the relative abundances of several ASVs potentially involved in recalcitrant organic matter degradation (e.g., the BD2-11 terrestrial group, Saccharimonadales, and SAR202 clade). There was no significant independent effect of UVB and there were no significant interactive effects of HS, heat, and UVB on bacterial diversity and composition. The significant, independent impact of HS on the composition of sponge bacterial communities suggests that alterations to HS inputs may have cascading effects on adjacent marine ecosystems.
Collapse
Affiliation(s)
- Tamara M Stuij
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Daniel F R Cleary
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Rui J M Rocha
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Ana R M Polónia
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Davide A M Silva
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Antonio Louvado
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, the Netherlands
- Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Newton C M Gomes
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
4
|
D'Agostino PM. Highlights of biosynthetic enzymes and natural products from symbiotic cyanobacteria. Nat Prod Rep 2023; 40:1701-1717. [PMID: 37233731 DOI: 10.1039/d3np00011g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Covering: up to 2023Cyanobacteria have long been known for their intriguing repertoire of natural product scaffolds, which are often distinct from other phyla. Cyanobacteria are ecologically significant organisms that form a myriad of different symbioses including with sponges and ascidians in the marine environment or with plants and fungi, in the form of lichens, in terrestrial environments. Whilst there have been several high-profile discoveries of symbiotic cyanobacterial natural products, genomic data is scarce and discovery efforts have remained limited. However, the rise of (meta-)genomic sequencing has improved these efforts, emphasized by a steep increase in publications in recent years. This highlight focuses on selected examples of symbiotic cyanobacterial-derived natural products and their biosyntheses to link chemistry with corresponding biosynthetic logic. Further highlighted are remaining gaps in knowledge for the formation of characteristic structural motifs. It is anticipated that the continued rise of (meta-)genomic next-generation sequencing of symbiontic cyanobacterial systems will lead to many exciting discoveries in the future.
Collapse
Affiliation(s)
- Paul M D'Agostino
- Technical University of Dresden, Chair of Technical Biochemistry, Bergstraβe 66, 01069 Dresden, Germany.
| |
Collapse
|
5
|
Lai JL, Li ZG, Wang Y, Xi HL, Luo XG. Tritium and Carbon-14 Contamination Reshaping the Microbial Community Structure, Metabolic Network, and Element Cycle in the Seawater Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5305-5316. [PMID: 36952228 DOI: 10.1021/acs.est.3c00422] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The potential ecological risks caused by entering radioactive wastewater containing tritium and carbon-14 into the sea require careful evaluation. This study simulated seawater's tritium and carbon-14 pollution and analyzed the effects on the seawater and sediment microenvironments. Tritium and carbon-14 pollution primarily altered nitrogen and phosphorus metabolism in the seawater environment. Analysis by 16S rRNA sequencing showed changes in the relative abundance of microorganisms involved in carbon, nitrogen, and phosphorus metabolism and organic matter degradation in response to tritium and carbon-14 exposure. Metabonomics and metagenomic analysis showed that tritium and carbon-14 exposure interfered with gene expression involving nucleotide and amino acid metabolites, in agreement with the results seen for microbial community structure. Tritium and carbon-14 exposure also modulated the abundance of functional genes involved in carbohydrate, phosphorus, sulfur, and nitrogen metabolic pathways in sediments. Tritium and carbon-14 pollution in seawater adversely affected microbial diversity, metabolic processes, and the abundance of nutrient-cycling genes. These results provide valuable information for further evaluating the risks of tritium and carbon-14 in marine environments.
Collapse
Affiliation(s)
- Jin-Long Lai
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Zhan-Guo Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yi Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
6
|
Wilson K, de Rond T, Burkhardt I, Steele TS, Schäfer RJB, Podell S, Allen EE, Moore BS. Terpene biosynthesis in marine sponge animals. Proc Natl Acad Sci U S A 2023; 120:e2220934120. [PMID: 36802428 PMCID: PMC9992776 DOI: 10.1073/pnas.2220934120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/25/2023] [Indexed: 02/23/2023] Open
Abstract
Sea sponges are the largest marine source of small-molecule natural products described to date. Sponge-derived molecules, such as the chemotherapeutic eribulin, the calcium-channel blocker manoalide, and antimalarial compound kalihinol A, are renowned for their impressive medicinal, chemical, and biological properties. Sponges contain microbiomes that control the production of many natural products isolated from these marine invertebrates. In fact, all genomic studies to date investigating the metabolic origins of sponge-derived small molecules concluded that microbes-not the sponge animal host-are the biosynthetic producers. However, early cell-sorting studies suggested the sponge animal host may play a role particularly in the production of terpenoid molecules. To investigate the genetic underpinnings of sponge terpenoid biosynthesis, we sequenced the metagenome and transcriptome of an isonitrile sesquiterpenoid-containing sponge of the order Bubarida. Using bioinformatic searches and biochemical validation, we identified a group of type I terpene synthases (TSs) from this sponge and multiple other species, the first of this enzyme class characterized from the sponge holobiome. The Bubarida TS-associated contigs consist of intron-containing genes homologous to sponge genes and feature GC percentage and coverage consistent with other eukaryotic sequences. We identified and characterized TS homologs from five different sponge species isolated from geographically distant locations, thereby suggesting a broad distribution amongst sponges. This work sheds light on the role of sponges in secondary metabolite production and speaks to the possibility that other sponge-specific molecules originate from the animal host.
Collapse
Affiliation(s)
- Kayla Wilson
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
| | - Tristan de Rond
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
- School of Chemical Sciences, University of Auckland, Auckland1142, New Zealand
| | - Immo Burkhardt
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
| | - Taylor S. Steele
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA92093
| | - Rebecca J. B. Schäfer
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
| | - Sheila Podell
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
| | - Eric E. Allen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
| | - Bradley S. Moore
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
7
|
Genomic diversity and biosynthetic capabilities of sponge-associated chlamydiae. THE ISME JOURNAL 2022; 16:2725-2740. [PMID: 36042324 PMCID: PMC9666466 DOI: 10.1038/s41396-022-01305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 12/15/2022]
Abstract
Sponge microbiomes contribute to host health, nutrition, and defense through the production of secondary metabolites. Chlamydiae, a phylum of obligate intracellular bacteria ranging from animal pathogens to endosymbionts of microbial eukaryotes, are frequently found associated with sponges. However, sponge-associated chlamydial diversity has not yet been investigated at the genomic level and host interactions thus far remain unexplored. Here, we sequenced the microbiomes of three sponge species and found high, though variable, Chlamydiae relative abundances of up to 18.7% of bacteria. Using genome-resolved metagenomics 18 high-quality sponge-associated chlamydial genomes were reconstructed, covering four chlamydial families. Among these, Candidatus Sororchlamydiaceae shares a common ancestor with Chlamydiaceae animal pathogens, suggesting long-term co-evolution with animals. Based on gene content, sponge-associated chlamydiae resemble members from the same family more than sponge-associated chlamydiae of other families, and have greater metabolic versatility than known chlamydial animal pathogens. Sponge-associated chlamydiae are also enriched in genes for degrading diverse compounds found in sponges. Unexpectedly, we identified widespread genetic potential for secondary metabolite biosynthesis across Chlamydiae, which may represent an unexplored source of novel natural products. This finding suggests that Chlamydiae members may partake in defensive symbioses and that secondary metabolites play a wider role in mediating intracellular interactions. Furthermore, sponge-associated chlamydiae relatives were found in other marine invertebrates, pointing towards wider impacts of the Chlamydiae phylum on marine ecosystems.
Collapse
|
8
|
Kelly JB, Carlson DE, Low JS, Thacker RW. Novel trends of genome evolution in highly complex tropical sponge microbiomes. MICROBIOME 2022; 10:164. [PMID: 36195901 PMCID: PMC9531527 DOI: 10.1186/s40168-022-01359-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Tropical members of the sponge genus Ircinia possess highly complex microbiomes that perform a broad spectrum of chemical processes that influence host fitness. Despite the pervasive role of microbiomes in Ircinia biology, it is still unknown how they remain in stable association across tropical species. To address this question, we performed a comparative analysis of the microbiomes of 11 Ircinia species using whole-metagenomic shotgun sequencing data to investigate three aspects of bacterial symbiont genomes-the redundancy in metabolic pathways across taxa, the evolution of genes involved in pathogenesis, and the nature of selection acting on genes relevant to secondary metabolism. RESULTS A total of 424 new, high-quality bacterial metagenome-assembled genomes (MAGs) were produced for 10 Caribbean Ircinia species, which were evaluated alongside 113 publicly available MAGs sourced from the Pacific species Ircinia ramosa. Evidence of redundancy was discovered in that the core genes of several primary metabolic pathways could be found in the genomes of multiple bacterial taxa. Across hosts, the metagenomes were depleted in genes relevant to pathogenicity and enriched in eukaryotic-like proteins (ELPs) that likely mimic the hosts' molecular patterning. Finally, clusters of steroid biosynthesis genes (CSGs), which appear to be under purifying selection and undergo horizontal gene transfer, were found to be a defining feature of Ircinia metagenomes. CONCLUSIONS These results illustrate patterns of genome evolution within highly complex microbiomes that illuminate how associations with hosts are maintained. The metabolic redundancy within the microbiomes could help buffer the hosts from changes in the ambient chemical and physical regimes and from fluctuations in the population sizes of the individual microbial strains that make up the microbiome. Additionally, the enrichment of ELPs and depletion of LPS and cellular motility genes provide a model for how alternative strategies to virulence can evolve in microbiomes undergoing mixed-mode transmission that do not ultimately result in higher levels of damage (i.e., pathogenicity) to the host. Our last set of results provides evidence that sterol biosynthesis in Ircinia-associated bacteria is widespread and that these molecules are important for the survival of bacteria in highly complex Ircinia microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Joseph B Kelly
- Aquatic Ecology and Evolution, Limnological Institute University Konstanz, Konstanz, Germany.
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA.
| | - David E Carlson
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | - Jun Siong Low
- Institute of Microbiology,ETH Zürich, Zürich, Switzerland
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Robert W Thacker
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Panama City, Republic of Panama
| |
Collapse
|
9
|
Harnessing solar power: photoautotrophy supplements the diet of a low-light dwelling sponge. THE ISME JOURNAL 2022; 16:2076-2086. [PMID: 35654830 PMCID: PMC9381825 DOI: 10.1038/s41396-022-01254-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 01/07/2023]
Abstract
The ability of organisms to combine autotrophy and heterotrophy gives rise to one of the most successful nutritional strategies on Earth: mixotrophy. Sponges are integral members of shallow-water ecosystems and many host photosynthetic symbionts, but studies on mixotrophic sponges have focused primarily on species residing in high-light environments. Here, we quantify the contribution of photoautotrophy to the respiratory demand and total carbon diet of the sponge Chondrilla caribensis, which hosts symbiotic cyanobacteria and lives in low-light environments. Although the sponge is net heterotrophic at 20 m water depth, photosynthetically fixed carbon potentially provides up to 52% of the holobiont’s respiratory demand. When considering the total mixotrophic diet, photoautotrophy contributed an estimated 7% to total daily carbon uptake. Visualization of inorganic 13C- and 15N-incorporation using nanoscale secondary ion mass spectrometry (NanoSIMS) at the single-cell level confirmed that a portion of nutrients assimilated by the prokaryotic community was translocated to host cells. Photoautotrophy can thus provide an important supplemental source of carbon for sponges, even in low-light habitats. This trophic plasticity may represent a widespread strategy for net heterotrophic sponges hosting photosymbionts, enabling the host to buffer against periods of nutritional stress.
Collapse
|
10
|
Zhao L, Wang H, Gao Y, Hao B, Li X, Wen R, Chen K, Fan L, Liu L. Characteristics of oral microbiota in plateau and plain youth‐positive correlations between blood lipid level, metabolism and specific microflora in the plateau group. Front Cell Infect Microbiol 2022; 12:952579. [PMID: 36034699 PMCID: PMC9400057 DOI: 10.3389/fcimb.2022.952579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
Objectives To analyze the characteristics of oral microbiota in plateau and plain youth and the possible function of the microbiome. Materials and methods A total of 120 healthy young males (80 on the plateau, 40 on the plain) completed this cross-sectional study. Oral microflora samples were collected from all participants. The bacterial 16S rDNA was amplified using PCR and sequenced using Illumina MiSeq high-throughput sequencing. The data were analyzed to determine the microbial distribution and community structure of the oral microflora from the two groups. Metastats was used to test differences in relative species abundance between the groups. The correlation between the abundance of specific bacteria and blood indicators was also analyzed. Results As demonstrated by alpha and beta diversity, the plateau group had lower microbial richness and a less even distribution of oral microbiota than the plain group. All predominant phyla and genera were qualitatively similar between the two groups, but their relative abundances differed. The relative abundance of bacteria in the phylum Firmicutes was significantly higher in the plateau group than in the plain group. At the genus level, Streptococcus spp. and Gemella spp. were also more abundant in the plateau group. The functional prediction indicated vigorous microbial metabolism in the oral bacterial community. We also found that the relative abundance of Streptococcus spp., the dominant genus, was positively correlated with triglyceride levels in the plateau group. Conclusions With increasing altitude, the diversity of oral microbiota and the relative proportion of predominant bacteria were altered. The distribution and related function of Streptococcus spp. were prominent in plateau samples. This comprehensive study of the relationship between oral microecology and elevation provides a point of reference for studying the human body’s adaptability or inadaptability to high altitude.
Collapse
Affiliation(s)
- LiBo Zhao
- Cardiology Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Huanhuan Wang
- College of Nursing, Peking University, Beijing, China
| | - Yinghui Gao
- Sleep Center, Peking University International Hospital, Beijing, China
| | - Benchuan Hao
- Cardiology Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xueyan Li
- College of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Ruoqing Wen
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Kaibing Chen
- Sleep Center, The Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
- *Correspondence: Lin Liu, ; Li Fan, ; Kaibing Chen,
| | - Li Fan
- Cardiology Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
- *Correspondence: Lin Liu, ; Li Fan, ; Kaibing Chen,
| | - Lin Liu
- Department of Pulmonary and Critical Care Medicine of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
- *Correspondence: Lin Liu, ; Li Fan, ; Kaibing Chen,
| |
Collapse
|
11
|
Xu S, Liu Y, Zhang J. Transcriptomic mechanisms for the promotion of cyanobacterial growth against eukaryotic microalgae by a ternary antibiotic mixture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58881-58891. [PMID: 35377122 DOI: 10.1007/s11356-022-20041-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the responses of a mixed culture of two cyanobacterial species (Microcystis aeruginosa and Synechocystis sp.) and two eukaryotic microalgal species (Raphidocelis subcapitata and Tetradesmus obliquus) to a mixture of three frequently detected antibiotics (tetracycline, ciprofloxacin and sulfamethoxazole) at environmentally relevant exposure doses of 60-300 ng/L. Mixed antibiotics selectively stimulated (p < 0.05) the growth and photosynthetic activity as well as generated transcriptomic responses in cyanobacteria without disrupting co-existing eukaryotic microalgae. Mixed antibiotics stimulated the growth of M. aeruginosa through the regulation of genes related to ribosome, photosynthesis, redox homeostasis, quorum sensing and nutrient metabolism. The proportion of M. aeruginosa among the four phytoplankton species in the mixed-culture system was increased from 33% to 38-44% under antibiotic exposure, which promoted the dominance of M. aeruginosa. Up-regulation of carbon catabolism-related genes contributed to the increased growth of Synechocystis sp. under antibiotic exposure. Since the antibiotic-stimulated growth rate of Synechocystis sp. was still lower than that of M. aeruginosa, the proportion of Synechocystis sp. in the mixed-culture system remained stable. Synechocystis sp. was less adaptive to antibiotic exposure than M. aeruginosa, due to a lower number of up-regulated ribosomal genes and photosynthesis-related genes. Antibiotic exposure reduced the proportions of two eukaryotic microalgal species in the mixed-culture system through a selective promotion of cyanobacterial competitiveness against eukaryotic microalgae, which may facilitate the formation of cyanobacteria bloom.
Collapse
Affiliation(s)
- Sijia Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| |
Collapse
|
12
|
Wang P, Li M, Dong L, Zhang C, Xie W. Comparative Genomics of Thaumarchaeota From Deep-Sea Sponges Reveal Their Niche Adaptation. Front Microbiol 2022; 13:869834. [PMID: 35859738 PMCID: PMC9289680 DOI: 10.3389/fmicb.2022.869834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Thaumarchaeota account for a large portion of microbial symbionts in deep-sea sponges and are even dominant in some cases. In this study, we investigated three new sponge-associated Thaumarchaeota from the deep West Pacific Ocean. Thaumarchaeota were found to be the most dominant phylum in this sponge by both prokaryotic 16S rRNA amplicons and metagenomic sequencing. Fifty-seven published Thaumarchaeota genomes from sponges and other habitats were included for genomic comparison. Similar to shallow sponge-associated Thaumarchaeota, those Thaumarchaeota in deep-sea sponges have extended genome sizes and lower coding density compared with their free-living lineages. Thaumarchaeota in deep-sea sponges were specifically enriched in genes related to stress adapting, symbiotic adhesion and stability, host–microbe interaction and protein transportation. The genes involved in defense mechanisms, such as the restriction-modification system, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system, and toxin-antitoxin system were commonly enriched in both shallow and deep sponge-associated Thaumarchaeota. Our study demonstrates the significant effects of both depth and symbiosis on forming genomic characteristics of Thaumarchaeota, and provides novel insights into their niche adaptation in deep-sea sponges.
Collapse
Affiliation(s)
- Peng Wang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Minchun Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Liang Dong
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Zhang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- *Correspondence: Wei Xie,
| |
Collapse
|
13
|
Chen Y, Chen H, Yang C, Shiu J, Hoh DZ, Chiang P, Chow WS, Chen CA, Shih T, Lin S, Yang C, Reimer JD, Hirose E, Iskandar BH, Huang H, Schupp PJ, Tan CHJ, Yamashiro H, Liao M, Tang S. Prevalence, complete genome, and metabolic potentials of a phylogenetically novel cyanobacterial symbiont in the coral-killing sponge, Terpios hoshinota. Environ Microbiol 2022; 24:1308-1325. [PMID: 34708512 PMCID: PMC9298193 DOI: 10.1111/1462-2920.15824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022]
Abstract
Terpios hoshinota is an aggressive, space-competing sponge that kills various stony corals. Outbreaks of this species have led to intense damage to coral reefs in many locations. Here, the first large-scale 16S rRNA gene survey across three oceans revealed that bacteria related to the taxa Prochloron, Endozoicomonas, SAR116, Ruegeria, and unclassified Proteobacteria were prevalent in T. hoshinota. A Prochloron-related bacterium was the most dominant and prevalent cyanobacterium in T. hoshinota. The complete genome of this uncultivated cyanobacterium and pigment analysis demonstrated that it has phycobiliproteins and lacks chlorophyll b, which is inconsistent with the definition of Prochloron. Furthermore, the cyanobacterium was phylogenetically distinct from Prochloron, strongly suggesting that it should be a sister taxon to Prochloron. Therefore, we proposed this symbiotic cyanobacterium as a novel species under the new genus Candidatus Paraprochloron terpiosi. Comparative genomic analyses revealed that 'Paraprochloron' and Prochloron exhibit distinct genomic features and DNA replication machinery. We also characterized the metabolic potentials of 'Paraprochloron terpiosi' in carbon and nitrogen cycling and propose a model for interactions between it and T. hoshinota. This study builds a foundation for the study of the T. hoshinota microbiome and paves the way for better understanding of ecosystems involving this coral-killing sponge.
Collapse
Affiliation(s)
- Yu‐Hsiang Chen
- Bioinformatics Program, Taiwan International Graduate ProgramNational Taiwan UniversityTaipeiTaiwan
- Bioinformatics ProgramInstitute of Information Science, Taiwan International Graduate Program, Academia SinicaTaipeiTaiwan
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Hsing‐Ju Chen
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Cheng‐Yu Yang
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Jia‐Ho Shiu
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Daphne Z. Hoh
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
- Biodiversity Program, Taiwan International Graduate ProgramAcademia Sinica and National Taiwan Normal UniversityTaipeiTaiwan
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Pei‐Wen Chiang
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Wenhua Savanna Chow
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
- Biodiversity Program, Taiwan International Graduate ProgramAcademia Sinica and National Taiwan Normal UniversityTaipeiTaiwan
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Chaolun Allen Chen
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
- Biodiversity Program, Taiwan International Graduate ProgramAcademia Sinica and National Taiwan Normal UniversityTaipeiTaiwan
| | - Tin‐Han Shih
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Szu‐Hsien Lin
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Chi‐Ming Yang
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - James Davis Reimer
- Department of Chemistry, Biology and Marine Science, Faculty of ScienceUniversity of the RyukyusNishihara, OkinawaJapan
- Tropical Biosphere Research CenterUniversity of the RyukyusNishihara, OkinawaJapan
| | - Euichi Hirose
- Department of Chemistry, Biology and Marine Science, Faculty of ScienceUniversity of the RyukyusNishihara, OkinawaJapan
| | - Budhi Hascaryo Iskandar
- Department of Fishery Resources Utilization, Faculty of Fisheries and Marine ScienceBogor Agricultural UniversityBogorIndonesia
| | - Hui Huang
- Tropical Marine Biological Research Station in HainanChinese Academy of SciencesSanyaChina
| | - Peter J. Schupp
- Institute of Chemistry and Biology of the Marine EnvironmentUniversity of OldenburgWilhelmshavenGermany
| | - Chun Hong James Tan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala NerusTerengganuMalaysia
- Institute of Oceanography and EnvironmentUniversiti Malaysia Terengganu, Kuala NerusTerengganuMalaysia
| | - Hideyuki Yamashiro
- Tropical Biosphere Research CenterUniversity of the RyukyusNishihara, OkinawaJapan
| | - Ming‐Hui Liao
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Sen‐Lin Tang
- Bioinformatics ProgramInstitute of Information Science, Taiwan International Graduate Program, Academia SinicaTaipeiTaiwan
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
- Biodiversity Program, Taiwan International Graduate ProgramAcademia Sinica and National Taiwan Normal UniversityTaipeiTaiwan
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
14
|
Oren A, Garrity GM. CANDIDATUS LIST No. 3. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2022; 72. [PMID: 35100104 DOI: 10.1099/ijsem.0.005186] [Citation(s) in RCA: 251] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
15
|
Steffen K, Laborde Q, Gunasekera S, Payne CD, Rosengren KJ, Riesgo A, Göransson U, Cárdenas P. Barrettides: A Peptide Family Specifically Produced by the Deep-Sea Sponge Geodia barretti. JOURNAL OF NATURAL PRODUCTS 2021; 84:3138-3146. [PMID: 34874154 PMCID: PMC8713285 DOI: 10.1021/acs.jnatprod.1c00938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 05/16/2023]
Abstract
Natural product discovery by isolation and structure elucidation is a laborious task often requiring ample quantities of biological starting material and frequently resulting in the rediscovery of previously known compounds. However, peptides are a compound class amenable to an alternative genomic, transcriptomic, and in silico discovery route by similarity searches of known peptide sequences against sequencing data. Based on the sequences of barrettides A and B, we identified five new barrettide sequences (barrettides C-G) predicted from the North Atlantic deep-sea demosponge Geodia barretti (Geodiidae). We synthesized, folded, and investigated one of the newly described barrettides, barrettide C (NVVPCFCVEDETSGAKTCIPDNCDASRGTNP, disulfide connectivity I-IV, II-III). Co-elution experiments of synthetic and sponge-derived barrettide C confirmed its native conformation. NMR spectroscopy and the anti-biofouling activity on larval settlement of the bay barnacle Amphibalanus improvisus (IC50 0.64 μM) show that barrettide C is highly similar to barrettides A and B in both structure and function. Several lines of evidence suggest that barrettides are produced by the sponge itself and not one of its microbial symbionts.
Collapse
Affiliation(s)
- Karin Steffen
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Husargatan 3, 751
23 Uppsala, Sweden
| | - Quentin Laborde
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Husargatan 3, 751
23 Uppsala, Sweden
| | - Sunithi Gunasekera
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Husargatan 3, 751
23 Uppsala, Sweden
| | - Colton D. Payne
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, QLD 4072, Australia
| | - K. Johan Rosengren
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Ana Riesgo
- Department
of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United
Kingdom
- Department
of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales−CSIC, Calle José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Ulf Göransson
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Husargatan 3, 751
23 Uppsala, Sweden
| | - Paco Cárdenas
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Husargatan 3, 751
23 Uppsala, Sweden
| |
Collapse
|
16
|
Burgsdorf I, Sizikov S, Squatrito V, Britstein M, Slaby BM, Cerrano C, Handley KM, Steindler L. Lineage-specific energy and carbon metabolism of sponge symbionts and contributions to the host carbon pool. THE ISME JOURNAL 2021; 16:1163-1175. [PMID: 34876682 PMCID: PMC8941161 DOI: 10.1038/s41396-021-01165-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/30/2021] [Accepted: 11/24/2021] [Indexed: 01/19/2023]
Abstract
Marine sponges host a wide diversity of microorganisms, which have versatile modes of carbon and energy metabolism. In this study we describe the major lithoheterotrophic and autotrophic processes in 21 microbial sponge-associated phyla using novel and existing genomic and transcriptomic datasets. We show that the main microbial carbon fixation pathways in sponges are the Calvin–Benson–Bassham cycle (energized by light in Cyanobacteria, by sulfur compounds in two orders of Gammaproteobacteria, and by a wide range of compounds in filamentous Tectomicrobia), the reductive tricarboxylic acid cycle (used by Nitrospirota), and the 3-hydroxypropionate/4-hydroxybutyrate cycle (active in Thaumarchaeota). Further, we observed that some sponge symbionts, in particular Acidobacteria, are capable of assimilating carbon through anaplerotic processes. The lithoheterotrophic lifestyle was widespread and CO oxidation is the main energy source for sponge lithoheterotrophs. We also suggest that the molybdenum-binding subunit of dehydrogenase (encoded by coxL) likely evolved to benefit also organoheterotrophs that utilize various organic substrates. Genomic potential does not necessarily inform on actual contribution of autotrophs to light and dark carbon budgets. Radioisotope assays highlight variability in the relative contributions of photo- and chemoautotrophs to the total carbon pool across different sponge species, emphasizing the importance of validating genomic potential with physiology experimentation.
Collapse
Affiliation(s)
- I Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - S Sizikov
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - V Squatrito
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - M Britstein
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - B M Slaby
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Ecology, RU Marine Symbioses, Kiel, Germany
| | - C Cerrano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - K M Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - L Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
17
|
Hanif N, Tyas TA, Hidayati L, Dinelsa FF, Provita D, Kinnary NR, Prasetiawan FM, Khalik GA, Mubarok Z, Tohir D, Setiawan A, Farid M, Kurnianda V, Murni A, de Voogd NJ, Tanaka J. Oxy-Polybrominated Diphenyl Ethers from the Indonesian Marine Sponge, Lamellodysidea herbacea: X-ray, SAR, and Computational Studies. Molecules 2021; 26:molecules26216328. [PMID: 34770740 PMCID: PMC8588277 DOI: 10.3390/molecules26216328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Polybrominated diphenyl ether (PBDE) compounds, derived from marine organisms, originate from symbiosis between marine sponges and cyanobacteria or bacteria. PBDEs have broad biological spectra; therefore, we analyzed structure and activity relationships of PBDEs to determine their potential as anticancer or antibacterial lead structures, through reactions and computational studies. Six known PBDEs (1–6) were isolated from the sponge, Lamellodysdiea herbacea; 13C NMR data for compound 6 are reported for the first time and their assignments are confirmed by their theoretical 13C NMR chemical shifts (RMSE < 4.0 ppm). Methylation and acetylation of 1 (2, 3, 4, 5-tetrabromo-6-(3′, 5′-dibromo-2′-hydroxyphenoxy) phenol) at the phenol functional group gave seven molecules (7–13), of which 10, 12, and 13 were new. New crystal structures for 8 and 9 are also reported. Debromination carried out on 1 produced nine compounds (1, 2, 14, 16–18, 20, 23, and 26) of which 18 was new. Debromination product 16 showed a significant IC50 8.65 ± 1.11; 8.11 ± 1.43 µM against human embryonic kidney (HEK293T) cells. Compounds 1 and 16 exhibited antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumoniae with MID 0.078 µg/disk. The number of four bromine atoms and two phenol functional groups are important for antibacterial activity (S. aureus and K. pneumoniae) and cytotoxicity (HEK293T). The result was supported by analysis of frontier molecular orbitals (FMOs). We also propose possible products of acetylation and debromination using analysis of FMOs and electrostatic charges and we confirm the experimental result.
Collapse
Affiliation(s)
- Novriyandi Hanif
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia; (T.A.T.); (L.H.); (F.F.D.); (D.P.); (N.R.K.); (F.M.P.); (G.A.K.); (Z.M.); (D.T.); (M.F.)
- Correspondence: ; Tel.: +62-(251)-862-4567
| | - Trianda Ayuning Tyas
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia; (T.A.T.); (L.H.); (F.F.D.); (D.P.); (N.R.K.); (F.M.P.); (G.A.K.); (Z.M.); (D.T.); (M.F.)
- Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan; (V.K.); (J.T.)
| | - Lestari Hidayati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia; (T.A.T.); (L.H.); (F.F.D.); (D.P.); (N.R.K.); (F.M.P.); (G.A.K.); (Z.M.); (D.T.); (M.F.)
| | - Fabians Faisal Dinelsa
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia; (T.A.T.); (L.H.); (F.F.D.); (D.P.); (N.R.K.); (F.M.P.); (G.A.K.); (Z.M.); (D.T.); (M.F.)
| | - Dian Provita
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia; (T.A.T.); (L.H.); (F.F.D.); (D.P.); (N.R.K.); (F.M.P.); (G.A.K.); (Z.M.); (D.T.); (M.F.)
| | - Nyimas Ratna Kinnary
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia; (T.A.T.); (L.H.); (F.F.D.); (D.P.); (N.R.K.); (F.M.P.); (G.A.K.); (Z.M.); (D.T.); (M.F.)
| | - Fauzi Muhamad Prasetiawan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia; (T.A.T.); (L.H.); (F.F.D.); (D.P.); (N.R.K.); (F.M.P.); (G.A.K.); (Z.M.); (D.T.); (M.F.)
| | - Gibral Abdul Khalik
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia; (T.A.T.); (L.H.); (F.F.D.); (D.P.); (N.R.K.); (F.M.P.); (G.A.K.); (Z.M.); (D.T.); (M.F.)
| | - Zaki Mubarok
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia; (T.A.T.); (L.H.); (F.F.D.); (D.P.); (N.R.K.); (F.M.P.); (G.A.K.); (Z.M.); (D.T.); (M.F.)
| | - Dudi Tohir
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia; (T.A.T.); (L.H.); (F.F.D.); (D.P.); (N.R.K.); (F.M.P.); (G.A.K.); (Z.M.); (D.T.); (M.F.)
| | - Andi Setiawan
- Department of Chemistry, Lampung University, Bandar Lampung 35145, Indonesia;
| | - Muhamad Farid
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia; (T.A.T.); (L.H.); (F.F.D.); (D.P.); (N.R.K.); (F.M.P.); (G.A.K.); (Z.M.); (D.T.); (M.F.)
| | - Viqqi Kurnianda
- Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan; (V.K.); (J.T.)
| | - Anggia Murni
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, Indonesia;
| | - Nicole J. de Voogd
- Institute of Environmental Sciences (CML) Leiden University, P.O. Box 9518, 2300 RA Leiden, The Netherlands;
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands
| | - Junichi Tanaka
- Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan; (V.K.); (J.T.)
| |
Collapse
|
18
|
Filek K, Trotta A, Gračan R, Di Bello A, Corrente M, Bosak S. Characterization of oral and cloacal microbial communities of wild and rehabilitated loggerhead sea turtles (Caretta caretta). Anim Microbiome 2021; 3:59. [PMID: 34479653 PMCID: PMC8417999 DOI: 10.1186/s42523-021-00120-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Background Microbial communities of wild animals are being increasingly investigated to provide information about the hosts’ biology and promote conservation. Loggerhead sea turtles (Caretta caretta) are a keystone species in marine ecosystems and are considered vulnerable in the IUCN Red List, which led to growing efforts in sea turtle conservation by rescue centers around the world. Understanding the microbial communities of sea turtles in the wild and how affected they are by captivity, is one of the stepping stones in improving the conservation efforts. Describing oral and cloacal microbiota of wild animals could shed light on the previously unknown aspects of sea turtle holobiont biology, ecology, and contribute to best practices for husbandry conditions. Results We describe the oral and cloacal microbiota of Mediterranean loggerhead sea turtles by 16S rRNA gene sequencing to compare the microbial communities of wild versus turtles in, or after, rehabilitation at the Adriatic Sea rescue centers and clinics. Our results show that the oral microbiota is more sensitive to environmental shifts than the cloacal microbiota, and that it does retain a portion of microbial taxa regardless of the shift from the wild and into rehabilitation. Additionally, Proteobacteria and Bacteroidetes dominated oral and cloacal microbiota, while Kiritimatiellaeota were abundant in cloacal samples. Unclassified reads were abundant in the aforementioned groups, which indicates high incidence of yet undiscovered bacteria of the marine reptile microbial communities. Conclusions We provide the first insights into the oral microbial communities of wild and rehabilitated loggerhead sea turtles, and establish a framework for quick and non-invasive sampling of oral and cloacal microbial communities, useful for the expansion of the sample collection in wild loggerhead sea turtles. Finally, our investigation of effects of captivity on the gut-associated microbial community provides a baseline for studying the impact of husbandry conditions on turtles’ health and survival upon their return to the wild. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00120-5.
Collapse
Affiliation(s)
- Klara Filek
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10 000, Zagreb, Croatia
| | - Adriana Trotta
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. Per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Romana Gračan
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10 000, Zagreb, Croatia
| | - Antonio Di Bello
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. Per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Marialaura Corrente
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. Per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Sunčica Bosak
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10 000, Zagreb, Croatia.
| |
Collapse
|
19
|
Nguyen NA, Lin Z, Mohanty I, Garg N, Schmidt EW, Agarwal V. An Obligate Peptidyl Brominase Underlies the Discovery of Highly Distributed Biosynthetic Gene Clusters in Marine Sponge Microbiomes. J Am Chem Soc 2021; 143:10221-10231. [PMID: 34213321 DOI: 10.1021/jacs.1c03474] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Marine sponges are prolific sources of bioactive natural products, several of which are produced by bacteria symbiotically associated with the sponge host. Bacteria-derived natural products, and the specialized bacterial symbionts that synthesize them, are not shared among phylogenetically distant sponge hosts. This is in contrast to nonsymbiotic culturable bacteria in which the conservation of natural products and natural product biosynthetic gene clusters (BGCs) is well established. Here, we demonstrate the widespread conservation of a BGC encoding a cryptic ribosomally synthesized and post-translationally modified peptide (RiPP) in microbiomes of phylogenetically and geographically dispersed sponges from the Pacific and Atlantic oceans. Detection of this BGC was enabled by mining for halogenating enzymes in sponge metagenomes, which, in turn, allowed for the description of a broad-spectrum regiospecific peptidyl tryptophan-6-brominase which possessed no chlorination activity. In addition, we demonstrate the cyclodehydrative installation of azoline heterocycles in proteusin RiPPs. This is the first demonstration of halogenation and cyclodehydration for proteusin RiPPs and the enzymes catalyzing these transformations were found to competently interact with other previously described proteusin substrate peptides. Within a sponge microbiome, many different generalized bacterial taxa harbored this BGC with often more than 50 copies of the BGC detected in individual sponge metagenomes. Moreover, the BGC was found in all sponges queried that possess high diversity microbiomes but it was not detected in other marine invertebrate microbiomes. These data shed light on conservation of cryptic natural product biosynthetic potential in marine sponges that was not detected by traditional natural product-to-BGC (meta)genome mining.
Collapse
Affiliation(s)
- Nguyet A Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ipsita Mohanty
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
20
|
Ho XY, Katermeran NP, Deignan LK, Phyo MY, Ong JFM, Goh JX, Ng JY, Tun K, Tan LT. Assessing the Diversity and Biomedical Potential of Microbes Associated With the Neptune's Cup Sponge, Cliona patera. Front Microbiol 2021; 12:631445. [PMID: 34267732 PMCID: PMC8277423 DOI: 10.3389/fmicb.2021.631445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Marine sponges are known to host a complex microbial consortium that is essential to the health and resilience of these benthic invertebrates. These sponge-associated microbes are also an important source of therapeutic agents. The Neptune's Cup sponge, Cliona patera, once believed to be extinct, was rediscovered off the southern coast of Singapore in 2011. The chance discovery of this sponge presented an opportunity to characterize the prokaryotic community of C. patera. Sponge tissue samples were collected from the inner cup, outer cup and stem of C. patera for 16S rRNA amplicon sequencing. C. patera hosted 5,222 distinct OTUs, spanning 26 bacterial phyla, and 74 bacterial classes. The bacterial phylum Proteobacteria, particularly classes Gammaproteobacteria and Alphaproteobacteria, dominated the sponge microbiome. Interestingly, the prokaryotic community structure differed significantly between the cup and stem of C. patera, suggesting that within C. patera there are distinct microenvironments. Moreover, the cup of C. patera had lower diversity and evenness as compared to the stem. Quorum sensing inhibitory (QSI) activities of selected sponge-associated marine bacteria were evaluated and their organic extracts profiled using the MS-based molecular networking platform. Of the 110 distinct marine bacterial strains isolated from sponge samples using culture-dependent methods, about 30% showed quorum sensing inhibitory activity. Preliminary identification of selected QSI active bacterial strains revealed that they belong mostly to classes Alphaproteobacteria and Bacilli. Annotation of the MS/MS molecular networkings of these QSI active organic extracts revealed diverse classes of natural products, including aromatic polyketides, siderophores, pyrrolidine derivatives, indole alkaloids, diketopiperazines, and pyrone derivatives. Moreover, potential novel compounds were detected in several strains as revealed by unique molecular families present in the molecular networks. Further research is required to determine the temporal stability of the microbiome of the host sponge, as well as mining of associated bacteria for novel QS inhibitors.
Collapse
Affiliation(s)
- Xin Yi Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nursheena Parveen Katermeran
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Lindsey Kane Deignan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ma Yadanar Phyo
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Ji Fa Marshall Ong
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Jun Xian Goh
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Juat Ying Ng
- National Parks Board, Singapore Botanic Gardens, Singapore, Singapore
| | - Karenne Tun
- National Parks Board, Singapore Botanic Gardens, Singapore, Singapore
| | - Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|