1
|
Araujo G, Montoya JM, Thomas T, Webster NS, Lurgi M. A mechanistic framework for complex microbe-host symbioses. Trends Microbiol 2025; 33:96-111. [PMID: 39242229 DOI: 10.1016/j.tim.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
Virtually all multicellular organisms on Earth live in symbiotic associations with complex microbial communities: the microbiome. This ancient relationship is of fundamental importance for both the host and the microbiome. Recently, the analyses of numerous microbiomes have revealed an incredible diversity and complexity of symbionts, with different mechanisms identified as potential drivers of this diversity. However, the interplay of ecological and evolutionary forces generating these complex associations is still poorly understood. Here we explore and summarise the suite of ecological and evolutionary mechanisms identified as relevant to different aspects of microbiome complexity and diversity. We argue that microbiome assembly is a dynamic product of ecology and evolution at various spatio-temporal scales. We propose a theoretical framework to classify mechanisms and build mechanistic host-microbiome models to link them to empirical patterns. We develop a cohesive foundation for the theoretical understanding of the combined effects of ecology and evolution on the assembly of complex symbioses.
Collapse
Affiliation(s)
- Gui Araujo
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK
| | - José M Montoya
- Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200 Moulis, France
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Nicole S Webster
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7001, Australia; Australian Centre for Ecogenomics, University of Queensland, Brisbane, 4072, Australia; Australian Institute of Marine Science, Townsville, 4810, Australia
| | - Miguel Lurgi
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
2
|
Giraud C, Wabete N, Lemeu C, Selmaoui-Folcher N, Pham D, Boulo V, Callac N. Environmental factors and potential probiotic lineages shape the active prokaryotic communities associated with healthy Penaeus stylirostris larvae and their rearing water. FEMS Microbiol Ecol 2024; 100:fiae156. [PMID: 39562288 PMCID: PMC11636268 DOI: 10.1093/femsec/fiae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/30/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Microbial dysbiosis is hypothesized to cause larval mass mortalities in New Caledonian shrimp hatcheries. In order to confirm this hypothesis and allow further microbial comparisons, we studied the active prokaryotic communities of healthy Penaeus stylirostris larvae and their surrounding environment during the first 10 days of larval rearing. Using daily nutrient concentration quantitative analyses and spectrophotometric organic matter analyses, we highlighted a global eutrophication of the rearing environment. We also evidenced drastic bacterial community modifications in the water and the larvae samples using Illumina HiSeq sequencing of the V4 region of the 16S rRNA gene. We confirmed that Alteromonadales, Rhodobacterales, Flavobacteriales, Oceanospirillales, and Vibrionales members formed the core bacteriota of shrimp larvae. We also identified, in the water and the larvae samples, several potential probiotic bacterial strains that could lead to rethink probiotic use in aquaculture (AEGEAN 169 marine group, OM27 clade, Ruegeria, Leisingera, Pseudoalteromonas, and Roseobacter). Finally, investigating the existing correlations between the environmental factors and the major bacterial taxa of the water and the larvae samples, we suggested that deterministic and stochastic processes were involved in the assembly of prokaryotic communities during the larval rearing of P. stylirostris. Overall, our results showed that drastic changes mostly occurred during the zoea stages suggesting that this larval phase is crucial during shrimp larval development.
Collapse
Affiliation(s)
- Carolane Giraud
- Ifremer, CNRS, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, ENTROPIE, F-98800, Nouméa, Nouvelle-Calédonie, France
- University of New Caledonia, Institut des Sciences Exactes et Appliquées (ISEA), 98800 Noumea, New Caledonia
| | - Nelly Wabete
- Ifremer, CNRS, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, ENTROPIE, F-98800, Nouméa, Nouvelle-Calédonie, France
| | - Célia Lemeu
- Ifremer, CNRS, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, ENTROPIE, F-98800, Nouméa, Nouvelle-Calédonie, France
| | - Nazha Selmaoui-Folcher
- University of New Caledonia, Institut des Sciences Exactes et Appliquées (ISEA), 98800 Noumea, New Caledonia
| | - Dominique Pham
- Ifremer, CNRS, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, ENTROPIE, F-98800, Nouméa, Nouvelle-Calédonie, France
| | - Viviane Boulo
- IHPE,Université de Montpellier, CNRS, Ifremer, Université de Perpignan via Domitia, 34000 Montpellier, France
| | - Nolwenn Callac
- Ifremer, CNRS, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, ENTROPIE, F-98800, Nouméa, Nouvelle-Calédonie, France
| |
Collapse
|
3
|
Luo Z, Lin ZY, Li ZF, Fu ZQ, Han FL, Li EC. Developmental toxicity of the neonicotinoid pesticide clothianidin to the larvae of the crustacean Decapoda, Penaeus vannamei. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134787. [PMID: 38823101 DOI: 10.1016/j.jhazmat.2024.134787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
The developmental toxicity effects of neonicotinoid pesticides such as clothianidin have not been fully explored in agricultural applications. This is particularly noteworthy because such pesticides significantly impact the survival rates of invertebrates, with arthropod larvae being particularly vulnerable. This study aimed to address this research gap by specifically investigating the toxicological effects of clothianidin on the developmental stages of the larvae of the economically important aquaculture species Penaeus vannamei. In these experiments, shrimp eggs were exposed to seawater containing different concentrations of clothianidin beginning at N1, and each phase was observed and analyzed to determine its toxic impact on larval development. These results revealed that clothianidin induces an increase in deformity rates and triggers abnormal cell apoptosis. It also significantly reduced survival rates and markedly decreased body length and heart rate in the later stages of larval development (P3). Transcriptomic analysis revealed disruptions in larval DNA integrity, protein synthesis, and signal transduction caused by clothianidin. To survive prolonged exposure, larvae may attempt to maintain their viability by repairing cell structures and enhancing signal transduction mechanisms. This study offers the first empirical evidence of the toxicity of clothianidin to arthropod larvae, underscoring the impact of environmental pollution on aquatic health.
Collapse
Affiliation(s)
- Zhi Luo
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Zhi-Yu Lin
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Zhen-Fei Li
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Zhen-Qiang Fu
- School of Marine Science, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Feng-Lu Han
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Er-Chao Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
4
|
Song Z, Li K, Li K. Acute effects of the environmental probiotics Rhodobacter sphaeroides on intestinal bacteria and transcriptome in shrimp Penaeusvannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109316. [PMID: 38142021 DOI: 10.1016/j.fsi.2023.109316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
In recent years, a substantial number of studies have been dedicated to exploring the potential benefits of probiotics in aquaculture. Rhodobacter sphaeroides can be used in aquaculture-related environmental bioremediation, and its protein is also used as a feed additive in Penaeus vannamei culture. To investigate the effects of releasing R. sphaeroides as environmental probiotics on P. vannamei, we employed 16S rRNA gene and mRNA transcriptome sequencing. Our study focused on assessing alterations in intestinal bacteria and intestinal gene expression in P. vannamei, establishing correlations between them. Our findings revealed a significant increase in the relative abundances of Rhodobacter, Paracoccus, Sulfitobacter, and other bacterial OTUs within the intestinal bacterial community. Additionally, we observed enhanced complexity and stability in the intestinal bacterial correlation network, indicating improved synergy among bacteria and reduced competition. Moreover, the introduction of R. sphaeroides resulted in the down-regulation of certain immune genes and the up-regulation of genes linked to growth and metabolism in the intestinal tissues of P. vannamei. Importantly, we identified a noteworthy correlation between the changes in intestinal bacteria and these alterations in intestinal tissue gene expressions. By conducting analyses of the intestinal bacterial community and intestinal tissue transcriptome, this study revealed the effects of releasing R. sphaeroides as sediment probiotics in P. vannamei culture water. These results serve as vital scientific references for the application of R. sphaeroides in P. vannamei aquaculture.
Collapse
Affiliation(s)
- Zule Song
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Kui Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Kejun Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
5
|
Angthong P, Chaiyapechara S, Rungrassamee W. Shrimp microbiome and immune development in the early life stages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104765. [PMID: 37380117 DOI: 10.1016/j.dci.2023.104765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
With its contribution to nutrition, development, and disease resistance, gut microbiome has been recognized as a crucial component of the animal's health and well-being. Microbiome in the gastrointestinal tract constantly interacts with the host animal's immune systems as part of the normal function of the intestines. Interactions between the microbiome and the immune system are complex and dynamic, with the microbiome shaping immune development and function. In contrast, the immune system modulates the composition and activity of the microbiome. In shrimp, as with all other aquatic animals, the interaction between the microbiome and the animals occurs at the early developmental stages. This early interaction is likely essential to the development of immune responses of the animal as well as many key physiological developments that further contribute to the health of shrimp. This review provides background knowledge on the early developmental stage of shrimp and its microbiome, examines the interaction between the microbiome and the immune system in the early life stage of shrimp, and discusses potential pitfalls and challenges associated with microbiome research. Understanding the interaction between the microbiome and shrimp immune system at this crucial developmental stage could have the potential to aid in the establishment of a healthy microbiome, improve shrimp survival, and provide ways to shape the microbiome with feed supplements or other strategies.
Collapse
Affiliation(s)
- Pacharaporn Angthong
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sage Chaiyapechara
- Aquaculture Service Development Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wanilada Rungrassamee
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
6
|
Waiho K, Abd Razak MS, Abdul Rahman MZ, Zaid Z, Ikhwanuddin M, Fazhan H, Shu-Chien AC, Lau NS, Azmie G, Ishak AN, Syahnon M, Kasan NA. A metagenomic comparison of clearwater, probiotic, and Rapid BFT TM on Pacific whiteleg shrimp, Litopenaeus vannamei cultures. PeerJ 2023; 11:e15758. [PMID: 37790619 PMCID: PMC10542392 DOI: 10.7717/peerj.15758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/26/2023] [Indexed: 10/05/2023] Open
Abstract
Biofloc technology improves water quality and promote the growth of beneficial bacteria community in shrimp culture. However, little is known about the bacteria community structure in both water and gut of cultured organisms. To address this, the current study characterised the metagenomes derived from water and shrimp intestine samples of novel Rapid BFTTM with probiotic and clearwater treatments using 16S V4 region and full length 16S sequencing. Bacteria diversity of water and intestine samples of Rapid BFTTM and probiotic treatments were similar. Based on the 16S V4 region, water samples of >20 μm biofloc had the highest abundance of amplicon sequence variant (ASV). However, based on full length 16S, no clear distinction in microbial diversity was observed between water samples and intestine samples. Proteobacteria was the most abundant taxon in all samples based on both 16S V4 and full length 16S sequences. Vibrio was among the highest genus based on 16S V4 region but only full length 16S was able to discern up to species level, with three Vibrios identified-V. harveyi, V. parahaemolyticus and V. vulnificus. Vibrio harveyi being the most abundant species in all treatments. Among water samples, biofloc water samples had the lowest abundance of all three Vibrios, with V. vulnificus was present only in bioflocs of <20 μm. Predicted functional profiles of treatments support the beneficial impacts of probiotic and biofloc inclusion into shrimp culture system. This study highlights the potential displacement of opportunistic pathogens by the usage of biofloc technology (Rapid BFTTM) in shrimp culture.
Collapse
Affiliation(s)
- Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Minden, Penang, Malaysia
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, Guangdong, China
| | - Muhammad Syafiq Abd Razak
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Zaiyadal Aquaculture Sdn. Bhd., Shah Alam, Selangor, Malaysia
| | | | - Zainah Zaid
- Zaiyadal Aquaculture Sdn. Bhd., Shah Alam, Selangor, Malaysia
| | - Mhd Ikhwanuddin
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, Guangdong, China
- Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya, Indonesia
| | - Hanafiah Fazhan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Minden, Penang, Malaysia
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, Guangdong, China
| | - Alexander Chong Shu-Chien
- Centre for Chemical Biology, Universiti Sains Malaysia, Minden, Penang, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Ghazali Azmie
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Ahmad Najmi Ishak
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Mohammad Syahnon
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Centre of Research and Field Service (CRaFS), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Nor Azman Kasan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, Guangdong, China
| |
Collapse
|
7
|
Dong M, Kuramae EE, Zhao M, Li R, Shen Q, Kowalchuk GA. Tomato growth stage modulates bacterial communities across different soil aggregate sizes and disease levels. ISME COMMUNICATIONS 2023; 3:104. [PMID: 37752280 PMCID: PMC10522649 DOI: 10.1038/s43705-023-00312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Soil aggregates contain distinct physio-chemical properties across different size classes. These differences in micro-habitats support varied microbial communities and modulate the effect of plant on microbiome, which affect soil functions such as disease suppression. However, little is known about how the residents of different soil aggregate size classes are impacted by plants throughout their growth stages. Here, we examined how tomato plants impact soil aggregation and bacterial communities within different soil aggregate size classes. Moreover, we investigated whether aggregate size impacts the distribution of soil pathogen and their potential inhibitors. We collected samples from different tomato growth stages: before-planting, seedling, flowering, and fruiting stage. We measured bacterial density, community composition, and pathogen abundance using qPCR and 16 S rRNA gene sequencing. We found the development of tomato growth stages negatively impacted root-adhering soil aggregation, with a gradual decrease of large macro-aggregates (1-2 mm) and an increase of micro-aggregates (<0.25 mm). Additionally, changes in bacterial density and community composition varied across soil aggregate size classes. Furthermore, the pathogen exhibited a preference to micro-aggregates, while macro-aggregates hold a higher abundance of potential pathogen-inhibiting taxa and predicted antibiotic-associated genes. Our results indicate that the impacts of tomatoes on soil differ for different soil aggregate size classes throughout different plant growth stages, and plant pathogens and their potential inhibitors have different habitats within soil aggregate size classes. These findings highlight the importance of fine-scale heterogeneity of soil aggregate size classes in research on microbial ecology and agricultural sustainability, further research focuses on soil aggregates level could help identify candidate tax involved in suppressing pathogens in the virtual micro-habitats.
Collapse
Affiliation(s)
- Menghui Dong
- Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Eiko E Kuramae
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB, Wageningen, The Netherlands
| | - Mengli Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Rong Li
- Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
8
|
Xie XD, Zhou Y, Sun YB, Yi SL, Zhao Y, Chen Q, Xie YH, Cao MX, Yu ML, Wei YY, Zhang L, Hu TJ. RNA-Seq and 16S rRNA Reveals That Tian-Dong-Tang-Gan Powder Alleviates Environmental Stress-Induced Decline in Immune and Antioxidant Function and Gut Microbiota Dysbiosis in Litopenaeus vannami. Antioxidants (Basel) 2023; 12:1262. [PMID: 37371991 DOI: 10.3390/antiox12061262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Ammonia stress and nitrite stress can induce immune depression and oxidative stress in Litopenaeus vannami (L. vannamei). Earlier reports showed that L. vannamei immunity, resistance to ammonia stress, and resistance to nitrite stress improved after Tian-Dong-Tang-Gan Powder (TDTGP) treatment, but the mechanism is not clear. In this study, three thousand L. vannamei were fed different doses of TDTGP for 35 days and then subjected to ammonia and nitrite stress treatments for 72 h. Transcriptome and 16-Seq ribosomal RNA gene sequencing (16S rRNA-seq) were used to analyze hepatopancreas gene expression and changes in gut microbiota abundance in each group. The results showed that after TDTGP treatment, hepatopancreas mRNA expression levels of immunity- and antioxidant-related genes were increased, the abundance of Vibrionaceae in the gut microbiota was decreased, and the abundance of Rhodobacteraceae and Flavobacteriaceae was increased. In addition, after TDTGP treatment, the effects of ammonia and nitrite stress on the mRNA expression of Pu, cat-4, PPAF2, HO, Hsp90b1, etc. were reduced and the disruption of the gut microbiota was alleviated. In short, TDTGP can regulate the immunity and antioxidant of L. vannamei by increasing the expression levels of immunity- and antioxidant-related genes and regulating the abundance of Rhodobacteraceae and Flavobacteriaceae in the gut microbiota.
Collapse
Affiliation(s)
- Xiao-Dong Xie
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Ying Zhou
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Yu-Bo Sun
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Shou-Li Yi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Yi Zhao
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Qi Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Ying-Hong Xie
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Mi-Xia Cao
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Mei-Ling Yu
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Ying-Yi Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Ling Zhang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ting-Jun Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
9
|
Callac N, Giraud C, Boulo V, Wabete N, Pham D. Microbial biomarker detection in shrimp larvae rearing water as putative bio-surveillance proxies in shrimp aquaculture. PeerJ 2023; 11:e15201. [PMID: 37214103 PMCID: PMC10198154 DOI: 10.7717/peerj.15201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/17/2023] [Indexed: 05/24/2023] Open
Abstract
Background Aquacultured animals are reared in water hosting various microorganisms with which they are in close relationships during their whole lifecycle as some of these microorganisms can be involved in their host's health or physiology. In aquaculture hatcheries, understanding the interactions existing between the natural seawater microbiota, the rearing water microbiota, the larval stage and the larval health status, may allow the establishment of microbial proxies to monitor the rearing ecosystems. Indeed, these proxies could help to define the optimal microbiota for shrimp larval development and could ultimately help microbial management. Methods In this context, we monitored the daily composition of the active microbiota of the rearing water in a hatchery of the Pacific blue shrimp Penaeus stylirostris. Two distinct rearing conditions were analyzed; one with antibiotics added to the rearing water and one without antibiotics. During this rearing, healthy larvae with a high survival rate and unhealthy larvae with a high mortality rate were observed. Using HiSeq sequencing of the V4 region of the 16S rRNA gene of the water microbiota, coupled with zootechnical and statistical analysis, we aimed to distinguish the microbial taxa related to high mortality rates at a given larval stage. Results We highlight that the active microbiota of the rearing water is highly dynamic whatever the larval survival rate. A clear distinction of the microbial composition is shown between the water harboring heathy larvae reared with antibiotics versus the unhealthy larvae reared without antibiotics. However, it is hard to untangle the effects of the antibiotic addition and of the larval death on the active microbiota of the rearing water. Various active taxa of the rearing water are specific to a given larval stage and survival rate except for the zoea with a good survival rate. Comparing these communities to those of the lagoon, it appears that many taxa were originally detected in the natural seawater. This highlights the great importance of the microbial composition of the lagoon on the rearing water microbiota. Considering the larval stage and larval survival we highlight that several genera: Nautella, Leisingera, Ruegerira, Alconivorax, Marinobacter and Tenacibaculum, could be beneficial for the larval survival and may, in the rearing water, overcome the r-strategist microorganisms and/or putative pathogens. Members of these genera might also act as probiotics for the larvae. Marivita, Aestuariicocccus, HIMB11 and Nioella, appeared to be unfavorable for the larval survival and could be associated with upcoming and occurring larval mortalities. All these specific biomarkers of healthy or unhealthy larvae, could be used as early routine detection proxies in the natural seawater and then during the first days of larval rearing, and might help to manage the rearing water microbiota and to select beneficial microorganisms for the larvae.
Collapse
Affiliation(s)
- Nolwenn Callac
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Ifremer, Nouméa, New-Caledonia
| | - Carolane Giraud
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Ifremer, Nouméa, New-Caledonia
- Institut des Sciences Exactes et Appliquées, University of New Caledonia, Nouméa, New-Calédonia
| | - Viviane Boulo
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Ifremer, Nouméa, New-Caledonia
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan via Domitia, Ifremer, Montpellier, France
| | - Nelly Wabete
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Ifremer, Nouméa, New-Caledonia
| | - Dominique Pham
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Ifremer, Nouméa, New-Caledonia
| |
Collapse
|
10
|
Lin W, He Y, Li R, Mu C, Wang C, Shi C, Ye Y. Adaptive changes of swimming crab (Portunus trituberculatus) associated bacteria helping host against dibutyl phthalate toxification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121328. [PMID: 36828355 DOI: 10.1016/j.envpol.2023.121328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The pollution of dibutyl phthalate (DBP) in aquatic environments is becoming an extensive environmental problem and detrimental to aquatic animals. Here, we quantified the response pattern of the bacterial community and metabolites of swimming crab (Portunus trituberculatus) juveniles exposed to 0.2, 2, and 10 mg/L DBP using 16 S rRNA gene amplicon sequencing coupled with metabolomic technique. The results showed that DBP changed the bacterial community compositions in a concentration-dependent pattern and decreased the Shannon index at the second developmental stage of the swimming crabs. The Rhodobacteraceae taxa were specifically enriched by crabs when challenged by 2 and 10 mg/L DBP, with an increased in Shannon index and enhanced drift in its assembly. Moreover, DBP changed the metabolic profiling of the swimming crab, highlighted by increased levels of lactate, valine, methionine, lysine, and phenylalanine in the 10 mg/L DBP-exposed crabs. Rhodobacteraceae presented the most considerable contribution to the metabolic potentials in phthalate and benzoate degradation, lactate production, and amino acid biosynthesis. Overall, our results indicated an adaptive change of crab-associated bacteria helped the host resist DBP stress. The findings extend our insights into the relationship between the microbiota and its host metabolism under DBP stress and reveal the potential microbiota modalities for DBP detoxification.
Collapse
Affiliation(s)
- Weichuan Lin
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Yimin He
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Ronghua Li
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315832, China
| | - Changkao Mu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315832, China
| | - Chunlin Wang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315832, China
| | - Ce Shi
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315832, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, China
| | - Yangfang Ye
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
11
|
Stochastic Processes Drive the Assembly and Metabolite Profiles of Keystone Taxa during Chinese Strong-Flavor Baijiu Fermentation. Microbiol Spectr 2023:e0510322. [PMID: 36916915 PMCID: PMC10101002 DOI: 10.1128/spectrum.05103-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Multispecies communities participate in the fermentation of Chinese strong-flavor Baijiu (CSFB), and the metabolic activity of the dominant and keystone taxa is key to the flavor quality of the final product. However, their roles in metabolic function and assembly processes are still not fully understood. Here, we identified the variations in the metabolic profiles of dominant and keystone taxa and characterized their community assembly using 16S rRNA and internal transcribed spacer (ITS) gene amplicon and metatranscriptome sequencing. We demonstrate that CSFB fermentations with distinct metabolic profiles display distinct microbial community compositions and microbial network complexities and stabilities. We then identified the dominant taxa (Limosilactobacillus fermentum, Kazachstania africana, Saccharomyces cerevisiae, and Pichia kudriavzevii) and the keystone ecological cluster (module 0, affiliated mainly with Thermoascus aurantiacus, Weissella confusa, and Aspergillus amstelodami) that cause changes in metabolic profiles. Moreover, we highlight that the alpha diversity of keystone taxa contributes to changes in metabolic profiles, whereas dominant taxa exert their influence on metabolic profiles by virtue of their relative abundance. Additionally, our results based on the normalized stochasticity ratio (NST) index and the neutral model revealed that stochastic and deterministic processes together shaped CSFB microbial community assemblies. Stochasticity and environmental selection structure the keystone and dominant taxa differently. This study provides new insights into understanding the relationships between microbial communities and their metabolic functions. IMPORTANCE From an ecological perspective, keystone taxa in microbial networks with high connectivity have crucial roles in community assembly and function. We used CSFB fermentation as a model system to study the ecological functions of dominant and keystone taxa at the metabolic level. We show that both dominant taxa (e.g., those taxa that have the highest relative abundances) and keystone taxa (e.g., those taxa with the most cooccurrences) affected the resulting flavor profiles. Moreover, our findings established that stochastic processes were dominant in shaping the communities of keystone taxa during CSFB fermentation. This result is striking as it suggests that although the controlled conditions in the fermentor can determine the dominant taxa, the uncontrolled rare keystone taxa in the microbial community can alter the resulting flavor profiles. This important insight is vital for the development of potential manipulation strategies to improve the quality of CSFB through the regulation of keystone species.
Collapse
|
12
|
Dai W, Ye J, Xue Q, Liu S, Xu H, Liu M, Lin Z. Changes in Bacterial Communities of Kumamoto Oyster Larvae During Their Early Development and Following Vibrio Infection Resulting in a Mass Mortality Event. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:30-44. [PMID: 36370246 DOI: 10.1007/s10126-022-10178-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Vibrio and Ostreid herpesvirus 1 are responsible for mass mortalities of oyster larvae in hatcheries. Relevant works have focused on their relationships with the disease when larval mortality occurs. On the contrary, little is known about how the resident microbiota in oyster larvae responds to Vibrio-infected disease causing mortality as the disease progressed, whereas this knowledge is fundamental to unveil the etiology of the disease. Here, we analyzed the temporal succession of the microbiome of Kumamoto oyster (Crassostrea sikamea) larvae during their early development, accompanied by a Vibrio-caused mortality event that occurred at the post D-stage of larval development in a shellfish hatchery in Ningbo, China, on June 2020. The main causative agent of larval mortality was attributable to Vibrio infection, which was confirmed by linearly increased Vibrio abundance over disease progression. Larval bacterial communities dramatically changed over host development and disease progression, as highlighted by reduced α-diversity and less diverse core taxa when the disease occurred. Null model and phylogenetic-based mean nearest taxon distance analyses showed that the relative importance of deterministic processes governing larval bacterial assembly initially increased over host development, whereas this dominance was depleted over disease progression. Furthermore, we screened the disease-discriminatory taxa with a significant change in their relative abundances, which could be indicative of disease progression. In addition, network analysis revealed that disease occurrence remodeled the co-occurrence patterns and niche characteristics of larval microbiota. Our findings demonstrate that the dysbiosis of resident bacterial communities and the shift of microecological mechanisms in the larval microbiome may contribute to mortality during oyster early development.
Collapse
Affiliation(s)
- Wenfang Dai
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Jing Ye
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Qinggang Xue
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China.
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China.
| | - Sheng Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Hongqiang Xu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Minhai Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhihua Lin
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China.
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China.
| |
Collapse
|
13
|
Zhou L, Liu Z, Zheng Z, Yao D, Zhao Y, Chen X, Zhang Y, Aweya JJ. The CCR1 and CCR5 C-C chemokine receptors in Penaeus vannamei are annexed by bacteria to attenuate shrimp survival. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104561. [PMID: 36183838 DOI: 10.1016/j.dci.2022.104561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The C-C chemokine receptors (CCRs) family is involved in diverse pathophysiological processes in mammals, such as immune regulation and cancer, but their functions in invertebrates remain enigmatic. Here, two CCR homologs in Penaeus vannamei (designated PvCCR1 and PvCCR5) were characterized and found to share sequence homology with other CCRs and contain the conserved 7TM functional domain. Both PvCCR1 and PvCCR5 were constitutively expressed in healthy shrimp tissues, while their mRNA transcript levels were induced in hepatopancreas and hemocytes by Vibrio parahaemolyticus, Streptococcus iniae, and white spot syndrome virus. Notably, shrimp survival increased after knockdown of PvCCR1 and PvCCR5 followed by V. parahaemolyticus infection, indicating that PvCCR1 and PvCCR5 are annexed by the bacteria for their benefit, the absence of which attenuates the effects of the pathogen on shrimp survival. The present data indicate that PvCCR1 and PvCCR5 play key roles in the antimicrobial immune response and therefore vital for shrimp survival.
Collapse
Affiliation(s)
- Liping Zhou
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Zhouyan Liu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Yueling Zhang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, 361021, Fujian, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
14
|
Wang L, Zhao M, Du X, Feng K, Gu S, Zhou Y, Yang X, Zhang Z, Wang Y, Zhang Z, Zhang Q, Xie B, Han G, Deng Y. Fungi and cercozoa regulate methane-associated prokaryotes in wetland methane emissions. Front Microbiol 2023; 13:1076610. [PMID: 36687630 PMCID: PMC9853292 DOI: 10.3389/fmicb.2022.1076610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023] Open
Abstract
Wetlands are natural sources of methane (CH4) emissions, providing the largest contribution to the atmospheric CH4 pool. Changes in the ecohydrological environment of coastal salt marshes, especially the surface inundation level, cause instability in the CH4 emission levels of coastal ecosystems. Although soil methane-associated microorganisms play key roles in both CH4 generation and metabolism, how other microorganisms regulate methane emission and their responses to inundation has not been investigated. Here, we studied the responses of prokaryotic, fungal and cercozoan communities following 5 years of inundation treatments in a wetland experimental site, and molecular ecological networks analysis (MENs) was constructed to characterize the interdomain relationship. The result showed that the degree of inundation significantly altered the CH4 emissions, and the abundance of the pmoA gene for methanotrophs shifted more significantly than the mcrA gene for methanogens, and they both showed significant positive correlations to methane flux. Additionally, we found inundation significantly altered the diversity of the prokaryotic and fungal communities, as well as the composition of key species in interactions within prokaryotic, fungal, and cercozoan communities. Mantel tests indicated that the structure of the three communities showed significant correlations to methane emissions (p < 0.05), suggesting that all three microbial communities directly or indirectly contributed to the methane emissions of this ecosystem. Correspondingly, the interdomain networks among microbial communities revealed that methane-associated prokaryotic and cercozoan OTUs were all keystone taxa. Methane-associated OTUs were more likely to interact in pairs and correlated negatively with the fungal and cercozoan communities. In addition, the modules significantly positively correlated with methane flux were affected by environmental stress (i.e., pH) and soil nutrients (i.e., total nitrogen, total phosphorus and organic matter), suggesting that these factors tend to positively regulate methane flux by regulating microbial relationships under inundation. Our findings demonstrated that the inundation altered microbial communities in coastal wetlands, and the fungal and cercozoan communities played vital roles in regulating methane emission through microbial interactions with the methane-associated community.
Collapse
Affiliation(s)
- Linlin Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Mingliang Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xiongfeng Du
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Songsong Gu
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yuqi Zhou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Xingsheng Yang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaojing Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Yingcheng Wang
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Zheng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Qi Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Baohua Xie
- Yellow River Delta Field Observation and Research Station of Coastal Wetland Ecosystem, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Guangxuan Han
- Yellow River Delta Field Observation and Research Station of Coastal Wetland Ecosystem, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Ye Deng
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Xiong TH, Shi C, Mu CK, Wang CL, Ye YF. Rise and metabolic roles of Vibrio during the fermentation of crab paste. Front Nutr 2023; 10:1092573. [PMID: 36908913 PMCID: PMC9998518 DOI: 10.3389/fnut.2023.1092573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
Microbial community may systematically promote the development of fermentation process of foods. Traditional fermentation is a spontaneous natural process that determines a unique nutritional characteristic of crab paste of Portunus trituberculatus, However, rare information is available regarding the development pattern and metabolic role of bacterial community during the fermentation of crab paste. Here, using a 16S rRNA gene amplicon sequencing technology, we investigated dynamics of bacterial community and its relationship with metabolites during the fermentation of crab paste. The results showed that bacterial community changed dynamically with the fermentation of crab paste which highlighted by consistently decreased α-diversity and overwhelming dominance of Vibrio at the later days of fermentation. Vibrio had a positive correlation with trimethylamine, hypoxanthine, formate, and alanine while a negative correlation with inosine and adenosine diphosphate. In contrast, most of other bacterial indicators had a reverse correlation with these metabolites. Moreover, Vibrio presented an improved function potential in the formation of the significantly increased metabolites. These findings demonstrate that the inexorable rise of Vibrio not only drives the indicator OTUs turnover in the bacterial community but also has incriminated the quality of crab paste from fresh to perished.
Collapse
Affiliation(s)
- Tian-Han Xiong
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ce Shi
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Chang-Kao Mu
- School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| | - Chun-Lin Wang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yang-Fang Ye
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
16
|
Callac N, Boulo V, Giraud C, Beauvais M, Ansquer D, Ballan V, Maillez JR, Wabete N, Pham D. Microbiota of the Rearing Water of Penaeus stylirostris Larvae Influenced by Lagoon Seawater and Specific Key Microbial Lineages of Larval Stage and Survival. Microbiol Spectr 2022; 10:e0424122. [PMID: 36416556 PMCID: PMC9769815 DOI: 10.1128/spectrum.04241-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Aquacultured animals are reared in water, where they interact with microorganisms which can be involved in their development, immunity, and disease. It is therefore interesting to study the rearing water microbiota, especially in the hatcheries of the Pacific blue shrimp Penaeus stylirostris, where larval mass mortalities occur. In this study, using HiSeq sequencing of the V4 region of the 16S rRNA molecule coupled with zootechnical and chemical analyses, we investigated whether any microbial lineages could be associated with certain mortality rates at a given larval stage. Our results indicate that the active microbiota of the rearing water was highly dynamic throughout the rearing process, with distinct communities influenced by progressive water eutrophication, larval stage, and survival rate. Our data also highlighted the role of the lagoon seawater on the rearing water microbiome, as many operational taxonomic units (OTUs) specific to a given larval stage and survival rate were detected in the primary reservoir which contained the lagoon water. We also identified biomarkers specific to water eutrophication, with Alteromonadaceae, Vibrionaceae, and Methylophilaceae, respectively, linked to increases in ammonia, nitrogen, and soluble reactive phosphate, or to increases in colored dissolved organic matter in the rearing water; other biomarkers were specific to certain larval stages and survival rates. Indeed, the Marinobacteraceae were specific to the Nauplii, and the Thalassospiraceae and Saprospiraceae to the Zoea Good condition; when mortality occurred, the Litoricolaceae were specific to the Zoea Bad, Microbacteraceae to the Mysis Bad, and Methylophilaceae to the Mysis Worst condition. Thus, these biomarkers might be used as potential early warning sentinels in water storage to infer the evolution of larval rearing to improve shrimp larval rearing. IMPORTANCE In New Caledonia, rearing of P. stylirostris is one of the main economic activities; unfortunately, mass larval mortalities cause important production decreases, involving major economic losses for the farmers and the Territory. This phenomenon, which has occurred at any larval stage over the past decade, is poorly understood. The significance of our research is in the identification of biomarkers specific to larval stage and survival rate, with some of these biomarkers being already present in the lagoon water. This enhances the role of the lagoon on the active microbiota of the rearing water at various larval stages and survival rates. Together, our results help us understand which active microbial communities are present in the rearing water according to larval stage and health. This might lead to broader impacts on hatcheries by helping to develop useful tools for using the water-lagoon, reservoir, or rearing-to test for the presence of these biomarkers as an early monitoring strategy.
Collapse
Affiliation(s)
- Nolwenn Callac
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - Viviane Boulo
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - Carolane Giraud
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
- Institut des Sciences Exactes et Appliquées (ISEA), University of New Caledonia, Nouméa, New Caledonia
| | - Maxime Beauvais
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - Dominique Ansquer
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - Valentine Ballan
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - Jean-René Maillez
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - Nelly Wabete
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - Dominique Pham
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| |
Collapse
|
17
|
Maraci Ö, Antonatou-Papaioannou A, Jünemann S, Engel K, Castillo-Gutiérrez O, Busche T, Kalinowski J, Caspers BA. Timing matters: age-dependent impacts of the social environment and host selection on the avian gut microbiota. MICROBIOME 2022; 10:202. [PMID: 36434663 PMCID: PMC9700942 DOI: 10.1186/s40168-022-01401-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The establishment of the gut microbiota in early life is a critical process that influences the development and fitness of vertebrates. However, the relative influence of transmission from the early social environment and host selection throughout host ontogeny remains understudied, particularly in avian species. We conducted conspecific and heterospecific cross-fostering experiments in zebra finches (Taeniopygia guttata) and Bengalese finches (Lonchura striata domestica) under controlled conditions and repeatedly sampled the faecal microbiota of these birds over the first 3 months of life. We thus documented the development of the gut microbiota and characterised the relative impacts of the early social environment and host selection due to species-specific characteristics and individual genetic backgrounds across ontogeny by using 16S ribosomal RNA gene sequencing. RESULTS The taxonomic composition and community structure of the gut microbiota changed across ontogenetic stages; juvenile zebra finches exhibited higher alpha diversity than adults at the post-breeding stage. Furthermore, in early development, the microbial communities of juveniles raised by conspecific and heterospecific foster parents resembled those of their foster family, emphasising the importance of the social environment. In later stages, the social environment continued to influence the gut microbiota, but host selection increased in importance. CONCLUSIONS We provided a baseline description of the developmental succession of gut microbiota in zebra finches and Bengalese finches, which is a necessary first step for understanding the impact of the early gut microbiota on host fitness. Furthermore, for the first time in avian species, we showed that the relative strengths of the two forces that shape the establishment and maintenance of the gut microbiota (i.e. host selection and dispersal from the social environment) change during development, with host selection increasing in importance. This finding should be considered when experimentally manipulating the early-life gut microbiota. Our findings also provide new insights into the mechanisms of host selection. Video Abstract.
Collapse
Affiliation(s)
- Öncü Maraci
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany.
| | - Anna Antonatou-Papaioannou
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
- Institute of Biology-Zoology, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Jünemann
- Institute for Bio- and Geosciences, Research Center Jülich, Jülich, Germany
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Kathrin Engel
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany
| | - Omar Castillo-Gutiérrez
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
18
|
Xiang Q, Chen QL, Yang XR, Li G, Zhu D. Soil mesofauna alter the balance between stochastic and deterministic processes in the plastisphere during microbial succession. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157820. [PMID: 35932868 DOI: 10.1016/j.scitotenv.2022.157820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Plastic debris, as a novel substrate, provides an avenue for enriching microbial growth. Although the structure of the aquatic plastisphere microbial community is well-characterised, linkages between microbial community assembly and species co-existence in the soil plastisphere vary and remain poorly understood, particularly when soil fauna is involved. This study investigated the soil plastisphere community, including bacteria, fungi, and protists, focusing on microbial succession and community assembly processes impacted by soil mesofauna. Certain soil plastisphere microbial taxa thrived at particular time points (e.g. Actinobacteria at 60 d), indicating the irreplaceable role of microplastic selection for time-sensitive taxa. Additionally, the biodiversity of keystone ecological clusters in the soil plastisphere was significantly associated with incubation time. Furthermore, the slopes of bacterial and fungal time-decay curves in soil plastisphere were steeper when treated with soil mesofauna than without soil mesofauna, whereas protist time-decay curves (total and abundant taxa) exhibited the opposite trend. Soil mesofauna increased the relative importance of determinacy in the soil plastisphere bacterial assembly process, while enhancing the stochasticity of fungal and protistan community assemblages. The study demonstrates the complex assembly patterns of soil plastisphere microbial communities, emphasising the importance of interactions between the plastisphere and local soil fauna from an ecological perspective.
Collapse
Affiliation(s)
- Qian Xiang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, 88 Zhongke Road, NingBo 315800, China
| | - Qing-Lin Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, 88 Zhongke Road, NingBo 315800, China
| | - Xiao-Ru Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Gang Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, 88 Zhongke Road, NingBo 315800, China
| | - Dong Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, 88 Zhongke Road, NingBo 315800, China.
| |
Collapse
|
19
|
Deng Z, Zeng S, Zhou R, Hou D, Bao S, Zhang L, Hou Q, Li X, Weng S, He J, Huang Z. Phage-prokaryote coexistence strategy mediates microbial community diversity in the intestine and sediment microhabitats of shrimp culture pond ecosystem. Front Microbiol 2022; 13:1011342. [PMID: 36212844 PMCID: PMC9537357 DOI: 10.3389/fmicb.2022.1011342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Emerging evidence supports that the phage-prokaryote interaction drives ecological processes in various environments with different phage life strategies. However, the knowledge of phage-prokaryote interaction in the shrimp culture pond ecosystem (SCPE) is still limited. Here, the viral and prokaryotic community profiles at four culture stages in the intestine of Litopenaeus vannamei and cultural sediment microhabitats of SCPE were explored to elucidate the contribution of phage-prokaryote interaction in modulating microbial communities. The results demonstrated that the most abundant viral families in the shrimp intestine and sediment were Microviridae, Circoviridae, Inoviridae, Siphoviridae, Podoviridae, Myoviridae, Parvoviridae, Herelleviridae, Mimiviridae, and Genomoviridae, while phages dominated the viral community. The dominant prokaryotic genera were Vibrio, Formosa, Aurantisolimonas, and Shewanella in the shrimp intestine, and Formosa, Aurantisolimonas, Algoriphagus, and Flavobacterium in the sediment. The viral and prokaryotic composition of the shrimp intestine and sediment were significantly different at four culture stages, and the phage communities were closely related to the prokaryotic communities. Moreover, the phage-prokaryote interactions can directly or indirectly modulate the microbial community composition and function, including auxiliary metabolic genes and closed toxin genes. The interactional analysis revealed that phages and prokaryotes had diverse coexistence strategies in the shrimp intestine and sediment microhabitats of SCPE. Collectively, our findings characterized the composition of viral communities in the shrimp intestine and cultural sediment and revealed the distinct pattern of phage-prokaryote interaction in modulating microbial community diversity, which expanded our cognization of the phage-prokaryote coexistence strategy in aquatic ecosystems from the microecological perspective and provided theoretical support for microecological prevention and control of shrimp culture health management.
Collapse
Affiliation(s)
- Zhixuan Deng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shenzheng Zeng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Renjun Zhou
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dongwei Hou
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shicheng Bao
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Linyu Zhang
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qilu Hou
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuanting Li
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China
- *Correspondence: Jianguo He,
| | - Zhijian Huang
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China
- Zhijian Huang,
| |
Collapse
|
20
|
Dai W, Ye J, Liu S, Chang G, Xu H, Lin Z, Xue Q. Bacterial Community Dynamics in Kumamoto Oyster Crassostrea sikamea Hatchery During Larval Development. Front Microbiol 2022; 13:933941. [PMID: 35903470 PMCID: PMC9315157 DOI: 10.3389/fmicb.2022.933941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates that microbes colonized in early life stages have a long-term effect on animal wellbeing in later life stages. Related research is still limited in aquatic animals, particularly in bivalve mollusks. In this study, we analyzed the dynamics of the bacterial composition of the pelagic larval stages (fertilized egg, trochophore, D-stage, veliger, and pediveliger) and the sessile postlarval stage (spat) of Kumamoto oyster (Crassostrea sikamea) and their relationships with the rearing water bacterioplankton in a hatchery by using Illumina sequencing of bacterial 16S rRNA gene. Both bacterioplankton and larval bacterial communities changed greatly over larval development, and the two communities remarkably differed (r = 0.956, P < 0.001), as highlighted by the differences in the dominant taxa and bacterial diversity. Ecological processes of larval bacterial communities were measured by abundance-unweighted and abundance-weighted standardized effect sizes of the mean nearest taxon distance (ses.MNTD). The unweighted ses.MNTD analysis revealed that the deterministic process constrained the larval bacterial assembly, whereas the weighted ses.MNTD analysis showed that larval bacterial composition was initially governed by stochasticity and then gradually by determinism in the later stages. SourceTracker analysis revealed that the larval bacteria were primarily derived from an internal source, mainly from larvae at the present stage. Additionally, the abundances of larval bacterial-mediated functional pathways that were involved in the amino acid, energy, lipid and carbohydrate metabolisms significantly altered with the larval development. These findings suggest that bacteria assemble into distinct communities in larvae and rearing water in the hatchery system, and the dynamics of bacterial community composition in larvae is likely associated with larval developmental stages.
Collapse
Affiliation(s)
- Wenfang Dai
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Jing Ye
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Sheng Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Guangqiu Chang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Hongqiang Xu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhihua Lin
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Qinggang Xue
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
- *Correspondence: Qinggang Xue
| |
Collapse
|
21
|
Li T, Yang Y, Li H, Li C. Mixed-Mode Bacterial Transmission via Eggshells in an Oviparous Reptile Without Parental Care. Front Microbiol 2022; 13:911416. [PMID: 35836422 PMCID: PMC9273969 DOI: 10.3389/fmicb.2022.911416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Symbiotic microorganisms play important roles in maintaining health and facilitating the adaptation of the host. We know little about the origin and transgenerational transmission of symbiotic bacteria, especially in egg-laying species without parental care. Here, we investigated the transmission of bacterial symbionts in the Chinese three-keeled pond turtle (Mauremys reevesii), a species with no post-oviposition parental care, by evaluating contributions from potential maternal and environmental sources to eggshell bacterial communities. Using 16S rRNA amplicon sequencing, we established that the bacterial communities of eggshells were similar to those of the maternal cloaca, maternal skin, and nest soil, but distinct from those of surface soil around nest and pond water. Phylogenetic structure analysis and source-tracking models revealed the deterministic assembly process of eggshell microbiota and high contributions of the maternal cloaca, maternal skin, and nest soil microbiota to eggshell bacterial communities. Moreover, maternal cloaca showed divergent contribution to eggshell microbiota compared with two other main sources in phylogenesis and taxonomic composition. The results demonstrate a mixture of horizontal and vertical transmission of symbiotic bacteria across generations in an oviparous turtle without parental care and provide insight into the significance of the eggshell microbiome in embryo development.
Collapse
|
22
|
Microhabitat Governs the Microbiota of the Pinewood Nematode and Its Vector Beetle: Implication for the Prevalence of Pine Wilt Disease. Microbiol Spectr 2022; 10:e0078322. [PMID: 35758726 PMCID: PMC9430308 DOI: 10.1128/spectrum.00783-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Our understanding of environmental acquisition of microbes and migration-related alteration of microbiota across habitats has rapidly increased. However, in complex life cycles, such as for many parasites, exactly how these microbes are transmitted across multiple environments, such as hosts and habitats, is unknown. Pinewood nematode, the causal agent of the globally devastating pine wilt disease, provides an ideal model to study the role of microbiota in multispecies interactions because its successful host invasion depends on the interactions among its vector insects, pine hosts, and associated microbes. Here, we studied the role of bacterial and fungal communities involved in the nematode’s life cycle across different micro- (pupal chamber, vector beetle, and dispersal nematodes) and macrohabitats (geographical locations). We identified the potential sources, selection processes, and keystone taxa involved in the host pine-nematode-vector beetle microbiota interactions. Nearly 50% of the microbiota in vector beetle tracheae and ~60% that of third-stage dispersal juveniles were derived from the host pine (pupal chambers), whereas 90% of bacteria of fourth-stage dispersal juveniles originated from vector beetle tracheae. Our results also suggest that vector beetles’ tracheae selectively acquire some key taxa from the microbial community of the pupal chambers. These taxa will be then enriched in the dispersal nematodes traveling in the tracheae and hence likely transported to new host trees. Taken together, our findings contribute to the critical information toward a better understanding of the role of microbiota in pine wilt disease, therefore aiding the knowledge for the development of future biological control agents. IMPORTANCE Our understanding of animal microbiota acquisition and dispersal-mediated variation has rapidly increased. In this study, using the model of host pine-pinewood nematode-vector beetle (Monochamus sp.) complex, we disentangled the routes of microbial community assembly and transmission mechanisms among these different participants responsible for highly destructive pine wilt disease. We provide evidence that the microhabitat is the driving force shaping the microbial community of these participants. The microbiota of third-stage dispersal juveniles (LIII) of the nematodes collected around pupal chambers and of vector beetles were mainly derived from the host pine (pupal chambers), whereas the vector-entering fourth-stage dispersal juveniles (LIV) of the nematodes had the simplest microbiota community, not influencing vector’s microbiota. These findings enhanced our understanding of the variation in the microbiota of plants and animals and shed light on microbiota acquisition in complex life cycles.
Collapse
|
23
|
Giraud C, Callac N, Boulo V, Lam JS, Pham D, Selmaoui-Folcher N, Wabete N. The Active Microbiota of the Eggs and the Nauplii of the Pacific Blue Shrimp Litopenaeus stylirostris Partially Shaped by a Potential Vertical Transmission. Front Microbiol 2022; 13:886752. [PMID: 35633721 PMCID: PMC9133551 DOI: 10.3389/fmicb.2022.886752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
The many ecological niches present in an organism harbor distinct microorganisms called microbiota. Different factors can influence the establishment of these commensal microbial communities. In a previous article, we have concluded that some bacterial lineages associated with the early larval stages of the Pacific blue shrimp Litopenaeus stylirostris could be acquired from the breeders via a potential vertical transmission. The present study was conducted in order to investigate this hypothesis. Using HiSeq sequencing of the V4 region of 16S rRNA gene, we analyzed the active microbiota associated with the eggs and the nauplii of L. stylirsotris as well as with the reproductive organs of their breeders. Microbial communities associated with the rearing water were also considered to discriminate environmental microbial lineages. Using these analyses, we highlight a set of core bacterial families present in all samples and composed of members of Colwelliaceae, Alteromonadaceae, Pseudoalteromonadaceae, Saccharospirillaceae, Oceanospirillaceae, Vibrionaceae, Burkholderiaceae, Rhodobacteraceae, Flavobacteraceae, and Corynebacteriaceae; showing the importance of the environment in the establishment of the larval microbiota. We also present specific bacteria affiliated to the Arcobacteraceae, Rhodobacteraceae, Comamonadaceae, and Colwelliaceae families, which were only found in the breeders and their offspring strengthening the hypothesis of a potential vertical transmission shaping the active microbiota of the eggs and the nauplii of L. stylirostris.
Collapse
Affiliation(s)
- Carolane Giraud
- UMR 9220 ENTROPIE, Ifremer (LEAD-NC), Noumea, New Caledonia
- Institut des Sciences Exactes et Appliquées (ISEA), University of New Caledonia, Noumea, New Caledonia
- *Correspondence: Carolane Giraud,
| | - Nolwenn Callac
- UMR 9220 ENTROPIE, Ifremer (LEAD-NC), Noumea, New Caledonia
- Nolwenn Callac,
| | - Viviane Boulo
- UMR 9220 ENTROPIE, Ifremer (LEAD-NC), Noumea, New Caledonia
| | | | - Dominique Pham
- UMR 9220 ENTROPIE, Ifremer (LEAD-NC), Noumea, New Caledonia
| | - Nazha Selmaoui-Folcher
- Institut des Sciences Exactes et Appliquées (ISEA), University of New Caledonia, Noumea, New Caledonia
| | - Nelly Wabete
- UMR 9220 ENTROPIE, Ifremer (LEAD-NC), Noumea, New Caledonia
| |
Collapse
|
24
|
Reyes G, Betancourt I, Andrade B, Panchana F, Román R, Sorroza L, Trujillo LE, Bayot B. Microbiome of Penaeus vannamei Larvae and Potential Biomarkers Associated With High and Low Survival in Shrimp Hatchery Tanks Affected by Acute Hepatopancreatic Necrosis Disease. Front Microbiol 2022; 13:838640. [PMID: 35615516 PMCID: PMC9125206 DOI: 10.3389/fmicb.2022.838640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is an emerging bacterial disease of cultured shrimp caused mainly by Vibrio parahaemolyticus, which harbors the lethal PirAB toxin genes. Although Penaeus vannamei (P. vannamei) postlarvae are susceptible to AHPND, the changes in the bacterial communities through the larval stages affected by the disease are unknown. We characterized, through high-throughput sequencing, the microbiome of P. vannamei larvae infected with AHPND-causing bacteria through the larval stages and compared the microbiome of larvae collected from high- and low-survival tanks. A total of 64 tanks from a commercial hatchery were sampled at mysis 3, postlarvae 4, postlarvae 7, and postlarvae 10 stages. PirAB toxin genes were detected by PCR and confirmed by histopathology analysis in 58 tanks. Seven from the 58 AHPND-positive tanks exhibited a survival rate higher than 60% at harvest, despite the AHPND affectation, being selected for further analysis, whereas 51 tanks exhibited survival rates lower than 60%. A random sample of 7 out of these 51 AHPND-positive tanks was also selected. Samples collected from the selected tanks were processed for the microbiome analysis. The V3–V4 hypervariable regions of the 16S ribosomal RNA (rRNA) gene of the samples collected from both the groups were sequenced. The Shannon diversity index was significantly lower at the low-survival tanks. The microbiomes were significantly different between high- and low-survival tanks at M3, PL4, PL7, but not at PL10. Differential abundance analysis determined that biomarkers associated with high and low survival in shrimp hatchery tanks affected with AHPND. The genera Bacillus, Vibrio, Yangia, Roseobacter, Tenacibaculum, Bdellovibrio, Mameliella, and Cognatishimia, among others, were enriched in the high-survival tanks. On the other hand, Gilvibacter, Marinibacterium, Spongiimonas, Catenococcus, and Sneathiella, among others, were enriched in the low-survival tanks. The results can be used to develop applications to prevent losses in shrimp hatchery tanks affected by AHPND.
Collapse
Affiliation(s)
- Guillermo Reyes
- Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
- Facultad de Ciencias de la Vida (FCV), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
- *Correspondence: Guillermo Reyes,
| | - Irma Betancourt
- Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Betsy Andrade
- Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Fanny Panchana
- Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Rubén Román
- Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Lita Sorroza
- Facultad de Ciencias Agropecuarias, Universidad Técnica de Machala, Machala, Ecuador
| | - Luis E. Trujillo
- Industrial Biotechnology Research Group, Center for Nanoscience and Nanotechnology (CENCINAT), Universidad de las Fuerzas Armadas (ESPE), Sangolquí, Ecuador
| | - Bonny Bayot
- Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
- Facultad de Ingeniería Marítima y Ciencias del Mar (FIMCM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
- Bonny Bayot,
| |
Collapse
|
25
|
Initial fungal diversity impacts flavor compounds formation in the spontaneous fermentation of Chinese liquor. Food Res Int 2022; 155:110995. [DOI: 10.1016/j.foodres.2022.110995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 11/04/2022]
|
26
|
Huang L, Guo H, Liu Z, Chen C, Wang K, Huang X, Chen W, Zhu Y, Yan M, Zhang D. Contrasting patterns of bacterial communities in the rearing water and gut of Penaeus vannamei in response to exogenous glucose addition. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:222-236. [PMID: 37073217 PMCID: PMC10077327 DOI: 10.1007/s42995-021-00124-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/18/2021] [Indexed: 05/03/2023]
Abstract
Supplementing exogenous carbon sources is a practical approach to improving shrimp health by manipulating the microbial communities of aquaculture systems. However, little is known about the microbiological processes and mechanisms of these systems. Here, the effects of glucose addition on shrimp growth performance and bacterial communities of the rearing water and the shrimp gut were investigated to address this knowledge gap. The results showed that glucose addition significantly improved the growth and survival of shrimp. Although the α-diversity indices of both bacterioplankton communities and gut microbiota were significantly decreased by adding glucose, both bacterial communities exhibited divergent response patterns to glucose addition. Glucose addition induced a dispersive bacterioplankton community but a more stable gut bacterial community. Bacterial taxa belonging to Ruegeria were significantly enriched by glucose in the guts, especially the operational taxonomic unit 2575 (OTU2575), which showed the highest relative importance to the survival rate and individual weight of shrimp, with the values of 43.8 and 40.6%, respectively. In addition, glucose addition increased the complexity of interspecies interactions within gut bacterial communities and the network nodes from Rhodobacteraceae accounted for higher proportions and linked more with the nodes from other taxa in the glucose addition group than that in control. These findings suggest that glucose addition may provide a more stable gut microbiota for shrimp by increasing the abundance of certain bacterial taxa, such as Ruegeria. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00124-9.
Collapse
Affiliation(s)
- Lei Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001 China
| | - Haipeng Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Zidan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Chen Chen
- Zhejiang Mariculture Research Institute, Wenzhou, 325005 China
| | - Kai Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Xiaolin Huang
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
- Zhejiang Mariculture Research Institute, Wenzhou, 325005 China
| | - Wei Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Yueyue Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Mengchen Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| |
Collapse
|
27
|
Zhang S, Sun X. Core Gut Microbiota of Shrimp Function as a Regulator to Maintain Immune Homeostasis in Response to WSSV Infection. Microbiol Spectr 2022; 10:e0246521. [PMID: 35412375 PMCID: PMC9045241 DOI: 10.1128/spectrum.02465-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
The gut microbiota is an integral part of the host and has a functional potential in host physiology. Numerous scientific efforts have opened new horizons in gut microbiota research and enhanced the understanding of host-microbe interactions in vertebrates. However, evidence on the association between the gut microbiota and immunity in invertebrates, especially in shrimp, which is an important aquatic animal, is limited. Herein, we conducted a comprehensive analysis based on 16S rRNA gene sequencing and liquid chromatography-coupled mass spectrometry (LC-MS) to investigate the correlation between them. Comparing the gut microbiota among the four different species of shrimp, we found huge variations and determined a core gut microbiota composed of 55 microbes. The environmental challenge of white spot syndrome virus (WSSV) infection led to changes in core microbial structures, but the alteration of core microbiota among different shrimp followed the same trend and showed immune-related function in the prediction of its metabolic potential. In metabolomic analysis, nine significantly upregulated metabolites found after viral infection indicated that they have antiviral potential. Moreover, we found a tight correlation between them and almost half of the core microbiota. These data demonstrate that these metabolites are responsible for maintaining the immune homeostasis of the host and prove the function of the gut microbiota and the related metabolome in antiviral immunity of shrimp. IMPORTANCE Abundant gut microorganisms constitute a complex microecosystem with the intestinal environment of the host, which plays a critical role in the adjustment of various physiological states of the organism. Sequencing and mass spectrometry data collected from intestinal samples of shrimp after virus infection helped to investigate the special function of the microecosystem and suggested that the gut microbiota has a functional potential in maintaining immune homeostasis of the host under environmental challenge.
Collapse
Affiliation(s)
- Siyuan Zhang
- School of Marine Science, Ningbo University, Ningbo, People’s Republic of China
| | - Xumei Sun
- School of Marine Science, Ningbo University, Ningbo, People’s Republic of China
| |
Collapse
|
28
|
Unzueta-Martínez A, Welch H, Bowen JL. Determining the Composition of Resident and Transient Members of the Oyster Microbiome. Front Microbiol 2022; 12:828692. [PMID: 35185836 PMCID: PMC8847785 DOI: 10.3389/fmicb.2021.828692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/27/2021] [Indexed: 01/04/2023] Open
Abstract
To better understand how complex microbial communities become assembled on eukaryotic hosts, it is essential to disentangle the balance between stochastic and deterministic processes that drive their assembly. Deterministic processes can create consistent patterns of microbiome membership that result in persistent resident communities, while stochastic processes can result in random fluctuation of microbiome members that are transient with regard to their association to the host. We sampled oyster reefs from six different populations across the east coast of the United States. At each site we collected gill tissues for microbial community analysis and additionally collected and shipped live oysters to Northeastern University where they were held in a common garden experiment. We then examined the microbiome shifts in gill tissues weekly for 6 weeks using 16S rRNA gene amplicon sequencing. We found a strong population-specific signal in the microbial community composition of field-sampled oysters. Surprisingly, the oysters sampled during the common garden experiment maintained compositionally distinct gill-associated microbial communities that reflected their wild population of origin, even after rearing them in a common garden for several weeks. This indicates that oyster gill-associated microbiota are predominantly composed of resident microbes specific to host population, rather than being a reflection of their immediate biotic and abiotic surroundings. However, certain bacterial taxa tended to appear more frequently on individuals from different populations than on individuals from the same population, indicating that there is a small portion of the gill microbiome that is transient and is readily exchanged with the environmental pool of microbes. Regardless, the majority of gill-associated microbes were resident members that were specific to each oyster population, suggesting that there are strong deterministic factors that govern a large portion of the gill microbiome. A small portion of the microbial communities, however, was transient and moved among oyster populations, indicating that stochastic assembly also contributes to the oyster gill microbiome. Our results are relevant to the oyster aquaculture industry and oyster conservation efforts because resident members of the oyster microbiome may represent microbes that are important to oyster health and some of these key members vary depending on oyster population.
Collapse
Affiliation(s)
- Andrea Unzueta-Martínez
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA, United States
| | - Heather Welch
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA, United States
| | - Jennifer L Bowen
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA, United States
| |
Collapse
|
29
|
Metagenomic Insights into the Structure of Microbial Communities Involved in Nitrogen Cycling in Two Integrated Multitrophic Aquaculture (IMTA) Ponds. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The microbial structure and metabolic potential, particularly with regard to nitrogen (N) cycling, in integrated multitrophic aquaculture (IMTA) ponds with shrimp remain unclear. In this study, an analysis of microbial community taxonomic diversity and a metagenomic analysis of N-related genes were performed in a shrimp-crab pond (Penaeus japonicus-Portunus trituberculatus, SC) and a shrimp-crab-clam pond (P. japonicus-P. trituberculatus-Sinonovacula constricta, SCC) to evaluate microbial structure and N transformation capacities in these two shrimp IMTA ponds. The composition of the microbial communities was similar between SC and SCC, but the water and sediments shared few common members in either pond. The relative abundances of N cycling genes were significantly higher in sediment than in water in both SC and SCC, except for assimilatory nitrate reduction genes. The main drivers of the differences in the relative abundances of N cycling genes in SC and SCC were salinity and pH in water and the NO2− and NH4+ contents of pore water in sediment. These results indicate that the coculture of S. constricta in a shrimp-crab pond may result in decreased N cycling in sediment. The reduced N flux in the shrimp IMTA ponds primarily originates within the sediment, except for assimilatory nitrate reduction.
Collapse
|
30
|
Li H, Lu L, Chen R, Li S, Xu D. Exploring Sexual Dimorphism in the Intestinal Microbiota of the Yellow Drum ( Nibea albiflora, Sciaenidae). Front Microbiol 2022; 12:808285. [PMID: 35069512 PMCID: PMC8767002 DOI: 10.3389/fmicb.2021.808285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Most of fish species exhibit striking sexual dimorphism, particularly during growth. There are also sexual dimorphisms of internal organs and biological functions, including those of intestinal microbiota, which likely plays a key role in growth. In this study, the growth and intestinal microbiota of the female, male, and all-female Nibea albiflora (yellow drums) were comprehensively analyzed. The caged culture female and all-female yellow drums showed higher growth rates than males. A further analysis of the intestinal microbiota showed a significant difference in diversity between females and males in the summer, whereas there were no significant differences in the diversity and richness between females and males in the winter. In contrast, a significant difference in richness was observed between all-female and male fish, regardless of the season. Although the main composition of the intestinal microbiota showed no significant sex differences, the community structure of the intestinal microbiota of yellow drums did. Furthermore, the correlations between intestinal microbial communities are likely to be influenced by sex. The ecological processes of the intestinal microbial communities of the yellow drums showed clear sexual dimorphism. Further network analysis revealed that, although the main components of the network in the intestinal microbiota of female, male, and all-female fish were similar, the network structures showed significant sex differences. The negative interactions among microbial species were the dominant relationships in the intestinal ecosystem, and Bacteroidetes, Firmicutes, and Proteobacteria were identified as the functional keystone microbes. In addition, the functional pathways in the intestinal microbiota of yellow drums showed no significant sexual or seasonal differences. Based on the findings of this study, we gain a comprehensive understanding of the interactions between sex, growth, and intestinal microbiota in yellow drums.
Collapse
Affiliation(s)
- Haidong Li
- School of Fishery, Zhejiang Ocean University, Zhoushan, China
| | - Lei Lu
- School of Fishery, Zhejiang Ocean University, Zhoushan, China.,Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Ruiyi Chen
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Shanshan Li
- School of Fishery, Zhejiang Ocean University, Zhoushan, China
| | - Dongdong Xu
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| |
Collapse
|
31
|
Du S, Chen W, Yao Z, Huang X, Chen C, Guo H, Zhang D. Enterococcus faecium are associated with the modification of gut microbiota and shrimp post-larvae survival. Anim Microbiome 2021; 3:88. [PMID: 34952650 PMCID: PMC8710032 DOI: 10.1186/s42523-021-00152-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Probiotics are widely used to promote host health. Compared to mammals and terrestrial invertebrates, little is known the role of probiotics in aquatic invertebrates. In this study, eighteen tanks with eight hundred of shrimp post-larvae individuals each were randomly grouped into three groups, one is shrimps administered with E. faecium as probiotic (Tre) and others are shrimps without probiotic-treatment (CK1: blank control, CK2: medium control). We investigated the correlations between a kind of commercial Enterococcus faecium (E. faecium) powder and microbiota composition with function potentials in shrimp post-larvae gut. RESULTS We sequenced the 16S rRNA gene (V4) of gut samples to assess diversity and composition of the shrimp gut microbiome and used differential abundance and Tax4Fun2 analyses to identify the differences of taxonomy and predicted function between different treatment groups. The ingested probiotic bacteria (E. faecium) were tracked in gut microbiota of Tre and the shrimps here showed the best growth performance especially in survival ratio (SR). The distribution of SR across samples was similar to that in PCoA plot based on Bray-Curits and two subgroups generated (SL: SR < 70%, SH: SR ≥ 70%). The gut microbiota structure and predicted function were correlated with both treatment and SR, and SR was a far more important factor driving taxonomic and functional differences than treatment. Both Tre and SH showed a low and uneven community species and shorted phylogenetic distance. We detected a shift in composition profile at phylum and genus level and further identified ten OTUs as relevant taxa that both closely associated with treatment and SR. The partial least squares path model further supported the important role of relevant taxa related to shrimp survival ratio. CONCLUSIONS Overall, we found gut microbiota correlated to both shrimp survival and ingested probiotic bacteria (E. faecium). These correlations should not be dismissed without merit and will uncover a promising strategy for developing novel probiotics through certain consortium of gut microbiota.
Collapse
Affiliation(s)
- Shicong Du
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China.,School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,School of Energy and Environment, City University of Hong Kong, Hong Kong, SAR, China
| | - Wei Chen
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Zhiyuan Yao
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China. .,School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China.
| | - Xiaolin Huang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Zhejiang Mariculture Research Institute, Wenzhou, 325099, China
| | - Chen Chen
- Zhejiang Mariculture Research Institute, Wenzhou, 325099, China
| | - Haipeng Guo
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China.,School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China. .,School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
32
|
Giraud C, Callac N, Beauvais M, Mailliez JR, Ansquer D, Selmaoui-Folcher N, Pham D, Wabete N, Boulo V. Potential lineage transmission within the active microbiota of the eggs and the nauplii of the shrimp Litopenaeus stylirostris: possible influence of the rearing water and more. PeerJ 2021; 9:e12241. [PMID: 34820157 PMCID: PMC8601056 DOI: 10.7717/peerj.12241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/12/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Microbial communities associated with animals are known to be key elements in the development of their hosts. In marine environments, these communities are largely under the influence of the surrounding water. In aquaculture, understanding the interactions existing between the microbiotas of farmed species and their rearing environment could help establish precise bacterial management. METHOD In light of these facts, we studied the active microbial communities associated with the eggs and the nauplii of the Pacific blue shrimp (Litopenaeus stylirostris) and their rearing water. All samples were collected in September 2018, November 2018 and February 2019. After RNA extractions, two distinct Illumina HiSeq sequencings were performed. Due to different sequencing depths and in order to compare samples, data were normalized using the Count Per Million method. RESULTS We found a core microbiota made of taxa related to Aestuariibacter, Alteromonas, Vibrio, SAR11, HIMB11, AEGEAN 169 marine group and Candidatus Endobugula associated with all the samples indicating that these bacterial communities could be transferred from the water to the animals. We also highlighted specific bacterial taxa in the eggs and the nauplii affiliated to Pseudomonas, Corynebacterium, Acinetobacter, Labrenzia, Rothia, Thalassolituus, Marinobacter, Aureispira, Oleiphilus, Profundimonas and Marinobacterium genera suggesting a possible prokaryotic vertical transmission from the breeders to their offspring. This study is the first to focus on the active microbiota associated with early developmental stages of a farmed shrimp species and could serve as a basis to comprehend the microbial interactions involved throughout the whole rearing process.
Collapse
Affiliation(s)
- Carolane Giraud
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia
- University of New Caledonia, Institut des Sciences Exactes et Appliquées (ISEA), Noumea, New Caledonia
| | - Nolwenn Callac
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia
| | - Maxime Beauvais
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia
- Sorbonne Université, UMR 7261, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, CNRS, Banyuls-sur-Mer, France
| | - Jean-René Mailliez
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia
| | - Dominique Ansquer
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia
| | - Nazha Selmaoui-Folcher
- University of New Caledonia, Institut des Sciences Exactes et Appliquées (ISEA), Noumea, New Caledonia
| | - Dominique Pham
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia
| | - Nelly Wabete
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia
| | - Viviane Boulo
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan via Domitia, Montpellier, France
| |
Collapse
|
33
|
Predicting the Presence and Abundance of Bacterial Taxa in Environmental Communities through Flow Cytometric Fingerprinting. mSystems 2021; 6:e0055121. [PMID: 34546074 PMCID: PMC8547484 DOI: 10.1128/msystems.00551-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Microbiome management research and applications rely on temporally resolved measurements of community composition. Current technologies to assess community composition make use of either cultivation or sequencing of genomic material, which can become time-consuming and/or laborious in case high-throughput measurements are required. Here, using data from a shrimp hatchery as an economically relevant case study, we combined 16S rRNA gene amplicon sequencing and flow cytometry data to develop a computational workflow that allows the prediction of taxon abundances based on flow cytometry measurements. The first stage of our pipeline consists of a classifier to predict the presence or absence of the taxon of interest, with yielded an average accuracy of 88.13% ± 4.78% across the top 50 operational taxonomic units (OTUs) of our data set. In the second stage, this classifier was combined with a regression model to predict the relative abundances of the taxon of interest, which yielded an average R2 of 0.35 ± 0.24 across the top 50 OTUs of our data set. Application of the models to flow cytometry time series data showed that the generated models can predict the temporal dynamics of a large fraction of the investigated taxa. Using cell sorting, we validated that the model correctly associates taxa to regions in the cytometric fingerprint, where they are detected using 16S rRNA gene amplicon sequencing. Finally, we applied the approach of our pipeline to two other data sets of microbial ecosystems. This pipeline represents an addition to the expanding toolbox for flow cytometry-based monitoring of bacterial communities and complements the current plating- and marker gene-based methods. IMPORTANCE Monitoring of microbial community composition is crucial for both microbiome management research and applications. Existing technologies, such as plating and amplicon sequencing, can become laborious and expensive when high-throughput measurements are required. In recent years, flow cytometry-based measurements of community diversity have been shown to correlate well with those derived from 16S rRNA gene amplicon sequencing in several aquatic ecosystems, suggesting that there is a link between the taxonomic community composition and phenotypic properties as derived through flow cytometry. Here, we further integrated 16S rRNA gene amplicon sequencing and flow cytometry survey data in order to construct models that enable the prediction of both the presence and the abundances of individual bacterial taxa in mixed communities using flow cytometric fingerprinting. The developed pipeline holds great potential to be integrated into routine monitoring schemes and early warning systems for biotechnological applications.
Collapse
|
34
|
Xie M, Zhang S, Xu L, Wu Z, Yuan J, Chen X. Comparison of the Intestinal Microbiota During the Different Growth Stages of Red Swamp Crayfish ( Procambarus clarkii). Front Microbiol 2021; 12:696281. [PMID: 34589066 PMCID: PMC8473915 DOI: 10.3389/fmicb.2021.696281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
This study aimed to determine the effect of the growth stage of Procambarus clarkii on their intestinal microbiota. Intestinal samples of five different growth stages of P. clarkii (first instar, second instar, third instar, juvenile, and adult) from laboratory culture were analyzed through the Illumina MiSeq high-throughput sequencing platform to determine the intestinal microbiome of crayfish. The alpha diversity decreased along with the growth of the crayfish, with the relative abundance of the microbiota changing among stages; crayfish at closer development stages had a more comparable intestinal microbiota composition. A comparative analysis by principal component analysis and principal coordinate analysis showed that there were significant differences in the intestinal microbiota of crayfish among the different growth stages, except for the first two stages of larval crayfish, and the intestinal microbiota showed a consistent progression pattern from the larval stage to the juvenile stage. Some microbiota showed stage specificity, which might be the characteristic microbiota of different stages of growth. According to FAPROTAX functional clustering analysis, the three stages of larvae were clustered together, while the juvenile and adult stages were clustered separately according to the growth stage, indicating that, in the early stages of larval development, the function of the intestinal flora was similar; as the body grew and developed, the composition and function of the intestinal microbiota also changed.
Collapse
Affiliation(s)
- Mengqi Xie
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agriculture University, Wuhan, China.,Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
| | - Shiyu Zhang
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
| | - Lili Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agriculture University, Wuhan, China
| | - Zhixin Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agriculture University, Wuhan, China.,Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agriculture University, Wuhan, China.,Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
| | - Xiaoxuan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agriculture University, Wuhan, China
| |
Collapse
|
35
|
Wang Z, Fan L, Wang J, Xie S, Zhang C, Zhou J, Zhang L, Xu G, Zou J. Insight into the immune and microbial response of the white-leg shrimp Litopenaeus vannamei to microplastics. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105377. [PMID: 34087762 DOI: 10.1016/j.marenvres.2021.105377] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) are a new type of environmental pollutant. To investigate the response of shrimp and their microflora to MPs, Litopenaeus vannamei (L. vannamei) was exposed to different concentrations of MPs (0, 50, 500, and 5000 μg/L, i.e., C, L, M and H groups) for 48 h. The survival rate, intake of MPs, immune-related gene expression and microbial response under MP exposure were detected. The results showed that the survival rate in the H group was significantly lower than those in the C, L and M groups, while the relative expression levels of proPO, TLR and ALF in the M and H groups were significantly higher than those in the C and L groups. For the microbial response, microbial community richness in the L group was significantly decreased, while community richness and diversity in the H group were significantly increased compared with those in the C group. The relative abundances of 3, 4 and 11 taxa were significantly changed after MP treatment at the phylum, class and genus levels, respectively. The results suggested that short-term exposure to low concentrations of MPs did not cause immune defense responses or death but affected the balance of bacterial composition in shrimp. Exposure to high concentrations of MPs can induce immune responses and microbial changes and can even cause death in shrimp. These findings increase our understanding of MP impacts on aquatic organisms.
Collapse
Affiliation(s)
- Zhenlu Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lanfen Fan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Chaonan Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiang Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Li Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
36
|
Cho KY. Lifestyle modifications result in alterations in the gut microbiota in obese children. BMC Microbiol 2021; 21:10. [PMID: 33407104 PMCID: PMC7789654 DOI: 10.1186/s12866-020-02002-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Background The association between the gut microbiota and pediatric obesity was analyzed in a cross-sectional study. A prospective study of obese children was conducted to assess the gut microbial alterations after a weight change. We collected fecal samples from obese children before and after a 2-month weight reduction program that consisted of individual counseling for nutritional education and physical activity, and we performed 16S rRNA gene amplicon sequencing using an Illumina MiSeq platform. Results Thirty-six participants, aged 7 to 18 years, were classified into the fat loss (n = 17) and the fat gain (n = 19) groups according to the change in total body fat (%) after the intervention. The baseline analysis of the gut microbiota in the preintervention stages showed dysbiotic features of both groups compared with those of normal-weight children. In the fat loss group, significantly decreased proportions of Bacteroidetes phylum, Bacteroidia class, Bacteroidales order, Bacteroidaceae family, and Bacteroides genus, along with increased proportions of Firmicutes phylum, Clostridia class, and Clostridiales order, were observed after intervention. The microbial richness was significantly reduced, without a change in beta diversity in the fat loss group. The fat gain group showed significantly deceased proportions of Firmicutes phylum, Clostridia class, Clostridiales order, Lachnospiraceae family, and Eubacterium hallii group genus, without a change in diversity after the intervention. According to the functional metabolic analysis by the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2, the “Nitrate Reduction VI” and “Aspartate Superpathway” pathways were predicted to increase significantly in the fat loss group. The cooccurring networks of genera were constructed and showed the different microbes that drove the changes between the pre- and postintervention stages in the fat loss and fat gain groups. Conclusions This study demonstrated that lifestyle modifications can impact the composition, richness, and predicted functional profiles of the gut microbiota in obese children after weight changes. Trial registration ClinicalTrials.govNCT03812497, registration date January 23, 2019, retrospectively registered. Supplementary information Supplementary information accompanies this paper at 10.1186/s12866-020-02002-3.
Collapse
Affiliation(s)
- Ky Young Cho
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea.
| |
Collapse
|